正弦波逆变器的制作过程后
正弦逆变器原理

正弦逆变器原理
正弦逆变器是一种电子装置,用于将直流电转换成交流电,输出波形近似为正弦波。
其工作原理可以简要描述为以下几个步骤:
1. 输入电压整流:正弦逆变器的输入通常为直流电源,首先需要将直流电压进行整流,即将其转换为恒定的直流电压。
这可以通过使用整流电桥或其他整流电路实现。
2. 逆变:整流后的直流电压输入到逆变器中,通过逆变器内部的开关装置(如MOSFET、IGBT等)控制,将直流电转换为
交流电。
逆变器通过不断地开关和关闭开关装置,实现将直流电源中的能量以高频率转移到输出端。
开关频率通常在几千赫兹到几十千赫兹之间。
3. PWM调制:在逆变器中,为了得到近似正弦波的输出,通
常使用脉宽调制(PWM)技术。
PWM调制通过改变开关装置的开关时间比例来控制输出波形的形状。
具体而言,通过调整开关装置的开关时间,使得输出波形是一个周期内高电平和低电平的时间比例的加权平均值,从而实现近似正弦波的输出。
4. 滤波:由于PWM调制产生的输出波形含有很高的谐波成分,需要通过滤波器来将这些谐波滤除,以得到较为纯净的正弦波形输出。
滤波器通常由电感和电容构成,能够滤除掉高频分量,只保留基波成分。
5. 输出:经过滤波后,逆变器的输出就是近似正弦波形的交流
电。
这种输出电压在实际应用中常常用于驱动交流电动机、给电网供电等。
总的来说,正弦逆变器通过整流直流输入电压,经过逆变、PWM调制、滤波等步骤,最终实现将直流电源转换为近似正弦波的交流电输出。
这种装置在许多领域都具有重要的应用,如可再生能源发电系统、UPS电源系统等。
正弦波逆变器工作原理

正弦波逆变器工作原理
正弦波逆变器是一种用于将直流电转换为交流电的电力设备。
它的工作原理是将直流电输入到逆变器中,经过一系列的电子元件和控制电路进行处理,最终输出一个与通常的家庭电源相同的交流正弦波。
具体来说,正弦波逆变器的工作原理可以分为以下几个步骤:
1. 激励信号生成:通过控制电路产生一个基准波形,通常为方波信号。
2. PWM调制:使用脉冲宽度调制(PWM)技术,将生成的方波
信号与一个矩形波进行比较,通过改变方波的占空比,产生一个与矩形波频率相同但波形接近正弦波的PWM信号。
3. 滤波:通过一个LC滤波电路,将PWM信号中的高频噪声
滤除,得到一个近似正弦波的电压波形。
4. 输出级:通过放大电路将滤波后的信号增强,以达到所需的输出功率。
通过以上几个步骤,正弦波逆变器能够将直流电转换成交流电,并输出一个接近正弦波的电压波形。
这样的输出波形对于很多需要交流电源供电的设备来说是非常重要的,因为它可以提供稳定、高质量的电能,不会对设备产生干扰或损坏。
3000W纯正弦波逆变器的详细过程

3000W纯正弦波逆变器的详细过程什么是逆变器逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。
它由逆变桥、控制逻辑和滤波电路组成。
简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。
因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。
什么是正弦波逆变器逆变器可以按照它的输出波形进行分类,分为方波逆变器、修正波逆变器和正弦波逆变器。
因此正弦波逆变器的定义就是输出波形为正弦波的逆变器。
它的优点是输出波形好,失真度很低,且其输出波形与市电电网的交流电波形基本一致,实际上优良的正弦波逆变器提供的交流电比电网的质量更高。
正弦波逆变器对收音机和通讯设备及精密设备的干扰小,噪声低,负载适应能力强,能满足所有交流负载的应用,而且整机效率较高;它的缺点是线路和相对修正波逆变器复杂,对控制芯片和维修技术的要求高,价格较贵。
正弦波逆变器实物图工作原理在介绍正弦波逆变器工作原理之前,先介绍一下逆变器的工作原理。
逆变器是一种DCtoAC的变压器,它其实与转化器是一种电压逆变的过程。
转换器是将电网的交流电压转变为稳定的12V直流输出,而逆变器是将Adapter输出的12V直流电压转变为高频的高压交流电;两个部分同样都采用了用得比较多的脉宽调制(PWM)技术。
其核心部分都是一个PWM集成控制器,Adapter用的是UC3842,逆变器则采用TL5001芯片。
TL5001的工作电压范围3.6~40V,其内部设有一个误差放大器,一个调节器、振荡器、有死区控制的PWM发生器、低压保护回路及短路保护回路等。
输入接口部分:输入部分有3个信号,12V直流输入VIN、工作使能电压ENB及Panel电流控制信号DIM。
VIN由Adapter提供,ENB 电压由主板上的MCU提供,其值为0或3V,当ENB=0时,逆变器不工作,而ENB=3V时,逆变器处于正常工作状态;而DIM电压由主板提供,其变化范围在0~5V之间,将不同的DIM值反馈给PWM控制器反馈端,逆变器向负载提供的电流也将不同,DIM值越小,逆变器输出的电流就越大。
1000W正弦波逆变器制作过程详解

1000W正弦波逆变器制作过程详解1000W正弦波逆变器制作过程详解作者:老寿这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。
升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。
因为电流较大,所以用了三对6平方的软线直接焊在功率板上:吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。
所以这次画PCB 时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。
如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。
上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。
上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。
二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。
上图是DC-DC升压电路的驱动板,用的是KA3525。
这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。
H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。
如何制作一个2000W的正弦波逆变器

如何制作一个2000W的正弦波逆变器要制作一个2000W的正弦波逆变器,你需要经过下面的步骤:1.设计规划:首先,你需要设计一个逆变器的电路图。
这个电路图应该包括逆变器的主要部件,例如转换器、滤波器以及控制电路。
你还需要决定所需的输入电压和输出电压,并确保这些参数与你的需求相匹配。
2.所需材料:准备所需的材料和元器件。
这些包括逆变器芯片、电容器、电感、二极管、电阻器和电容等。
3.搭建电路:根据你的电路图,使用电焊工具和电路板将元器件焊接连接。
确保注意正确的焊接顺序和焊点的质量。
4.程序控制:在逆变器中加入一个微控制器或其他控制电路,使其能够监测和调整输入电压和输出电压。
这将增加逆变器的稳定性和可靠性。
5.测试和调整:连接逆变器到适当的电源,并将负载连接到输出端口。
使用示波器或其他测试设备来测试逆变器的输出波形和频率。
如果有任何问题,你需要进一步调整电路或元器件。
6.优化和改进:一旦你的逆变器正常运行,你可以对其进行优化和改进。
这可能包括优化电路参数、增加保护电路以确保逆变器的安全运行,并增加效率等。
在整个制作过程中,请确保注意安全事项。
遵循正确的电气操作程序,确保使用正确的工具和设备。
总结:制作一个2000W的正弦波逆变器需要一些电子知识和技巧。
这个过程需要进行详细的设计和规划,选择和准备所需的材料,并将元器件焊接到电路板上。
然后,你需要进行测试、调整和优化以确保逆变器的稳定和可靠性。
通过遵循正确的步骤和注意事项,你可以成功地制作一个2000W的正弦波逆变器。
纯正弦波逆变器工作原理

纯正弦波逆变器工作原理纯正弦波逆变器是一种将直流电源转化为交流电源的装置。
其工作原理是通过将直流电源经过逆变器电路转化为高频交流信号,再经过滤波电路得到纯正弦波的交流电源输出。
纯正弦波逆变器主要由输入端、逆变电路和输出端三部分组成。
输入端通常接直流电源,例如电池组或直流电源供应器。
逆变电路是纯正弦波逆变器的核心部分,它将直流电源转换为交流电源。
输出端用来连接负载,将转换后的交流电源供给负载使用。
在纯正弦波逆变器中,逆变电路采用了高频开关技术。
具体来说,逆变电路由高频开关器件(如MOSFET、IGBT等)和控制电路组成。
控制电路通过对开关器件的控制,使其按照一定的频率开关,从而实现直流电源到交流电源的转换。
开关器件的开关频率通常在几千赫兹到几十千赫兹之间,这样可以得到较高质量的交流输出波形。
为了得到纯正弦波的交流输出,纯正弦波逆变器中通常还需要加入滤波电路。
滤波电路主要由电感和电容构成,通过对逆变电路输出的高频脉冲进行滤波,去除其中的高频成分,使输出波形逼近于纯正弦波。
滤波电路的设计和参数选择对输出波形的质量影响较大,需要根据具体应用需求进行合理设计。
在纯正弦波逆变器中,除了逆变电路和滤波电路外,还需要考虑保护电路的设计。
保护电路可以对逆变电路和负载进行监测和保护,以确保逆变器和负载的安全运行。
常见的保护功能包括过载保护、短路保护、过压保护、低压保护等。
纯正弦波逆变器具有输出波形质量高、适用范围广的特点。
其输出波形接近于理想的正弦波,可以满足对交流电源质量要求较高的应用场合。
逆变器输出电压和频率可以根据需要进行调节,适用于各种负载类型,如家用电器、工业设备、电力系统等。
纯正弦波逆变器在电力系统中有着广泛的应用。
它可以将电池组等直流电源转换为稳定的交流电源,用于应急电源、太阳能发电系统、风能发电系统等。
同时,纯正弦波逆变器还可以作为无线电通信设备、仪器仪表等精密电子设备的电源,保证其正常工作。
纯正弦波逆变器通过逆变电路将直流电源转换为高频交流信号,再经过滤波电路得到纯正弦波的交流电源输出。
全硬件纯正弦逆变器制作教程

全硬件纯正弦逆变器制作教程作者:科创论坛尤小翠注:此文章参考了部分电源网老寿老师和老矿石老师的研究成果做一个纯正弦逆变器,这个想法9个月之前就有了.做个逆变器,高频的,效率高,体积小.前级肯定用SG3525或者TL494做的推挽升压,这没啥选择,关键是后级,它决定输出波形是方波还是正弦波.输出正弦波的后级需要SPWM技术,肯定很多人的第一想法是使用单片机.的确,使用单片机的好处不少:SPWM波精度高,输出正弦波波形好,稳压精度高,方便加入电压指示功能等,单片机确实非常适合工业量产.但是对于咱们玩家,可不是这样了.单片机不是人人可以掌握的,即便掌握,像我这种只会做电子钟红外遥控之类的初级玩家也很难写出好的SPWM程序.因此,我考虑了全硬件方案.一、高频前级(原理分析)在HIFI界,有一句话说前级出声后级出力,同样在逆变界,有前级出功率后级出波形之说。
一个好的前级是多么的重要,是确保足够功率输出的保证。
这就是前级电路图啦~电路采用了光藕隔离反馈,工作在准闭环模式.轻载或者空载时,由于变压器漏感,输出可能超压,容易穿后级和电容.此时占空比减小输出降低,实测在空载时占空比很小很小,这大概是空载电流小的原因吧(空载电流神一般的~60mA~).当负载变大后,电路逐渐进入开环模式,以确保足够的电压和功率输出.注:本图根据老矿石的作品修改二、全硬件纯正弦后级(原理分析)老寿老师很久之前就弄过全硬件了,他的方案有SG3525和lm393两种,前者简单,但是最大占空比低(母线电压利用率低),后者最大占空比理论上可以弄到100% (实际也很高)但是电路有点复杂,而且需要双电源供电。
我把它们融合了一下,得到了自己的电路。
这是后级的框图本电路优点:1.电路极简单,可能为世界上最简单的分立SPWM电路2.单电源宽电压供电(10V-30V)3.输出最大占空比高,仿真时最大占空比已经接近100%.这将导致母线电压利用率高,母线电压340V就足够产生230V的工频正弦交流电.4.隔离输出,受外围电路干扰少本电路没有使用稳压反馈,故稳压功能全靠前级完成.前级一般由SG3525或者TL494组成,稳压功能不用可惜了.看本图,由于使用了虚拟双电源,因此单电源供电即可,省略一个辅助电源变压器.再看驱动板电路图(红圈里的内容是修改过的部分):麻雀虽小,五脏俱全.如图,LM7809将电池电压降为稳定的9V,这使得电路可以在宽电源(10V-30V)情况下工作,左上角红圈里的2N5551和2N5401等元件组成了虚拟双电源,将正9V变成正负4.5V的双电源.NE555及周边元件组成频率约为20KHz的高线形度三角波振荡器,如图,在NE555的2和6脚可以得到在3V和6V之间运动的三角波.IC1为LM324,IC1A及周边元件组成50Hz工频正弦振荡器,产生幅度4.5V的正弦波(对于产生的虚地),圈一电位器将这个正弦波幅度分压到3.5V.IC1B和IC1C及周边元件组成精密整流电路,将正弦波变成3V幅值的馒头波.这个馒头波要去和NE555的三角波比较,三角波和馒头波的幅值虽然向同,都是3V,但是这个馒头波的最低电位比三角波的高1.5V.因此,IC1D 及周边元件组成减法电路,将馒头波整体下调 1.5V,这样三角波和馒头波就可以比较了.LM393B进行比较工作,产生同相位的SPWM波,此波与LM393A组成的正弦波-方波转换器输出的同步方波送入CD4081等组成的编码电路进行编码,产生最终驱动功率管的SPWM 信号.两个20K电阻和47P电容用于产生死区于高频臂.SPWM1和SPWM2用于驱动高频臂,50HZ1和50HZ2用于驱动工频臂。
【DIY第二期】新做的3000W纯正弦波逆变器,已公布全部资料,步步解析原理

【DIY第二期】新做的3000W纯正弦波逆变器,已公布全部资料,步步解析原理展开全文【DIY第二期】新做的3000W纯正弦波逆变器,已公布全部资料,步步解析原理前些时间做了几台了,朋友都拿去用了,说还不错,今天上图大家看一下标称功率3000W持续功率;2800W峰值功率6000W 2S;300次开机短路,200次短路开机过载保护3200W 3S短路立即保护,电池过压/欠压保护齐全前级16管MOS,后级四个50N50整机半成品重4KG看到贴子有这么长了,作为逆变器余业玩家的我甚是感到高兴,时到五一了,也有了点时间打打字了,刚好也马上到了本其DIY结束的时间了,为了方便大家学习和交流,我在这里浅要的说下此款逆变器的设计过程和原理图的局部浅析,小弟专业不精,有说不对的地方请各位高手前辈拍砖!进入正题。
一、此款逆变器的基本情况(架构,组成)总括的说,这是一款24V逆变器,这款逆变器由三个部分组成,1、前级驱动板;2、后级驱动板;3、功率主板。
1、前级驱动板上主要是由三个小部分组成,一个辅助电源部分,一个部分是PWM驱动,第三个部分是保护部分;2、后级驱动板主要由三个部分组成,一个是SPWM信号的产生(单片机完成)部分,一个是硬件RC死区时间设置部分;再一个就是IR2110的驱动部分。
3、功率主板主要由四个部分组成,一个是前级升压及整流滤波,第二个是后级H全桥正弦变换部分,第三个是稳压反馈部分;第四个是LC滤波部分二、电路结构及原理分析1、前级驱动板A、辅助电源电路的功能就是将功24V的电池电压降到13-15V左右然后再经过LM7812稳成12V后供给整机电路的控制部分供电,先上图:在这个电路中,BT 输入电压范围可以达到15-36V,而输出稳定在 12V.Q1也可以用 P 型的MOS 管,适当的选取不同型号的P管可以将电压做到 60V左右。
下面来讲一下这个电路的工作原理,电路起动的瞬间,电源通过R21 提供 Q1足够大的基极电流,Q1饱和导通,其集电极电流一部分通过 L1 给 C121 充电供给负载,一部分储存在 L1 里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
花了近一个月的时间,制作了这台600W的正弦波逆变器,并将此台机器的制作过程和各位好友在此分享,谨此献给曾经和我一样的逆变器初学者,如您能有所收获,并举一反三,将是我此次分享的最大的收获。
该机具有以下特点:1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。
2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。
3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。
如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。
4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。
下面是样机的照片和工作波形:一、电路原理:该逆变器分为四大部分,每一部分做一块PCB板。
分别是“功率主板”;“SPWM 驱动板”;“DC-DC驱动板”;“保护板”。
1.功率主板:功率主板包括了DC-DC推挽升压和H桥逆变两大部分。
该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。
主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。
关于主变压器的绕制,下面再详细介绍。
前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。
高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。
高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。
H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。
H桥部分的电路采用的常规电路。
下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了PCB图的。
该板布板时,曾得到好友的提示帮助,特在此表示感谢。
2. SPWM驱动板和我的1KW机器一样,SPWM的核心部分采用了张工的TDS2285单片机芯片。
关于该芯片的详细介绍,这里不详说了。
U3,U4组成时序和死区电路,末级输出用了4个250光藕,H桥的二个上管用了自举式供电方式,这样做的目的是简化电路,可以不用隔离电源。
因为BT电压会在10-15V之间变化,为了可靠驱动H桥,光藕250的图腾输出级工作电压一定要在12-15之间,不能低于12V,否则可能使H桥功率管触发失败。
所以,这里用了一个MC34063(U9),把BT电压升至15V(该升压电路由钟工提供),实验证明,这方式十分有效。
整个SPWM驱动板,通过J1,J2插口和功率板接通,各插针说明如下:J2:2P-4P; 7P-9P; 13P-15P; 18P-20P 分别为H桥4个功率管的驱动引脚23P-24P为交流稳压取样电压的输入端。
J1:1P为2285输出至前级3525第10P的保护信号连接端,一旦保护电路启动,2285的12P输出高电平,通过该接口插针到前级3525的10P,关闭前级输出。
6P-7P-8P为地GND。
9P接保护电路的输出端,用于关闭后级SPWM输出。
10P-11P接BT电源。
下面是SPWM驱动板的电原理图和PCB截图:3.DC-DC驱动板DC-DC升压驱动板,采用的是很常见的线路,用一片SG3525实现PWM的输出,后级用二组图腾输出,经实验,如果用一对190N08,图腾部分可以省略,直接用3525驱动就够了。
因为这DC-DC驱动板,和我的1000W机上的接口是通用的,所以有双组输出,该机上只用了一组。
板上有二个小按钮开关,S1,S2,S1是开机的,S2是关机的,可以控制逆变器的启动和停机。
这驱动板,是用J3,J4接口和功率板相连的,其中J3的第1P为限压反馈输入端。
下面是DC-DC升压驱动电路图和PCB截图:4.保护板我这次没有做保护板,有如下原因:首先是没有保护板该机也可以工作,加上这段时间比较忙,所以,保护板就拉下了;其次是:我这次公布的功率主板,是后来经修正过的,保护板上的接口也做了改动,而我的样机用的是没有修正过的PCB板,即便是做了保护板,也插不上去。
我倒是希望有朋友如果用我的PCB文档去厂家打样,不要忘记,多给我打一套,寄给我,我就可以根据新的功率主板来画保护板了。
下面是保护部分的电路图,是我学习了钟工公布的3000W上用的保护电路变化而来的。
二、主要部件的制作和采购1.SPWM主芯片2.主变压器主变压器是制作逆变器成功与否的关健,本机主变用的磁芯为EE55,材质PC40,我在杭州电子市场买到了一种质量很好的骨架,立式的,脚位11加11,脚粗1.2MM。
绕制数据:初级2T加 2T,用10根0.93的线。
初级导线总面积为6.8平方MM,次级为0.93线一根,绕60T。
绕前准备:先准备骨架,把骨架上22个引脚,剪去4个,下面红圈处就是表示已经剪去的脚。
上面二个独立的脚是高压绕组用的,远离下面的脚有利于绝缘,中间及下面的脚是低压绕组用的,左边是一个绕组2圈,右边是另一个绕组2圈。
绕制步骤:A),先绕二分之一的高压绕组(次级),先在骨架上用高温胶带粘一层,这样做是为了防止导线打滑,用一根0.93线绕一层,约30圈(注意的是,高压绕组的线头要做好绝缘,我是套进一小段热缩套管,用打火机烤一下,就紧紧包在线头上了),再用胶带固定住线头,不要让它散出来,并在高压绕组的外面用高温胶带包三层。
B),下面就可以绕低压绕组了(初级),低压绕组分成二层绕,也就是每一层是2加2,用5根线并绕,我画了一个图(见下面图),不知大伙能不能看清楚结构情况。
先用5根0.93线绕2圈(见图二中红线),中间留空隙,再在空隙处用另外5根线绕2圈(见图二中蓝线),每根线长约37CM。
用同样的方法绕二层,层间包二层胶带,这样就相当于用了10根线并绕。
绕完低压绕组,在绕组外用高温胶带包三层。
绕低压绕组要注意的问题是:线头留在下面,即骨架引脚处,线尾留长一点,暂时留在骨架的上面(等绕完高压绕组后要向下折下来)。
从(图一)可以看出,实际上,低压绕组的头和尾是有一段是重叠的,也就是不是2圈,而是约2.2圈,这样做可以大大减少漏感。
C),再继续绕高压绕组,绕完另外的30圈,要注意的是,这30图要和里面的30圈绕向相同,这点很关健。
如果一层绕不下,就把剩下几圈再绕一层。
D),绕完高压绕组后,在外面用高温胶带包三层,就把低压绕组原先留在上面的线头折下来(见图三),准备焊在骨架的脚上。
去漆可以用脱漆剂,用棉签沾一点脱漆剂,抹在线头上,过一会儿,漆就掉下来了,就可以焊了。
E),再后在整个绕组的外面包几层高温胶带,绕好的线包外观要饱满平整。
F),现在可以插磁芯了,插磁芯之前要对磁芯的对接面做清洁处理,我是用胶带粘几下,把磁芯对接面的粉末全清洁干净,插入磁芯,用胶带扎紧,有条件的话对磁芯对接处用胶水做固定。
我发现用这种方法绕制的变压器漏感比较小。
以前用铜带绕制,漏感一般在0.8uH以上,现在可以做到0.4uH以下。
我想原因是:因为铜带要焊引出线头,这样就留下了一个锡堆,再绕高压绕组时,中间就有一个空隙,导致耦合不紧。
下图为测试漏感示意图。
如果有条件,一定要做一个耐压测试,任一个低压绕组对高压绕组的绝缘要在1500V以上,这样才可以放心使用。
3. AC输出滤波磁环对于象我这样纯手工打造的爱好者来讲,这个磁环的绕制也是十分头痛的事。
磁环是采用直径40MM的铁硅铝磁环,用1.18的线,在上面穿绕90圈,线长约4.5米,如果用导磁率为125的磁环,电感量大约在1.5mH,用导磁度为90的磁环,电感量大约在1mH左右。
我做过试验,用二个这样的磁环,每个电感量在0.7mH以上就可以正常工作了。
绕制时分二层,第一层,45圈,因为磁环外圈和内圈的周长不同,所以第一层绕时,内圈的线要紧密排列,而外圈的线是每圈之间留有一个空隙的。
绕第二层时,内圈是叠在第一层线上,外圈是嵌在第一层线的空隙中,这样绕出来的线圈才好看。
当然,好象是否好看,也不影响使用。
下面是我在淘宝上买过磁环的网店(无意为商家做广告,只是方便朋友们采购)。
注意,绕这个磁环时,一定要戴手套,否则,导线会让你勒出血泡的。
4.散热风扇本机前级功率管和H桥的功率管都用风扇散热(安装方法下面再详述),这是一种小型仪表风扇,比电脑上的CPU风扇还要小一点,实验证明,在600W输出的情况下,H桥的4个功率管散热不成问题,但前级的二个功率管好象散热不够一点,如果有可能,最好用大一点的风扇。
这风扇也是在淘宝网上买的,但现在这家店中好象没有了,只能用其它差不多的风扇代替了三、安装与调试:本机的安装调试并不复杂,但安装前必须做到二点:1.所有元器件必须是好的,器件的耐压和工作电流一定要够,尽可能用新器件,有条件的话装前对元器件作一番测试。
2.PCB质量一定要好,装前最好仔细地检查一下,有没有铜箔毛刺引起的短路等。
下面我讲一讲各板子的安装过程要注意的事项:1.功率主板:功率主板的安装,因为都是一些大器件,所以安装是比较方便的。
大功率管的安装:先把大功率管的脚弯成如下图所示的样子,然后把管子金属面朝上,将管脚插入焊接孔,在功率管的金属面上涂一点导热硅脂,再覆盖一层矽胶片做绝缘。
再把散热器盖上,从PCB下面升上来一个M3的螺丝,拧在散热器,并拧紧,这样,散热器就紧紧压在大功率管上了,再在反面把管脚焊好。
这种装法,主要是更换功率管比较方便。
板子装完后,接入12V直流电,见上图,按一下S1开关,驱动板就开始工作了,测一下工作电流,一般应该在40MA左右,将示波器探头接到图中PWM输出处,应该看到二路互为相反的PWM波输出,频率在28K左右,幅度为12V。
因为这块板子,当初我画的时候,是和我的1000W机通用的,所以,插针处有二对输出,但在600W机中只用了左边的一对。