侧链含有环糊精的聚合物的研究进展
葫芦脲超分子_准_聚轮烷的研究进展_侯昭升

葫芦脲超分子(准)聚轮烷的研究进展侯昭升1,谭业邦1*,黄玉玲1,周其凤2(1山东大学化学与化工学院,济南250100;2北京大学化学与分子工程学院,北京100871)摘要:综述了一类新型超分子-葫芦脲(准)聚轮烷的最新研究进展,包括一维、二维、三维金属(准)聚轮烷,主链、侧链有机(准)聚轮烷和树状大分子(准)聚轮烷的最新研究情况,并对超分子(准)聚轮烷的前景进行了展望。
关键词:聚轮烷;超分子;葫芦脲;进展自从Lehn在1987年作了关于超分子化学的诺贝尔演讲之后[1],轮烷(rotaxane)作为这一领域的崭新成员迅速崛起。
随着超分子化学的飞速发展,自组装、自组织及自复制现象已成为新的研究热点,而且通过这些过程形成的轮烷、索烃等超分子实体也为在纳米和分子尺度上设计和构筑新型的分子器件提供了广阔的应用前景。
轮烷是由一个大环分子(主体)和一个从其内腔穿过并且两端带有大的基团(封基)的线性分子(客体)组成的分子化合物[2]。
如果没有封基或封基太小,线性分子与大环分子之间可自由地离解和缔合,则称为准轮烷(pseudorotaxane)。
在天然和人工合成主体中,人们对冠醚(cro wn ether)[3]、环糊精(cyclodextrin)[4]、杯芳烃(calixarene)[5]等几类主体化合物进行了大量的研究。
进入20世纪90年代以来,超分子化学的发展及非共价键相互作用的广泛应用极大地促进了这类化合物的合成,理论及应用性研究报道、专利申请不胜枚举,如化合物的捕集与分离、光活性物质的拆分、各种化学、药物的吸附或缓释剂、催化剂及载体、微胶囊乃至于轮烷、索烃等类功能纳米材料、超分子实体的合成[6~8]。
葫芦[6]脲(cucurbituril[6],简称CB[6],也称为南瓜环、瓜环、瓜烃。
见图1)早于1905年被合成出来[9],Freema和Mock等[10]于20世纪80年代初重新研究了这个合成反应,确定了其结构并作为主体化合物进行了研究。
β-环糊精衍生物的研究进展

β-环糊精衍生物的研究进展摘?要环糊精所具有的结构赋予环糊精独特的超分子效应,使得它在许多领域有着非常有前景的应用。
β-环糊精及其衍生物具有适宜的空腔尺寸大小,使得它成为研究的最多的环糊精种类。
本文综合整理了近几年来国内外的β-环糊精衍生物,对环糊精的衍生物以及形成的包合物结构进行了概括性描述,对β环糊精的应用前景进行了展望。
关键词β-环糊精;化学改性;衍生物;主客体包合作用中图分类号 o636 文献标识码 a 文章编号1673-9671-(2012)052-0200-02环糊精是由芽孢杆菌属所产生的葡萄糖基转移酶作用于淀粉而生成的一类环状低聚糖,其最显著的分子特征是具有一个外环亲水、内环疏水并有一定尺寸的立体手型空腔结构,可以包合各种小分子。
由villiers在1891年在软化芽孢杆菌作用后的淀粉中首次发现,并在1903年由schardinger首先分离出两种结晶体,分别命名为α-环糊精(α-cyclodextrin)和β-环糊精(β-cyclodextrin)。
随后经过后续科研工作者的研究,逐渐确定了环糊精的结构为环状葡萄糖单元。
环糊精的结构是由d-吡喃型葡葡萄糖单元通过α-(1-4)-糖苷键连接而成的一类环状低聚麦芽糖,根据环中葡萄糖单元的分子数目不同可以分为α-,β-,γ-以及更大的环状糊精。
对于所有的环糊精种类,β-环糊精由于其适宜的空腔尺寸和无毒的特性使得它更容易包合各种有机小分子尤其是对药品的包合;然而,在各类环糊精的水溶性比较中,β环糊精最低,几乎不溶于水,这使得β-环糊精的应用受到了局限。
对于β-环糊精的难溶性解释是在其环状结构中一个吡喃葡萄糖单元的c2-羟基能够与相邻吡喃葡萄糖单元的c3-羟基形成氢键,因而在环糊精分子内,这些氢键就形成了一个完整的环形全氢键带,使得环糊精成为一个刚性结构。
这样的结构使得β-环糊精在水中的溶解度相比其他环糊精最小,对β环糊精进行改性的一个重要的目的就是提高它在水中的溶解度。
RAFT聚合技术在聚合物分子设计领域的应用研究进展(学术论文)

第25卷第7期高分子材料科学与工程Vol.25,No.7 2009年7月POL YM ER MA TERIAL S SCIENCE AND EN GIN EERIN GJ ul.2009RAFT 聚合技术在聚合物分子设计领域的应用研究进展陈艳军,张钰英(武汉理工大学材料科学与工程学院高分子材料与工程系,湖北武汉430070)摘要:总结了近十年来可逆加成2断裂链转移聚合技术的制备方法在聚合物分子设计领域的研究进展。
首先介绍该方法在制备窄分子量分布的均聚物方面的应用,比较了该方法在溶液和乳液体系中的特点,同时介绍了该方法在制备无规和交替共聚物方面的应用,并着重介绍了制备特殊链结构的共聚物,如嵌段,星形,接枝以及梯度共聚物方面的研究进展。
并对今后的研究重点和应用前景作了展望。
关键词:可逆加成2断裂链转移;聚合物;分子设计中图分类号:TQ316.3 文献标识码:A 文章编号:100027555(2009)0720170205收稿日期:2008205219基金项目:2007年武汉市青年科技晨光计划(200750731269);国家青年科学基金资助项目(50803048)通讯联系人:陈艳军,主要从事乳液聚合,含氟聚合物以及可控聚合研究, E 2mail :yanjunchen @ 聚合物分子设计是利用不同活性或功能的单体,采用不同的聚合工艺和聚合实施方法合成出具有特殊结构的聚合物,包括具有特殊分子链结构的聚合物(如接枝、嵌段共聚物)、复杂拓扑结构的聚合物(如梳型、星型聚合物)及带有特殊功能团的聚合物(如远螯聚合物)。
可控/“活性”自由基聚合是有效实现聚合物分子设计的主要方法,而RAF T 聚合是活性可控自由基聚合方法中新发展起来的一种。
在RAF T 聚合中,增长自由基与RAF T 试剂的活性加成,生成中间体自由基的可逆裂解,以及裂解自由基的再引发和增长过程,确保了聚合过程的活性可控特征。
目前,利用RAF T 聚合可实现对聚合物分子量大小和分布的控制,并实现聚合物的分子设计,合成具有特定结构和性能的聚合物[1],已成为高分子合成研究最活跃的领域之一。
形状记忆聚合物研究现状与发展_姜敏

收稿日期:2004210214;修改稿收到日期:2004211228。
作者简介:姜敏,女,1972年生,湖北公安人,湖北工业大学高分子材料专业硕士研究生,主要研究领域为高分子材料、复合材料研究与开发。
综 述形状记忆聚合物研究现状与发展姜敏 彭少贤 郦华兴(湖北工业大学,武汉,430068) 摘要:讨论了形状记忆聚合物的类型和特点,综述了聚氨酯、交联聚乙烯、反式1,42聚异戊二烯等形状记忆聚合物的研究进展,分析了形状记忆聚合物的形状记忆机理及其应用,并提出了存在的问题。
关键词: 形状记忆 聚合物 机理 述评 自1960年美国海军试验室Bucher 等人首次发现镍钛合金中的形状记忆效应以来,形状记忆材料在世界范围内引起了广泛的关注,且其研究取得了巨大的进展。
所谓“形状记忆”是指具有初始形状的制品经形变固定之后,通过热能、光能、电能等物理因素以及酸碱度、相转变反应和螯合反应等化学因素为刺激手段的处理又可使其恢复初始形状的现象。
形状记忆材料包括形状记忆合金(SMA ),形状记忆陶瓷(SMC )和形状记忆聚合物(SM P )[1]。
其中形状记忆合金,目前在基础研究和应用开发研究方面取得了巨大进展,并已在航空、航天、医学、工程及人们日常生活领域中得到了广泛的应用。
然而形状记忆聚合物在1984年才取得第一个专利,但由于其具有变形量大,赋形容易,形状响应温度便于调整,且还有保温、绝缘性能好、不锈蚀、易着色、可印刷、质轻价廉等特点,都是SMA 所无法比拟的,因而,SM P 以后来者居上的身份成为目前热门的功能材料之一。
1 SMP 的研究进展世界上第1种SM P 是法国的Cdf Chime 公司(即现在的Orkem 公司)于1984年开发的聚降冰片烯。
日本的杰昂( )公司购买这项制造专利后,在进一步的研究中发现了它的形状记忆功能[2]。
目前已工业化生产和实际应用,商品名为NORSO EX 。
近年来,SMP 在国外发展很快,尤其是日本,目前已有多家公司拥有工业化应用的固体粉末(或颗粒)SMP 生产技术。
金属卟啉对杂环及DNA分子识别的研究进展_朱隆懿

碳纤维增强热塑性复合材料的研究进展

2020 年第49 卷第 12 期石油化工PETROCHEMICAL TECHNOLOGY·1153·特约述评DOI :10.3969/j.issn.1000-8144.2020.12.001[收稿日期]2020-08-03;[修改稿日期]2020-10-29。
[作者简介]张琦(1984—),女,安徽省宿州市人,博士,高级工程师,电话 010-********,电邮 zhangqi01.bjhy@ 。
联系人:张师军,教授级高级工程师,中国石化高级专家,电话 010-********,电邮 zhangsj.bjhy@ 。
[基金项目]中国石油化工股份有限公司资助项目(219025-4)。
碳纤维增强热塑性复合材料的研究进展张 琦,张师军(中国石化 北京化工研究院,北京 100013)[摘要]碳纤维增强热塑性复合材料因出色的机械性能及易于加工、回收等优点受到广泛关注。
对碳纤维/树脂进行界面改性可改善碳纤维与热塑性树脂之间的化学键合、机械啮合以及界面浸润性,进而提高复合材料的综合性能。
对碳纤维增强热塑性复合材料的界面改性和材料性能研究等方面进行了综述,重点总结了碳纤维增强聚酰胺、聚苯硫醚、聚醚醚酮、聚醚酰亚胺、聚醚砜等热塑性复合材料的最新研究进展。
[关键词]碳纤维;热塑性复合材料;高性能;界面改性[文章编号]1000-8144(2020)12-1153-12 [中图分类号]TQ 322.4 [文献标志码]AResearch development on carbon fiber reinforced thermoplastic compositesZhang Qi ,Zhang Shijun(Sinopec Beijing Research Institute of Chemical Industry ,Beijing 100013,China )[Abstract ]Carbon fiber reinforced thermoplastic composite has attracted much attention due to its advantages ,such as excellent mechanical properties ,easy to process and recycle. The interfacial modification of carbon fiber/thermoplastic resin can improve the chemical bonding ,mechanical meshing and interfacial wettability between carbon fiber and thermoplastic matrix ,so as to improve the comprehensive properties of the composite. In this paper ,the research on the interfacial modification ,mechanical properties and other aspects of carbon fiber reinforced thermoplastic composites are reviewed ,and the latest research progress of carbon fiber reinforced polyamide ,polyphenylene sulfide ,polyetheretherketone ,polyetherimide ,polyethersulfone and other thermoplastic resin matrix composites were emphatically summarized.[Keywords ]carbon fibers ;thermoplastic composites ;high performance ;interfacial modification碳纤维(CF )是由有机纤维在惰性气氛中经高温碳化制得,具有高强度、高比模量、优异的热性能和化学稳定性以及阻尼减震降噪等特性,是优异的增强体材料[1-4]。
环糊精包合物超分子材料的制备及应用研究进展

环糊精包合物超分子材料的制备及应用研究进展2.山东中烟工业有限责任公司,济南 250100)摘要:环糊精是一类具有良好的水溶性、生物相容性的大环分子,其具有独特的中空截锥结构以及“内疏水、外亲水”的性质,能够通过主客体相互作用与各种有机、无机、生物分子结合形成包合物。
环糊精作为一种优良的载体材料,在化学、医学、生物学相关领域倍受关注。
本文对环糊精及其包合物材料的制备及在不应用进行了综述,并对其发展前景作出了进一步展望。
关键词:环糊精;包合;主客体相互作用;氢键;超分子中图分类号:TS202 文献标识码:AProgress in the preparation and application of cyclodextrins inclusion supramolecular materialsZHANG Chunxiao1, YU Hongxiao2, ZHANG Donghai2, YUE Yong2, ZHANG Kaiqiang1,(1. National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China;2. The China Tobacco Shandong Industrial Co., Ltd., Jinan, 250100, China)Abstract:Cyclodextrins are a class of macrocyclic molecules with good water solubility and biocompatibility. With their unique hollow truncated conical structure and "inner hydrophobic and outerhydrophilic" properties, they can form inclusion complexes withvarious organic, inorganic or biological molecules through host-guest interactions. As an excellent carrier material, cyclodextrins are of great interest in fields related to chemistry, medicine and biology. Herein,,the preparation and in application of cyclodextrins inclusion materials are reviewed, and further outlooks on their development prospects are given.Key words: cyclodextrin; inclusion; host-guest interaction; hydrogen bonding; supramolecule1 环糊精简介1.1环糊精结构与性质环糊精(CD)是由环糊精葡萄糖基转移酶作用于淀粉而产生的一系列环状低聚糖,它们由通过α-1,4糖苷键连接的D-吡喃葡萄糖单元组成[1-3]。
丙烯酸树脂改性的研究进展

丙烯酸树脂改性的研究进展丙烯酸树脂改性的研究进展丙烯酸树脂具有色浅、透亮度高、光亮丰满、涂膜坚韧、附着力强、耐腐蚀等特点,是常用的涂层料子。
由于丙烯酸树脂在特定场合存在肯定的缺陷,如硬度、抗污染性、耐溶剂性、机械性能不足好以及本钱偏高等,限制了它的进一步应用。
近年来,随着聚合技术的不绝完满和发展,以及人们对环保产品的重视,丙烯酸树脂的改性受到人们的广泛关注。
国内外学者进行了大量深入的研究,利用有机硅、有机氟、环氧树脂、聚氨酯、纳米料子等对丙烯酸树脂进行改性,取得了比较好的效果。
本文对近年来丙烯酸树脂改性的研究与应用情况作一介绍。
1有机硅改性丙烯酸酯聚合物自身是热塑性的,线性分子上缺少交联点,难以形成三维网状交联胶膜,因此其耐水性、耐沾污性差,低温易变脆,高温易发黏。
而有机硅的Si—O键能(450kJ/mol)宏大于C—C键能(351kJ/mol),内旋转能垒低、键旋转容易、分子体积大、表面能小,具有良好的耐紫外光性、耐候性、耐沾污性和耐化学介质性等。
用有机硅改性丙烯酸酯乳液,可以改善丙烯酸酯乳液热黏冷脆、耐候、耐水等性能,将其应用范围扩大至胶黏剂、外墙涂料、皮革涂饰剂、织物整理剂和印花等领域。
有机硅改性丙烯酸树脂包含物理改性法和化学改性法。
用有机硅氧烷对丙烯酸酯类乳液进行物理改性的方法通常有2种:①有机硅氧烷单体作为促进剂和偶联剂直接加入到丙烯酸酯类乳液中进行改性;②先将有机硅氧烷制成乳液,再将它与丙烯酸酯类乳液冷拼进行改性。
化学改性法是基于聚硅氧烷和聚丙烯酸酯之间的化学反应,从而将有机硅分子和聚丙烯酸酯有机结合的一种方法。
通过化学改性,可改善聚硅氧烷和聚丙烯酸酯的相容性,抑制有机硅分子向表面迁移,使二者分散均匀,从而实现改善聚丙烯酸酯共聚物乳液的物理力学性能的目的。
依据有机硅料子的不同可以采用以下3种方法:①含双键的硅氧烷,特别是含双键的硅氧烷低聚物与丙烯酸单体共聚,生成侧链含有硅氧烷的梳形共聚物或主链含有硅氧烷的共聚物;②带羟基的硅氧烷与含羟基的丙烯酸树脂通过缩合反应生成接枝共聚物;③含氢聚硅氧烷与丙烯酸酯在铂催化剂的作用下进行聚合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环糊精通过化学键与聚合物侧链 连接, 环糊精 空腔一般为空 , 与各种小分子包合形成侧链聚合物 , 对于不 同立体 结构 的分 子 具 有选 择 性 , 分 析化 学 在 方面有潜 在 的应 用 , 如药 物运 输 系统 等 ¨ 。 ]
b t e lc l r .W he h oy rsde c i s p lme i han n e a twi CD y c e c lb n s hec co xrn h b h mia o d ,t y lde ti
空, 可与小分子包合 , 对不同立体 结构的分子具有选择性 , 在分析化学方面具有潜在 的应用 。当聚合 物侧链 与环糊精包合 时, 环糊 精空腔与一定结构 的侧链包合 , 形成侧链 型多聚( 轮烷 。侧链型环糊精基多聚( ) 准) 准 轮烷 的结 构 、 性能独 特 , 在许多领域具有潜 在的应用。本文介绍了国内外文 献中关 于侧链 含有环糊精的聚合物 的研究进展 , 包括合成方法 以及在各领域 的应用 等。 关键词 : 环糊精 ; 侧链 型 ; 聚合 物 ; 包合物 中图分类号 : 66 1 0 3 . 2 文献标识码 : A 文章编号 :0 8—0 1 2 1 ) 3—0 4 4 10 2 X(0 1 0 0 3—0
d f rnt h e — dme so l tu t r mo e uls, whih a a o e ta a p i ai n n n l tc l i e e t r e f i n ina Sr c u e lc e c h s p tn i l p lc to i a ay ia c mity W h n t i e c i s o oy r n y l d x rn c me i cuso o o n he sr . e he sd han fp lme s a d c co e t s be o n l i n c mp u d,t e sd i h i e—
c vt sg n r l mp y I c n b c me i cu in c mp u d wi malmo e u a n a ee t i n a i i e e al e t . t a e o n l so o o n t s l y y h lc lr a d h s s l ci t o vy
第 3期
董玉荣 , : 等 侧链含 有环糊精 的聚合物 的研 究进展
・ 3・ 4
专 论 与综 述 七
侧链含有环糊精的聚合物的研究进展
董玉 荣, 王建 荣, 赵振伟 , 关瑞芳
( 南 大学 材 料科 学 与工程 学 院 , 济 山东 济 南 2 02 ) 502
摘要 : 聚合物侧链 可通 过化学键及分子问力与 环糊精相互 作用 。当聚合 物侧链通 过化学 键与 环糊精 作用时 , 环糊精 空腔一般 为
c a n o t i h i sc n an CD,wh c ncu e y t e i t d ih i l d s s n h t meho s,a p ia in n v ro s fed nd S n. c p l t si aiu lsa O o c o i Ke r y wo ds: y lde ti sd h i ; oy r i cu in c mp u d c c o x rn; i e c ans p l me ;n l so o o n
canC ae oy p ed ) o xn s ome yteicui f yldxr ai n h eti h i D b sdp l( su o rt a ei fr d b n ls n o c c etn cv ya dtecr n a h o o i t a s utr f iec a .T ep l ( su o rt aeh sptni p l a o i nq e s utr n t c eo d h i r u s n h oy p ed )o xn a o t lapi t n wt u iu t c e ad a e a ci h r u
Pr g eso oy rCo tiig Cy ld xrni h ieCh is o rs fP lme n ann co e ti n teSd an
DO u—r n NG Y o g,W ANG Ja in—rn o g,Z AO Zh n—we ,GU N i n H e i A Ru 一 g
p ro a c n ma y feds Th s a t l e iws t e r c n r g e s o h l me f wh c h i e e fr n e i n l . m i i ri e r v e h e e t p o r s n t e poy r o ih t e sd c
( c ol f aei sS i c n n ier g U i r t o n n J a 2 0 2 , h a S ho o t a c n ea dE gn e n , n es y f ia , i n 5 0 2 C i ) M rl e i v i J n n
A s atSd h is f o m r cnit at i yldxr s( D yce cl o d n ef c b t c:iec an l es a e c wt cc etn C )b h mi n sadt re r opy nr h o i ab h o