八年级数学一元二次方程2(1)

合集下载

沪教版八年级数学上册,一元二次方程

沪教版八年级数学上册,一元二次方程

一元二次方程1. 一元二次方程的定义及一般形式: (1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。

(2) 一元二次方程的一般形式:_________。

其中a 为二次项系数,b 为一次项系数,c为常数项。

注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。

2. 一元二次方程的解法 (1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a +=或者x a +=,∴x a =-。

注意:若b<0,方程无解 (2)配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。

注意:当0n <时,方程无解 (3)公式法:一元二次方程20(0)ax bx c a ++=≠ 根的判别式:_________________0∆>⇔方程有两个不相等的实根:2b x a-±=(240b ac -≥)⇔()f x 的图像与x 轴有两个交点0∆=⇔方程_____________实根⇔()f x 的图像与x 轴有一个交点0∆<⇔方程无实根⇔()f x 的图像与x 轴没有交点 (4)因式分解法通过因式分解,把方程变形为(-)(-)0a x m x n =,则有=x m 或x n =。

步骤:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③另每一个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,他们的解救是原方程的根。

注:(1)因式分解常用的方法(提公因式、公式法、十字相乘法)在这里均可使用,其中十字相乘法是最方便、快捷的方法。

沪科版八年级数学下册课件17.2 一元二次方程的解法(1)-配方法

沪科版八年级数学下册课件17.2 一元二次方程的解法(1)-配方法

(A)1
(B)-2
(C)2或-1 (D)-2或1
5.对于任意的实数x,代数式x2-5x+10的值是
一个( B )
(A)非负数 (B)正数
(C)整数 (D)不能确定的数
课堂小结
体现了从特殊到一般的数学思想方法
例题讲解
例题1. 用配方法解下列方程 (1)x2-4x-1=0; (2)2x2-3x-1=0
解:(1)移项,得:x2-4x=1 配方,得:x2-4x+_2_2_=1+_4___, 即(x-_2__)2=___5___.
开平方得:__x___2______5__. ∴x1=_2____5__,x2=_2____5_.
+
1 36
即:(y- 1 )2= 25
6
36
开方,得:y- 1 =± 51,y2=-
2 3
总结:用配方法解一元二次方程的步骤:
(1)二次项系数化为1: 方程两边同时除以二次项系数a
(2)移项:把常数项移到方程的右边
(3)配方:方程两边都加上一次项系数一半的平方 (等式的性质)
x+
1 4
2
=
1 4
+
1 16
即:(x- 1 )2= 9
4 16
开方,得:x- 1 =± 3
24
∴原方程的解为:x1=1,x2=-
1 2
(4) 3y2-y-2=0
解:移项,得: 3y2-y=2
把二次项系数化为1,得:y2- 1 y= 2
33
配方,得: y2-
1 3
y+ = 1 2 6
2 3
(4)开方:根据平方根意义,方程两边开平方 (5)求解:解一元一次方程 (6)定解:写出原方程的解

2.1 一元二次方程 浙教版八年级数学下册同步练习(含解析)

2.1 一元二次方程 浙教版八年级数学下册同步练习(含解析)

第2章一元二次方程2.1一元二次方程基础过关全练知识点1一元二次方程的相关概念1.(2022浙江诸暨浣纱中学月考)下列方程是一元二次方程的是()A.x2-y=1B.x2+2x-3=0C.x2+1=3 D.x-5y=6x2.已知关于x的方程x2+kx-10=0的一个根是2,则k=.3.若方程(a-2)x2-3ax=5是关于x的一元二次方程,则a的取值范围是.知识点2一元二次方程的一般形式4.下列方程是一元二次方程的一般形式的是()A.2x2-3x=0B.x2=1C.2x2-3x=-1D.2x2=-3x5.【新独家原创】四位同学一起做游戏,分别出一个一元二次方程,甲:x2-2x+3=0,乙:x2-2x=3,丙:3(x2-2x+1)=3,丁:3x2-x=3,当这四个方程化为一般形式时,常数项为0的赢,则这次游戏谁赢了()A.甲B.乙C.丙D.丁6.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项为0,则m等于() A.2 B.-2 C.2或-2 D.07.将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为.知识点3列一元二次方程8.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1 260张,如果全班有x名同学,根据题意,列出方程为() A.x(x+1)=1 260 B.2x(x+1)=1 260C.x(x-1)=1 260D.x(x-1)=1 260×29.【教材变式·P26合作学习(1)变式】把面积为16 m2的大长方形铁皮割成如图所示的正方形和长方形两个部分,已知长方形的一边长为 6 m,求其邻边长(只需列出方程).10.根据下列问题列一元二次方程,并将方程化为一般形式.(1)三个连续奇数的平方和是251,求这三个数;(2)一个长方形花坛,长20 m,宽8 m,在它的四周有等宽的鹅卵石路,形成一个大长方形,其面积是花坛面积的1.8倍,求路的宽度;(3)用一根长30 cm的铁丝折成一个斜边长13 cm的直角三角形,求这个三角形的直角边长.能力提升全练11.(2022浙江温州外国语学校期中,6,)关于x的一元二次方程(m-3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A.0B.±3C.3D.-312.若关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根为x=-1,则下列等式成立的是() A.a+b+c=0 B.a-b+c=0C.-a-b+c=0D.-a+b+c=013.若(1-m)x m2+1+3mx-2=0是关于x的一元二次方程,则该方程的一次项系数是() A.-1 B.±1 C.-3 D.±314.方程5x2-1=4x化成一般形式后,二次项系数为正,其中一次项系数,常数项分别是()A.4,-1B.4,1C.-4,-1D.-4,115.已知x1=1,x2=-3是一元二次方程ax2+bx-3=0(a≠0)的两个根,求a,b 的值.16.已知关于x的方程(k-2)x2-kx=x2-1.(1)当k为何值时,方程为一元二次方程?(2)当k为何值时,方程为一元一次方程?17.有一个三角形,面积为30 cm2,其中一边比这边上的高的4倍少1 cm,若设这边上的高为x cm,请你列出关于x的方程,并判断它是什么方程,若是一元二次方程,把它化为一般形式,并指出二次项系数、一次项系数和常数项.素养探究全练18.【代数推理】【运算能力】已知实数a是一元二次方程x2-2 022x+1=0的值.的解,求代数式a2-2 021a-a2+12 022答案全解全析基础过关全练1.B x2-y=1中含有2个未知数,不是一元二次方程,所以A不符合题意;x2+2x-3=0符合一元二次方程的定义,是一元二次方程,所以B符合题意;x2+1x =3中1x不是整式,不是一元二次方程,所以C不符合题意;x-5y=6中含有2个未知数,不是一元二次方程,所以D不符合题意.故选B.2.3解析因为关于x的方程x2+kx-10=0的一个根是2,所以22+2k-10=0,解得k=3.3.a≠2解析因为方程(a-2)x2-3ax=5是关于x的一元二次方程,所以a-2≠0,解得a≠2.4.A形如ax2+bx+c=0(a,b,c是常数,且a≠0)是一元二次方程的一般形式.只有A符合题意,故选A.5.C x2-2x+3=0的常数项为3,所以甲输了;x2-2x=3化为一般形式为x2-2x-3=0,常数项为-3,所以乙输了;3(x2-2x+1)=3化为一般形式为x2-2x=0,常数项为0,所以丙赢了;3x2-x=3化为一般形式为3x2-x-3=0,常数项为-3,所以丁输了.故选C.6.B因为常数项为0,所以m2-4=0,解得m=2或-2,当m=2时,方程(m-2)x2+5x+m2-4=0变为5x=0,不是一元二次方程,所以m=2要舍去,故m=-2.7.5,-4,1解析5x2+1=4x移项,得5x2-4x+1=0,所以将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为5,-4,1.8.C全班有x名同学,根据“都将自己的照片向本班其他同学送一张留念”可知全班一共送了x(x-1)张照片,又全班一共送了1 260张照片,所以x(x-1)=1 260.9.解析设其邻边长为x m,则可列方程为x(x+6)=16.10.解析(1)设中间的奇数为x,则(x-2)2+x2+(x+2)2=251,化为一般形式:3x2-243=0.(2)设路的宽度为x m,则(20+2x)(8+2x)=1.8×20×8,化为一般形式:4x2+56x-128=0.(3)设一条直角边长为x cm,则另一条直角边长为(17-x)cm,则x2+(17-x)2=132,化为一般形式:2x2-34x+120=0.能力提升全练11.D将(m-3)x2+m2x=9x+5整理得(m-3)x2+(m2-9)x-5=0,由题意得m-3≠0,m2-9=0,解得m=-3,故选D.12.B把x=-1代入方程ax2+bx+c=0得a-b+c=0.13.C由题意得1-m≠0且m2+1=2,解得m=-1.∴该方程的一次项系数为3m=-3.14.C5x2-1=4x化成一般形式是5x2-4x-1=0,它的一次项系数是-4,常数项是-1.故选C.15.解析 把x 1=1,x 2=-3分别代入一元二次方程ax 2+bx -3=0(a ≠0),得{a +b −3=0,9a −3b −3=0,解得{a =1,b =2.16.解析 原方程可化为(k -3)x 2-kx +1=0.(1)当k -3≠0,即k ≠3时,方程(k -2)x 2-kx =x 2-1是一元二次方程.(2)当k -3=0,-k ≠0,即k =3时,方程(k -2)x 2-kx =x 2-1是一元一次方程.17.解析 根据题意可得关于x 的方程为12x (4x -1)=30,它是一元二次方程,整理为一般形式为2x 2-12x -30=0,二次项系数为2,一次项系数为-12,常数项为-30.素养探究全练18.解析 因为实数a 是一元二次方程x 2-2 022x +1=0的解,所以a 2- 2 022a +1=0,所以a 2-2 022a =-1,a 2+1=2 022a , 所以原式=a 2-2 021a -2 022a 2 022=a 2-2 022a =-1.。

初中八年级数学下册【一元二次方程(2)】

初中八年级数学下册【一元二次方程(2)】

0.5 1 1.5 2 28 18 10 4
(4)你知道地毯花边的宽x(m)是多少吗? 还有其他求 解方法吗?与同伴进行交流.
问题2:在上一课中,梯子的底端滑动的距离x满足方 程 x2 +12 x - 15 = 0.
(1) 小明认为底端也滑动了1 m,他的 1m
说法正确吗?为什么?
10m 8m
(2) 底端滑动的距离可能是2 m吗?
由上表可发现,当2<x<3时, -1< x2 - 2x -1 <2;
(2)继续列表,依次取x=2.1,2.2,2.3,2.4,2.5,…
x
2.2 2.3
2.4
2.5

x2 - 2x - 1 -0.79 -0.31 -0.04 0.25 …
由表发现,当2.4<x<2.5时,-0.04< x2 -2x-1<0.25; (3)取x=2.45,则x2 - 2x - 1≈0.1025. ∴2.4<x<2.45, ∴x≈2.4.
即 2t2-t-2=0. 根据题意,t的取值范围大致是0<t<3.
完成下表(在0<t<3这个范围内取值计算,逐步逼近):
根据题意,t的取值范围大致是0<t<3. 完成下表(在0<t<3这个范围内取值计算,逐步逼近):
t … 0 1 1.1 1.2 1.3 1.4 2 3 … 2t2-t-2 … -2 -1 -0.68 -0.32 0.08 0.52 4 13 …
根据题意,x的取值范围大致是0 < x < 11. 解方程 x2 + 2x - 120 = 0. 完成下表(在0 < x < 11这个范围内取值计算,逐步逼近):
x x2 +2x – 120

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。

2) 未知数的最高次数是2.3) 是方程。

4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。

2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。

3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。

4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。

5) 二次函数图像法,当时,方程有没有实数根。

3、应用1) 一元二次方程可用于解某些求值题。

2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。

知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。

要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。

解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。

解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。

选择哪种方法要根据具体情况而定。

直接开平方法是解形如x²=a的方程的方法,解为x=±√a。

配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。

浙教版2022-2023学年数学八年级下册第2章 一元二次方程2

浙教版2022-2023学年数学八年级下册第2章 一元二次方程2

浙教版2022-2023学年数学七年级下册第2章 二元一次方程组2.1二元一次方程【知识重点】一、二元一次方程的概念像3x +4y =5这样,含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程.二、二元一次方程三个条件(1)含有两个未知数;(2)未知数的项的次数是一次;(3)都是整式.三、二元一次方程的解使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解.四、二元一次方程变形二元一次方程变形一般是用含一个未知数的代数式表示另一个未知数的形式(1)用含x 的代数式表示y ,则应变形为“y =…”的形式;(2)用含y 的代数式表示x ,则应变形为“x =…”的形式.【经典例题】【例1】下列方程中,①x+y=6;②x(y+1)=6;③3x+y=z+1;④mn+m=7,是二元一次方程的有( ) A .1个 B .2个 C .3个 D .4个【例2】若x |m−2|+(m-1)y=6是关于x ,y 的二元一次方程,则m 的值是( ) A .3 B .1 C .任意数 D .1或3【例3】已知{x =3y =1是方程mx-y=2的解,则m 的值是 .【基础训练】1.下列方程中,属于二元一次方程的是()A .x +3y =1B .x -2y =3zC .1x +1y =1D .x 2−1=0 2.下列各方程中是二元一次方程的是( )A .x 2+y 4=﹣1B .xy+z=5C .2x 2+3y ﹣5=0D .2x+1y =23.在方程12x =x +1,2x +3y =5,2y −1=x ,x −y +z =0中二元一次方程的个数为( )A .1个B .2个C .3个D .4个4.若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( )A .0B .2C .0或2D .1或25.已知{x =1y =2是方程ax-2y=6的一个解,那么a 的值是( )A .-10B .-9C .9D .106.若{x =m y =2m 是方程3x+y=-5的一个解,则m 的值是( )A .-1B .-5C .1D .57.把x =1代入方程x −2y =4…①,那么方程①变成关于 的一元一次方程. 8.已知{x =2t y =3t 是二元一次方程2x +5y −19=0的解,求t 的值.9.方程2x m+1+3y 2n =5是二元一次方程,求m ,n .10.求方程11x+5y=12的正整数解.【培优训练】 11.下列方程:①x+y =1;②2x −y 2=1;③x 2+y 2=1;④5(x+y )=7(x ﹣y );⑤x 2=1;⑥x+12=4,其中二元一次方程的是( )A .①B .①③C .①②④D .①②④⑥ 12.已知二元一次方程3x ﹣4y =1,则用含x 的代数式表示y 是( ) A .y =1−3x 4 B .y =3x−14 C .x =4y+13 D .x =1−4y 3 13.若方程 x 2a−b −3y a+b =2 是关于x 、y 的二元一次方程,则 ab = . 14.若x m−1+5y n+1=3是关于x 、y 的二元一次方程,则m = ,n = .15.若(2m −4)x |m|−1+(n +2)y n 2−3=0是关于x 、y 的二元一次方程,则m = ,n= .16.二元一次方程2x +3y =8的正整数解为 . 17.已知{x =1y =2是方程ax +by =3的解,则代数式2a +4b −2023的值为. 18.如果关于x ,y 的方程2x-y+2m-1=0有一个解是 {x =2y =−1 ,请你再写出该方程的一个整数解使得这个解中的x ,y 异号.19.已知{x =12y =4是二元一次方程2x +y =a 的一个解. (1)则a =(2)试直接写出二元一次方程2x +y =a 的所有正整数解.20.已知二元一次方程5x +3y =18(1)把方程写成用含x 的代数式表示y 的形式,即y = ;【直击中考】 21.已知{x =1y =2是方程ax+by =3的解,则代数式2a+4b ﹣5的值为 . 22.已知 {x =2y =m 是方程 3x +2y =10 的一个解,则m 的值是. 23.已知二元一次方程x +3y =14,请写出该方程的一组整数解 .。

浙教版八年级下册数学一元二次方程的应用学习课件

浙教版八年级下册数学一元二次方程的应用学习课件

西C
A

B 南
巩固练习:
某商场销售一批名牌衬衫,平均每天可售出20件,每件 赢利40元。为了扩大销售,增加利润,商场决定采取适 当降价措施。经调查发现,如果每件衬衫每降价1元, 商场平均每天可多售出2件。
若商场平均每天要赢利1200元,则每件衬衫应降价 多少元?
变式练习:
某商场销售一批名牌衬衫,每件进价60元,当售价为100 元时,平均每天可售出20件。为了扩大销售,增加利润, 商场决定采取适当降价措施。经调查发现,如果每件衬 衫每降价1元,商场平均每天可多售出2件。
例1、某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与 每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元; 以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元. 要使每盆的盈利达到10元,每盆应该植多少株?
解:设每盆花苗增加的株数为x株,则每盆花苗有(_x_+__3_)_ 株,平均单株盈利为__(3__-_0_._5_x__)元. 由题意,得
2
892
答:从2000年12月31日至2002年12月31日,我国上 网计算机总台数的年平均增长率为52.8﹪
(2)上网计算机总数2001年12月31日至2003年12月31日 的年平均增长率与2000年12月31日至2002年12月31日的 年平均增长率相比,哪段时间年平均增长率较大?
想一想:
(1)已知哪段时间 3200 的年平均增长率? 2400
则降价多少元?
(2)能不能通过适当的降价,使商场的每天衬衫销售 获利达到最大?若能,则降价多少元?最大获利是多
少元?(小组合作探究)
2、我校图书馆至去年年底藏书3.2万册,计划到明年年底 藏书达到5万册,若设每年平均增长率为x,则可列出方程 是( C )

八年级数学下册 一元二次方程的解法例题选2优秀文档

八年级数学下册 一元二次方程的解法例题选2优秀文档
而(x- )2≥0,3> ,
z
例2 若x2-4x+y2+6y+ +13=0,求(xy)z的值.
可求解. 错答:原方程可变为4x2+8x=-1,两边同时加上
的值恒大于零吗?为什么?
数化为1,然后在方程两边加上一次项系数一半
解:∵x -4x+y +6y+ z2 +13=0, 2 2 (3)二次项系数化为1,得x2+2x- =0.
3
得x2- 2 x=-1. 配方得(x- 1 )2=-8 . 方程无解.
3
3
9
注意点:运用配方法解一元二次方程时,先移
项,把含有未知数的项移到方程的左边,常数
项移到方程的右边,然后把二次项系数化为1,
(3)2x2+再4x-9=在0; 方程的左右两边同时加上一次项系数一半
注意点:运用配方法解一元二次方程时,先移项,把含有未知数的项移到方程的左边,常数项移到方程的右边,然后把二次项系数化
解:(1)移项,得x2-x=6. 配方,
得x2-x+
1 2
2
=6+
1 2
2
,即
x
1
2
2
25 4
.
直接开平方,得 x 1 5 ,或 x 1 5 .
22
22
解得x1=3,x2=-2.
(2)移项,得3y2-2 3 y+1=0,即( 3 y-1)2=0.
直接开平方,得
3 y-1=0.
解得y1=y2=
答案:恒大于零. 理由如下:
∵x2-2 2 x+5- 2 =x2-2 2 x+( 2)2 - ( 2)2 =(x- 2 )2+3- 2 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行政法的特征说法错误的是()。A.行政法具有系统、完整的法典B.行政法的数量繁多,种类不一C.行政法在其内容上呈现出广泛性D.行政法易于变动 端脑的解剖结构中不包括A.额叶B.颞叶C.顶叶D.岛叶E.丘脑 干粉既能扑救普通固体的表面火灾,又能控制扑救普通固体的内部火灾.A.正确B.错误 CDMA的激活集的导频数量:A.6B.8C.12D.20 关于天疱疮的描述,不正确的是A.棘层松解,上皮内庖形成B.黏膜固有层有炎症细胞浸润,主要为巨噬细胞和淋巴细胞C.直接荧光免疫可见鱼网状翠绿色荧光环D.荧光图形主要为IgG或IgA及IgM在棘细胞间的沉积E.口腔出现表征者多为寻常型天疱疮 硬管支气管镜检查,受检者取仰卧位,肩部与手术台前沿平齐,助手固定受检者头部,开始进镜时应将头后仰并高出手术台平面约()A.5cmB.10cmC.15cmD.20cmE.25cm 脑膜炎球菌侵入机体繁殖后,因自溶或死亡而释放内毒素,内毒素的主要作用是引起A.菌血症B.血小板解聚C.血液白细胞减少D.细菌素产生E.血管坏死和血栓形成,周围血管出血 有关心理学研究的常用方法,以下说法不正确的是A.实验法B.心理测验法C.观察法D.人体解剖法E.心理生物学研究方法 [单选,共用题干题]女,33岁,3年前普查时发现子宫肌瘤,无月经症状,定期检查肌瘤无明显增大,未避孕。今因停经45天就诊其诊断可能性最大的为。A.子宫肌瘤合并妊娠B.子宫肌瘤肉瘤变C.子宫肌瘤红色变D.闭经E.子宫腺肌瘤 《温病条辨》“使邪火随诸香一齐俱散也”指的是哪首方剂的配伍特点A.至宝丹B.行军散C.安宫牛黄丸D.紫雪E.苏合香丸 合同诈骗犯罪的最高刑期是。 按基金的组织形式不同,证券投资基金可分为。A.契约型基金和公司型基金B.封闭式基金和开放式基金C.国债基金、股票基金、货币市场基金D.成长型基金、收入型基金和平衡型基金 什么情况下设备应办理注销,如何办理? 中国联合网络通信有限公司愿景包含哪几个要素?A、3G领先B、信息生活C、引领创新D、领导者E、卓越服务 慢性阻塞性肺疾病患者补充营养时应注意的问题,除外A.加重通气负担B.胃肠功能障碍C.水、电解质代谢和酸碱平衡紊乱D.肝功能障碍E.能量过高 膀胱结石最佳确诊方法是A.依据典型症状尿流中断B.双合诊检查C.金属尿道探子检查D.腹部平片检查E.膀胱镜检查 调和黏合剂时,不适合。A.戴护目镜B.穿长袖工作服C.戴防尘口罩 套内建筑面积不包括。A.套内墙体面积B.分摊的共有建筑面积C.套内使用面积D.阳台建筑面积 我国对于社会工作有三种不同的理解,下列关于专业社会工作的叙述正确的是。A.在政府部门和专业团体中专门从事的助人活动B.指导思想及工作方法带有一定行政色彩C.社会工作者接受过专业化的训练D.从事专业社会工作的人员不计报酬、无私奉献 下述关于疏水区作用学说,哪项不正确()A.作用部位的性质类似于苯和辛醇的特性B.脂溶性化合物均可作用于此区C.疏水区指细胞膜脂质部分D.全麻药的效能与其进入脂质膜的能力相关E.全麻药在脂质的作用是非特异性的 女,66岁,右上腹痛,发热伴有黄疸2月余,消瘦、纳差,影像检查如图,最可能的诊断是A.胆囊结石及脂肪肝B.胆囊结石及肝血管瘤C.胆囊癌肝转移D.肝内胆管细胞癌E.胆囊癌及原发性肝癌 《素问·阴阳应象大论》中“清气在下,则生飧泄”的机理是A.胃气衰不能腐熟水谷B.清阳衰于下而不能升C.脾阳衰不能运化水谷D.肾阳衰不能温运脾土E.以上均不是 海上货物运输保险 财政的是指财政这种经济行为是凭借国家政治权力,通过颁布法令来实施的。A.政治性B.公开性C.强制性D.行政性 男性,68岁。患慢性支气管炎和肺气肿10余年,近3d来咳嗽、气急加重,痰稍黄就诊。痰涂片见球状革兰氏阴性小杆菌。其可能病原体是A.肺炎链球菌B.铜绿假单胞菌C.流感嗜血杆菌D.肺炎克雷白杆菌E.不动杆菌 麻醉期间监测包括、、。 下面哪种拍摄姿势不可取A、站姿拍摄B、抱机拍摄C、跪蹲拍摄D、卧姿拍摄 ___是电子政务的核心和基础之一。A.电子政务内网B.数字城市C.信息资源库D.专网 下述各项,不属无排卵性功血的特点是。A.多见于青春期与绝经过渡期B.下丘脑-垂体-卵巢轴功能失调C.血雌激素水平正常D.子宫内膜呈早泌期改变E.无排卵性最常见的,约占功血的85% 在机器运转部位加润滑油,并是否有影响机器转动的障碍物。A.观察B.检查C.清查D.注意 依据《商业银行资本充足率管理办法》,商业银行的附属资本不得超过核心资本的。A.8%B.50%C.80%D.100% 中心线与被照体局部边缘相切为A.前后方向B.后前方向C.切线方向D.冠状方向E.轴方向 [问答题,案例分析题]2002年1月,某作者Z将其旅行经历写成多篇文章,投给甲期刊社。该社自当年2月至12月连续刊登了这些作品,受到读者广泛欢迎。但是,该刊并未登载Z关于不得转载、摘编的声明。2002年3月,乙出版社将上述文章汇集成共10万字的《探险历程》一书出版,作者署名为Z。 的集中化和组织化,为期货交易的产生和期货市场的形成奠定了基础。A.即期现货交易B.商品交易C.远期现货交易D.期权交易 微生物大小的常用单位A.mmB.&mu;mC.cmD.nm 关于S1S2程序刺激的描述,不正确的是。A.可用于测定房室结的不应期B.可用于测定旁路的不应期C.可用于测定窦房结恢复时间D.可用于检测房室结双径路E.可用于诱发阵发性室上性心动过速 在建设工程施工阶段,监理工程师对施工进度计划审核的内容包括。A.施工顺序的安排是否符合施工工艺的要求B.业主负责提供的施工条件安排得是否合理、明确C.是否有进度控制人员的职责分工D.生产要素的供应计划是否能保证施工进度计划的实现E.进度安排是否符合施工合同中开工、竣工日 客户是产品或服务的最终接受者。A.一定B.不一定C.不是D.不确定 一种药物的毒烈性,能被另一种药物消除的配伍关系是。A.相恶B.相杀C.相畏D.相须E.相反 女性,35岁,患类风湿关节炎已10年,双膝屈曲畸形,肌肉萎缩,四肢关节无肿胀,个别关节有疼痛,ESR15mm/h,血尿常规正常,X线示双髋、双膝关节间隙消失,关节融合。该病人的治疗选择是A.MTX+激素B.非甾体类药C.非甾体类药+激素D.外科治疗,如关节置换等手术E.小剂量激素
相关文档
最新文档