基于磁阻式传感器的电子罗盘的设计大学论文

合集下载

一种电子罗盘的电路设计

一种电子罗盘的电路设计

一种电子罗盘的电路设计姚丽青;杨文杰【摘要】Using the magnetic resistance sensor and accelerationsensor,based on the idea of attitude an-gles and geomagnetic filed,an electronic compass used for measuring attitude angles is designed.The hard-ware design and software flow of the electronic compass is presented.And the presentation is accurate and detailed.According to main parts of the circuit,the error sources of measurement accuracy are analyzed.U-sing the position error correction method based on the least squares, the accuracy is also corrected.%利用磁阻传感器和加速度传感器设计了测定姿态角的电子罗盘,给出了电子罗盘的硬件设计和软件流程,电路具体准确。

根据其构成的主要器件,分析了影响电子罗盘测量精度的误差来源,并采用基于最小二乘法位置罗差补偿法做了校正。

【期刊名称】《湖北民族学院学报(自然科学版)》【年(卷),期】2014(000)004【总页数】4页(P463-466)【关键词】姿态角;电子罗盘;磁阻传感器;加速度传感器;误差校正【作者】姚丽青;杨文杰【作者单位】山西大学物理电子工程学院,山西太原030013;山西大学物理电子工程学院,山西太原030013【正文语种】中文【中图分类】TP212.13基于磁阻传感器和加速度传感器的电子罗盘具有体积小、重量轻、精度高、可靠性强、响应速度快等优点[1],被广泛应用于航空、航海、交通、电子通讯等领域,也应用于智能手机等生活类电子产品中.具体可以配合车载GPS 导航(GPS 进入隧道或速度低于20km/h 就会失效)、电信基站天线角度的测量、大型机械平台的水平测量、手机、游戏杆等产品中.本设计中的电子罗盘采用Honeywell 公司的两轴磁阻传感器HMC1052L(x,y),单轴磁阻传感器HMC1021Z 以及MEMS 重力加速度传感器MXD2020E,采用MSP430F247 单片机采集处理传感器信号,经过数据预处理和算法补偿后,罗盘系统精度基本上可以达到± 1°.该罗盘结构简单、体积小、重量轻,已经被用到电信基站天线角度监测,实验证明,该系统有很好的推广和利用价值.本文中的电子罗盘固定在载体上,通过自身的加速度传感器和磁阻传感器分别测量出重力加速度在载体坐标系中的两个分量与地磁场的磁感应强度在载体坐标系中的分量,通过CPU 的处理确定出载体的具体方位,载体与水平地面间的夹角.1 电子罗盘的基本原理1.1 坐标系统地球的磁场强度为0.5~0.6 gauss,无论何地,磁场的水平分量永远指向磁北,这是所有磁罗盘的制作基础[2].传统的导航定位,通过3 个角度,即方位角α、俯仰角θ 和横滚角φ 定义了姿态参数,实际上就是载体坐标系和地理坐标系之间的方位关系.现在取两个坐标系OXYZ 与O 'X'Y'Z',OXYZ 为地理坐标系,OX在当地水平面内指向地理北极,OY 在水平面内与OX 垂直在OX 右方,OZ 与OX、OY 构成右螺旋关系,即沿重力加速度方向.方位角α 定义为沿Z 轴方向看去OXY 绕Z 轴顺时针旋转的角度为正,俯仰角θ 定义为沿Y轴方向看去OZX 绕Y 轴顺时针旋转的角度为正,横滚角φ 定义为沿X 轴方向看去OYZ 绕X 轴顺时针旋转的角度为正.O'X'Y'Z'固定在载体上,以载体质心为原点,平面直角坐标系O'X'Y'固定在载体的对称平面上,O'Z'沿由O'X'至O'Y'的右螺旋前进方向.坐标系OXYZ 先绕Y 轴转过θ,再绕X 轴旋转φ 与坐标系O'X'Y'Z'重合.要了解载体在空间的姿态,就必须测出方位角α、俯仰角θ 和横滚角φ.1.2 各各角度的测量原理加速度矢量在坐标系OXYZ 中表示为[0 0 g]T,在坐标系O'X'Y'Z'中为[g'x g'y g'z]T,根据坐标系O'X'Y'Z'、OXYZ 之间的变换关系,它们的关系为:即:由式(2)有:和由装在载体上的加速度传感器测出,将它们代入式(3)可求出俯仰角和横滚角.磁感应强度矢量在坐标系OXYZ 中表示为,在坐标系O'X'Y'Z'中为中三个量由磁阻传感器测出,根据坐标系OXYZ、O'X'Y'Z'之间的变换关系,它们之间的关系为:由式(4)求得方位角α=arctan Hx/Hy,至此载体在空间的方位由它的方位角α、俯仰角θ 和横滚角φ 完全确定.由式(2)可知载体平面法矢量为而地平面法矢量为它们的坐标基不同,将地平面坐标法矢量转换到载体坐标系中那么载体平面与地平面的夹角,则γ=arccos(cosφcosθ).2 电子罗盘系统电子罗盘的硬件原理框图如图1 所示.本系统选用MXD2020两轴重力加速度传感器Honeywell 公司的两轴磁阻传感器HMC1052L(x,y),单轴磁阻传感器HMC1021Z,分别获得载体平面的重力加速度分量和三维空间的地磁场分量,采用MSP430F247 单片机采集处理传感器信号,经过数据预处理和算法补偿后,测得载体的姿态参数并通过Rs485 传入上位机.2.1 微处理器微处理器的原理图见图2,该系统采用TI 公司的16 位RISC 结构超低功耗单片机MSP430F247 作微处理器,本处理器拥有超低功耗,片上资源丰富,拥有60 KB Flash ROM,4kB RAM,32 路通用I/O 口,8 路12-Bit A/D 转换器,10 个可捕获比较的定时计数器,两个异步通用串行口,JTAG 调试口,等外围电路,便于开发和二次开发[2-3].2.2 加速度传感器模块设计图1 电子罗盘系统框图Fig.1 Electronic compass system block diagram由原理分析可知,加速度传感器只需要X,Y 两轴便可,本设计选用MXD2020.MXD2020 所测重力加速度与Dout 输出的脉冲占空比成正比,且加速度为0 时占空比为0.5,量程因子为0.2/g[4].用MSP430F247 的TA0 测量X 轴的占空比,TA1 测量Y 轴的占空比,gx=(T1x/T2x-0.5)g/0.2=g sinθ,gy=(T1y/T2y-0.5)g/0.2=gsinφ.由此可知:每次测量开始,设为上升沿中断,时钟源1 μs,第一次中断打开计时器,并改为下降沿中断,第二次中断再改为上升沿中断,同时捕获脉冲“ON”计时值T1,第三次中断中捕获T2 计时值,并关闭中断.T1,T2 测得,代入式(6)可求得角θ,φ,与水平面真夹角.2.3 磁阻传感器设计用MSP430F247 的A0,A1,A2 对Hx',Hy',Hz'轴的磁场分量做A/D 转换,Avcc 接3.3 v 并选为Verf A/D 参考电压,精密三运放AD623 作为磁阻传感器信号放大,为区分磁场极性用一片AD623 做一精密二分压电路,将3.3v 分为1.65v 作为磁阻传感器信号放大器AD623 的参考电压 Vref. HMC1052,HMC1051 的敏感电压(sensitivity)为1.2(max)mV/V/gauss 桥路偏置电压bridge offset 为1.25 mV/V,名义电压设为0.135 mV/V 则HMC1052 ,1051 的最大输出电压为1.335×5×0.625+(1.25+0.135)×5=10.425 mV,取整为10 mV,增益Gain=1.65/0.01=165,Rg=637[5],IRF7509 组成“H”桥路对磁阻阻传感器置位/复位电路,假设置位后测得值为Mset(x,y,z),复位后测得值为Mres(x,y,z),实际磁场值为H(x,y,z)则offset(x,y,z)=Mset(x,y,z)+Mres(x,y,z)-4096,H(x,y,z)=Mset(x,y,z)-offset(x,y,z)-2048.Hx,Hy,Hz,φ,θ 前已求得,自然可求得航向角[4].图2 微处理器原理图Fig.2 The principle diagram of the microprocessor图3 加速度传感器原理图Fig.3 The principle diagram of the acceleration sensor当(Hx<0)时,航向角α=π-arcTan(Hx/Hy);当(H>0,Hy<0)时,航向角α=-arcTan(Hx/Hy);当(Hx>0,Hy>0)时,航向角α=2π-arcTan(Hx/Hy);当(Hx=0,Hy<0)时,航向角α=π/2;当(Hx=0,Hy>0)时,航向角α=3π/2.图4 X、Y 轴磁场分量测量电路Fig.4 X,Y axis magnetic field componentmeasurement circuit图5 Z 轴磁场分量测量电路Fig.5 The Z axis magnetic field component measurement circuit3 误差补偿图6 为用MATLAB 求得的误差拟合函数,其中* 为航向角误差值,曲线为拟合函数曲线,由图可知除130°与180°误差在1 度左右外,其它角度误差拟合函数相当好,f(α)=a+bsinα+ccosα+dsin2α+ecos2α(因为误码差与实测航向角的函数关系具有周期性,所以可设该函数为富里叶级数前5 项,由MATLAB 可求得a,b,c,d,e 系数)图6 航向角误差拟合函数图Fig.6 Course angle error of fitting function diagram4 结语基于Honeywell 公司生产的磁阻传感器芯片研制的电子罗盘系统抗干扰能力强、抗震性高、稳定性好;同时硬件价格低廉、成本低、功耗小.采用的基于最小二乘法位置罗差补偿法是罗盘误差补偿方法中的一种,该方法相比较神经网络误差补偿方法、椭圆拟合误差补偿方法来说,有较高的测量精度,只要计算出系统的误差补偿函数系数,罗盘系统即可实现误差补偿校正,操作简单、易于实现.实验证明该电子罗盘系统可应用在普通导航领域.参考文献:[1]刘敬彪,郑玉冰,章雪挺.三轴磁罗盘的设计与误差校正[J].自动化仪表,2008(9):10-12.[2]袁信,俞济祥,陈哲.导航系统[M].北京:航空工业出版社,1993:2-2.[3] Honeywell Application Note:AN205l[EB/OL].(2007-10-08)[2014-07-01].www.magneticsensors.com.[4] Michael J.Caruso Applications of Magneto Resistive Sensors in Navigation System[J].Sensors and Act uators,1997,21:357-342.。

基于MEMS传感器的微小型三维电子罗盘设计

基于MEMS传感器的微小型三维电子罗盘设计

小、 重量 轻 、 度 高 。 了 满足 这 些 需 要 , 出 了一 种 三 维磁 阻 式 电子 罗盘 系统 , 加 速度 计输 出信 号 和 经 过 仪 用 运放 放 大 精 为 提 将
后 的磁 阻 式传 感 器输 出信 号 输 入 到 单 片机 的 D. 过 滤 波算 法 以及 数 据 融合 . 获得 载 体 的 三 个 姿 态参 数 : 于地 球 磁 通 可 基
基 于 ME 感器 的微 小 型 三维 电子 罗盘设 计 ቤተ መጻሕፍቲ ባይዱ MS传
口 顾 大雄 口 高 同跃 口 沈春 涛
上海



上 海 大 学 机 电工 程 与 自动 化 学 院
207 002

要 : 机 器人 和 小型 直 升 飞 机 等 特 殊 控 制领 域 , 在 需要 有 高精 度 的 运 动 测 量 信 息 作 为 导航 状 态输 入 , 要 求 体 积 并
场 的航 向 角 . 于 地球 重 力场 的 横 滚 角和 俯仰 角 实验 结 果 获 得 较 好 的精 度 . 态精 度 可达 到 1 。 用 高集 成 度 的微 控 制 基 静 。 利
器 和 MEMS传 感 器 , 幅 度 缩 小 罗 盘 的 体 积 、 量 、 耗 以 及 成 本 , 适 合 嵌 入 式 系 统 使 用 。 大 重 功 更
利 用 MEMS 微 机 械 ) 加 速 度 计 ADXL 0 和 f 23 C8 5 F 1 以 及 HMC1 0 / 0 2磁 阻 传 感 器 构 建 电 子 0 140 0 11 0
OU 一) 变 化 . 直 接 表 示 磁 场 的 强 度 。 分 辨 率 可 达 T 的 并 2 1 . 程 为 一 Gs至 + Gs 磁 阻 传 感 器 在 经 历 了 强 7. z Gs 量 2 2 。 磁 场 之 后 会 被 磁 化 而 引 起 磁 滞 . 从 而 引 起 输 出 信 号 的

基于电子罗盘的方向传感器系统设计

基于电子罗盘的方向传感器系统设计

基于电子罗盘的方向传感器系统设计一、引言随着科技的不断发展和应用范围的不断拓展,传感器的应用已经渗透到了我们日常生活的方方面面。

其中,方向传感器系统作为一种不可或缺的设备,已经得到了广泛的应用。

在本文中,我们将会针对基于电子罗盘的方向传感器系统进行设计和探讨。

二、方向传感器系统的基本原理方向传感器通常是一种基于电子技术的系统,它可以用来检测和记录一个物体(如汽车、飞机或船舶)的方向。

而其原理主要是基于磁力传感器的工作方式。

磁力传感器利用磁场来检测物体的方向,这些磁场通常是由地球的自然磁场所产生的,也可以是由外部磁体产生的。

在这种情况下,我们需要采用电子罗盘作为磁力传感器,以确保方向传感器系统具有高精度和高可靠性。

电子罗盘是一种电子设备,可以通过感应地球磁场的变化来测量真实的方向。

三、基于电子罗盘的方向传感器系统的设计基于电子罗盘的方向传感器系统是一种重要的辅助导航设备,通常应用于航空、航海、轨道交通等领域。

因此,该系统的设计需要充分考虑其应用环境和场景,以确保其满足工程应用的要求。

1. 硬件设计基于电子罗盘的方向传感器系统的硬件设计包括传感器、模拟部分和数字部分。

(1)传感器该系统的传感器通常应为硬铁置于电子罗盘板上的八方向3轴磁场传感器。

八方向表面是一个晶圆盘,罗盘板上的硬铁从纵向和横向的8个方向上紧密环绕。

3轴磁场传感器可检测物体沿X、Y和Z轴方向的磁场变化,这是漂移抑制的关键。

(2)模拟部分模拟部分主要是用来对传感器的输出进行放大、滤波和A/D转化等处理。

由于系统的精度和稳定性直接取决于该部分的设计,因此在进行模拟部分的设计时需要充分考虑其系统电源选择、运放选择、滤波器电容和放大倍数等因素。

(3)数字部分数字部分是基于单片机的编程处理,主要用来完成接收、转换和显示数据。

该部分的设计需要考虑系统设计的应用和性能要求,以确保其能够满足不同应用场景的需求,并实现高速响应、低能耗和实时数据传输。

2. 软件设计基于电子罗盘的方向传感器系统的软件设计主要包括算法设计和界面设计。

基于51单片机的电子罗盘系统的设计与实现解读

基于51单片机的电子罗盘系统的设计与实现解读

本科生毕业设计(论文)论文题目:基于51系列单片机数字电子罗盘设计与实现姓名:学号:班级:年级:专业:学院:指导教师:完成时间:2013年5 月28日作者声明本人以信誉郑重声明:所呈交的学位毕业设计(论文),是本人在指导教师指导下由本人独立撰写完成的,没有剽窃、抄袭、造假等违反道德、学术规范和其他侵权行为。

文中引用他人的文献、数据、图件、资料均已明确标注出,不包含他人成果及为获得东华理工大学或其他教育机构的学位或证书而使用过的材料。

对本设计(论文)的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本毕业设计(论文)引起的法律结果完全由本人承担。

本毕业设计(论文)成果归东华理工大学所有。

特此声明。

毕业设计(论文)作者(签字):签字日期:年月日本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。

学位论文指导教师签名:年月日基于51系列单片机数字电子罗盘设计与实现黄飞Based on 51 single-chip digital electronic compass system design and implementationHuangFeiI摘要当今社会交通越来越发达,导航系统也随之普遍。

在以前人们大多数使用地图,看路况。

但是由于经济发展,交通路线也变化好大。

现在虽然有GPS,但是在山区有覆盖遮蔽的地方,GPS也失去作用。

汽车出巡不方便,为解决这个的问题,本文主要研究使用在汽车导航设备的能够精确定向的电子罗盘系统。

本文主要介绍磁阻式电子罗盘的工作原理,并详细介绍了磁阻传感器HMC5883、双轴加速度传感器ADXL202、AD7705转换芯片以及AT89C52单片机的磁阻式电子罗盘的硬件设计;根据传感器信号输出特点,经过AD7705模数转换后,利用AT89C52单片机处理信息功能经过分析后,经显示屏显示行驶方向。

基于51单片机的电子罗盘系统的设计与实现

基于51单片机的电子罗盘系统的设计与实现

本科生毕业设计(论文)论文题目:基于51系列单片机数字电子罗盘设计与实现姓名:学号:班级:年级:专业:学院:指导教师:完成时间:2013年5 月28日作者声明本人以信誉郑重声明:所呈交的学位毕业设计(论文),是本人在指导教师指导下由本人独立撰写完成的,没有剽窃、抄袭、造假等违反道德、学术规范和其他侵权行为。

文中引用他人的文献、数据、图件、资料均已明确标注出,不包含他人成果及为获得东华理工大学或其他教育机构的学位或证书而使用过的材料。

对本设计(论文)的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本毕业设计(论文)引起的法律结果完全由本人承担。

本毕业设计(论文)成果归东华理工大学所有。

特此声明。

毕业设计(论文)作者(签字):签字日期:年月日本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。

学位论文指导教师签名:年月日基于51系列单片机数字电子罗盘设计与实现黄飞Based on 51 single-chip digital electronic compass system design and implementationHuangFeiI摘要当今社会交通越来越发达,导航系统也随之普遍。

在以前人们大多数使用地图,看路况。

但是由于经济发展,交通路线也变化好大。

现在虽然有GPS,但是在山区有覆盖遮蔽的地方,GPS也失去作用。

汽车出巡不方便,为解决这个的问题,本文主要研究使用在汽车导航设备的能够精确定向的电子罗盘系统。

本文主要介绍磁阻式电子罗盘的工作原理,并详细介绍了磁阻传感器HMC5883、双轴加速度传感器ADXL202、AD7705转换芯片以及AT89C52单片机的磁阻式电子罗盘的硬件设计;根据传感器信号输出特点,经过AD7705模数转换后,利用AT89C52单片机处理信息功能经过分析后,经显示屏显示行驶方向。

基于隧道磁阻传感器的三维电子罗盘设计

基于隧道磁阻传感器的三维电子罗盘设计

基于隧道磁阻传感器的三维电子罗盘设计∗王琪;李孟委;王增跃;蒋孝勇;李锡广【摘要】Existing electronic compass is vulnerable to be distracted by the Magnetic Field in external environment, which leads to low accuracy. To solve this problem,a three-dimensional electronic compass is designed based on Tunneling Magneto Resistance sensor and a prototype is made. The error characteristics of compass in a real envi-ronment is studied,and ellipse hypothesis are carried out to compensate the azimuth error after ellipsoid-fitting cor-rection. Through experimental tests,the compensation effect of the ellipse hypothesis method,which compensated az-imuth accuracy of up to 0.85° and effectively reducing 94.81% of the azimuth error. Experimental results show that applying TMR sensor to electronic compass is feasible.%针对现有电子罗盘在地磁场检测时易受到外界磁场干扰而导致测量精度不高的问题,设计了基于隧道磁阻传感器( TMR)的三维电子罗盘并完成样机制作。

基于AMR磁阻传感器和加速度传感器的电子罗盘

基于AMR磁阻传感器和加速度传感器的电子罗盘
信号通过低通滤波器之后,占空比调制器把信号转换为数字信号输出。通过T2脚的外接电阻可以改变T2的周期T2(1~10ms),这就方便在精度要求不同的场合下使用。输出的占空比信号通过计数器可以计算出占空比。加速度的计算可以通过公式(1)得到。当加速度为0g时,输出信号的占空比为50%;灵敏度每1g所引起的脉宽占空比变化12.5%。在应用中0g时的失调和系统误差影响实际输出值。则根据测得的加速度值即可求得X和Y轴的倾角:当加速度计被定向,那么它的X和Y轴就和地球表面平行可用来作为具有翻滚和倾斜两个轴的双轴斜度传感器,被测物体的俯仰角记为γ和横滚角β。将磁阻传感器的3个
基于AMR磁阻传感器和加速度传感器的电子罗盘车载电子罗盘的功能是帮助用户确定车辆行驶方向,精确显示方位角度并提供正确的操作指示,因此导航的精确程度成为衡量系统性能优劣的重要指标。
本文介绍的基于AMR磁阻传感器和加速度传感器ADXL202的电子罗盘,是捷联式惯性导航系统中的一种。在电子罗盘系统中,单片机VRS51L3074完成对加速度传感器输出信号脉宽和周期的计数,获得车辆瞬时加速度值,然后利用三角函数关系计算出当前位置相对于已知参考位置之间的横滚和俯仰角度,进行姿态解算,得到车辆的前进方向和方位角。但是汽车电磁环境复杂,特别是汽车的震动和瞬时功率变化会对ADXL202输出的占空比信号产生尖峰脉冲干扰,严重影响计数的精度。因此,抑制脉冲干扰在提高计数精度、增强系统性能方面显得尤为重要。1ADXL202工作原理ADXL202传感器是由震荡器,X、Y方向传感器,相位检波电路以及占空比调制器组成,具有数字输出接口和模拟电压信号输出接口。X、Y方向传感器是2个相互正交的加速度传感器。ADXL202相对于地平面方向变化时,X、Y方向对应不同的输出,从而可以测量动态变化的加速度和恒定的加速度。传感器的后级连相位检波器,主要是用来修

三维磁阻式电子罗盘的设计与实现

三维磁阻式电子罗盘的设计与实现
Ab s t t a c t
A 3- ax e s magn e t O r e s i s t i V e e l e c t r on i c co m pa s s i n t h i s pa pe r whi ch c on s i s t s o f 3 D m a gn e t O r e s i s t i v e s e n s or HM C58 83 1 ,
3-a x es e l e ct r i ca l c ompas s a r e hi gh ac cu r a c y an d s t abl e o pe r a t i on .
K e y wo r d s : 3 - a x e s ma g n e t O r e s i s l i V e e l e c t r o n i c c o mp a s s , h e a d i n g a n g l e , e r r o r , e l l i p s e f i t t i n g
3 D a c c e l e r a t i o n s e n s o r AD X L 3 4 5 B a n d MCU L P C1 1 1 4 F B D4 8 f o r me a s u r i n g h e a d i n g a n g l e , p i t c h a n d r o l l a n g l e i n t h e p a r t o f t h e h a r d wa r e . S o u r c e s c a u s i n g e r r o r s a r e a n a l y z e d i n t h i s p a p e r , t h e n e l l i p s e f i t t i n g e r r o r c o mp e n s a t i o n me t h o d i s p r o — p o s e d f o r a v o i d i n g e r r o r t h a t a f e c t i n g me a s u r e me n t a c c u r a c y o f e l e c t r o n i c c o mp a s s i n t h e s o f t wa r e , c h a r a c t e r i s t i c s o f t h e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业论文便携式电子罗盘软件设计与校准学生姓名:学号:学院:机电工程学院专业:机械设计制造及其自动化(机电一体化)指导教师:2016年 5 月 9 日目录引言 (4)第一章.电子罗盘的测量与倾角补偿原理 (5)1.1 电子罗盘的测量原理 (5)1.2 倾角补偿原理 (6)第二章电子罗盘的硬件设计与实现 (7)2.1 系统框架 (7)2.2 传感器的选择 (7)2.3. 单片机开发环境 (8)第三章.电子罗盘误差分析与补偿 (9)3.1 误差来源 (9)3.2 误差的补偿 (10)3.2.1 漂移补偿 (10)3.2.2 椭球化补偿 (10)第四章.校正及其程序设计 (12)4.1 8字型校准 (12)4.2 8字型校准的程序设计 (12)4.3 倾斜补偿的程序设计与实现 (13)4.4 滤波算法 (14)第五章.结论与展望 (15)致谢 (16)参考文献 (17)便携式电子罗盘软件设计与校准摘要本设计采用了STM32F103C8T6高速单片机为控制核心,连接了采用IIC总线通讯方式的磁阻传感器HMC5883L集成模块和加速度传感器MMA8452集成模块,通过磁阻传感器测量大地磁场,但是测量的数据仅仅在水平面内有效。

在倾斜时侧需要使用加速度计进行补偿。

在经过加速度传感器的姿态数据采集后使用单片机进行数据整理、运算,经过加速度计得到的X、Y、Z三轴姿态信息进行分别计算出俯仰角PITCH和横滚角ROLL。

磁阻传感器采集的大地磁场的X、Y、Z三轴数据经过单片机进行俯仰角和横滚角的倾斜度补偿。

在经过补偿之后,通过SPI连接的OLED显示屏输出磁阻传感器的大地磁场角度信息。

关键词:STM32单片机磁阻传感器加速度计电子罗盘The design and calibration of portable electronic compass systemAbstract This design adopts the stm32f103c8t6 high-speed microcontroller as control core, connecting the IIC bus communication hmc5883l magnetoresistive sensor integrated module and acceleration sensor MMA8452 integrated module, by magnetoresistive sensor to measure the magnetic field of the earth, but the measurement data only in the horizontal plane effectively. Accelerometer is used to compensate for the inclination of the side. In after acceleration sensor attitude data acquisition SCM data arrangement, calculation, after acceleration meter is obtained the X, y, Z three-axis attitude information are respectively to calculate the pitching angle of pitch and transverse roll angle, roll. The X, Y and Z three axis data of the magnetic field of the magnetic field of the magnetic field of the magnetic field of the magnetic resistance sensor are carried out by the single chip microcomputer to carry on the pitch angle and roll angle of the roll angle compensation. After compensation, the earth's magnetic field angle information of the OLED display is connected with the SPI display screen.Key words STM32 MCU ; magnetoresistive sensor ;acceleration sensor; electronic compass引言本课题所使用的电子罗盘属于磁罗盘,它是一种根据大地磁场各个方向的矢量的大小计算出方向的装置。

很久很久以前,人们就意识到方向的重要性,并在战国时代发明了指南针,又叫“司南”。

早在宋代,人们便发现了地磁偏角。

等到大地磁场的有关知识与研究传到欧洲的时候已经到了12世纪。

现如今伴随着科技的发展与进步,分析与利用空间里地磁场的分布来辅助定位导航已成为世界上导航与定位的潮流。

到了现在,世界上的导航技术发展越来越快,陀螺仪、无线电、GPS等更加先进的技术问世使得罗盘的地位逐渐降低。

但是磁阻传感器的问世使得数字式电子罗盘作为一种导航手段重新进入人们的生活。

机械式陀螺仪成本很高并且结构复杂难以操作;无线电易受各种电磁波的干扰;GPS却会因为地形等的影响使得工作状态不稳定甚至不工作。

而电子罗盘则是弥补了这些缺点,使得其重新被人们所接受。

电子罗盘一般采用磁阻传感器以及加速度计来做导航系统的信号来源。

经过信号处理便可以为人们提供实时的地磁方位数据以及姿态数据。

对比简单的磁铁式罗盘,磁阻式电子罗盘拥有着无可比拟的优点。

例如抗一定程度的物理冲击,随时可以矫正弥补周围零散的磁场干扰。

又因为是电子式的罗盘,输出信号可以和其他电子设备复合组成更加复杂的系统。

当然,磁阻式电子罗盘并不是没有缺点。

因为磁阻方位角测量时仅采用XY两轴的水平面内的数据进行磁场方位角的计算,使得在传感器不在水平面内时测量的偏差较大。

实际使用时,罗盘的平面根本无法时刻保持水平,所以我们需要对这个误差产生的原理进行分析以及修正补偿。

第一章.电子罗盘的测量与倾角补偿原理1.1 电子罗盘的测量原理我们可以把大地磁场看做在空间内一个不变的矢量,所以这一个矢量我们可以把它分成基于磁阻传感器的相互垂直的X、Y、Z三轴磁场分量,分别标记为hx、hy、hz。

Hx为磁阻传感器的正前方,hy为磁阻传感器的正右方,hz为磁阻传感器的正上方。

至此,关于磁场的坐标系建立完成。

而三轴磁阻传感器测量大地磁场的信息即为大地磁场X、Y、Z的三轴分量。

在传感器平面处于水平面时,我们只需X、Y两轴即可通过公式计算出当前方向和磁场北极的夹角。

如图2所示。

图2 水平面内XY两轴测量出的磁场分量及计算航向角我们使用反正切角函数来计算出航向角即当前方向与地磁北极的夹角。

反正切函数的表达式为angle=arctan(hy/hx)(1.1.1)反正切角即射线(x,y)和x轴正向间的夹角。

但是由于arctan的定义域以及值域的局限性,我们采用了atan2()函数来计算航向角。

atan2()函数的定义域为-π到π,而值域为-π到π,完全满足使用要求。

因为航向角没有负数,所以我们采用如下公式:angle=atan2(hy,hx)+π(1.1.2)这样便使得值域变成了0到2π,即0°-360°。

因为磁阻传感器测量出的三轴分量一般为弧度单位,所以我们在计算航向角时变使用如下公式:angle=atan2(hy,hx)*(180°/3.1415926)+180°(1.1.3)1.2 倾角补偿原理上面我们讲述了在水平面内即电子罗盘的磁阻传感器处于水平状态下如何通过磁阻传感器的度数计算出方位角。

但是在实际使用的过程中,根本无法保证电子罗盘始终为水平。

而在电子罗盘平面倾斜时,则会产生横滚角Roll 和俯仰角Pitch ,使得测量的磁场分量hx 、hy 与水平面时的磁场矢量大小产生偏差。

经过测试在x 轴方向大约10度的倾角便会引起大约7-8°的误差。

这是我们就需要引入加速度传感器来测量传感器平面与水平面之间的夹角,即倾角。

倾角分为两种Pitch 和Roll ,Pitch 定义为x 轴和水平面的夹角,Roll 定义为y 轴和水平面的夹角。

加速度计传感器测量所产生的数据一样为三轴加速度分量分别标记为ax 、ay 、az ,方向与磁阻传感器三轴方向一致。

可以这么说,三轴磁阻传感器与三轴加速度计的坐标轴保持一致。

这样加速度计所测量并计算出的倾角信息即为磁传感器所在平面与水平面的夹角信息。

在静止状态下,加速度计所测量的加速度即为重力在三轴的分量。

所以我们可以根据三轴分量的大小计算出加速度计所在平面与水平面的夹角Pitch 与Roll 。

公式如下: )ay (ax/arctan =Pitch 22az + (1.2.1))/arctan(22az ax ay Roll += (1.2.2)经过矩阵变换推导我们可以得出倾斜角的补偿公式为:Xh = hx * cos(Pitch)+hy * sin(Pitch)*sin(Roll)-hz*cos(Roll)*sin(Pitch)(1.2.3)Yh = hy * cos(Roll) +hz * sin(Roll) (1.2.4)在得出经过倾斜补偿之后的地磁场的X 、Y 分量之后我们在代入之前得出的计算公式可以得到最终的方位角计算公式为:angle=atan2(Yh ,Xh )*(180°/3.1415926)+180° (1.2.5)第二章电子罗盘的硬件设计与实现2.1 系统框架本系统采用STM32F103C8T6单片机为主控芯片。

该单片机时钟频率最高可达72M,完全符合本系统的工作需求。

传感器选用霍尼韦尔公司的高集成三轴磁阻传感器HMC5883L,以及飞思卡尔公司的MMA8452三轴加速度传感器。

在经过传感器的测量之后,把数据通过IIC串行总线传输到单片机内进行数据处理以及运算。

在得出方位角以及姿态信息之后,通过SPI串口把信息输出到0.96寸的OLED显示屏上。

供电方面采用普通标准USB接口供电,因为STM32单片机供电要求是3.3V,所以我们采用电源稳压芯片AMS1117-3.3V,将USB提供的5V的直流电压转换成3.3V。

另外,在硬件完成之后我们需要数据采集以及调试,所以引出STM32单片机的USART1串口1的RX、TX两根引脚。

相关文档
最新文档