人大版微经 博弈论初步(博弈论)ppt课件

合集下载

微观经济学-第十章-博弈论初步PPT课件

微观经济学-第十章-博弈论初步PPT课件
12
[资料] 约翰·纳什
[资料] 约翰·纳什
❖ 1994年与泽尔腾、海萨尼 分享了诺贝尔经济学奖。
❖ 他说自己只做了两件事: 一是研究过讨价还价的问 题;二是关注了经济问题 并从数学角度加以分析。
❖ 理性决策决不会无缘无故 地损害自身的利益,也就 是一个人肯定不会故意做 出对自己不利的事。
13
[案例]“华容道”里的纳什均衡(1)
1/2
1/2




1×1/2
▲▲
27
第四节 动态博弈 一、竞争者-垄断者博弈
第四节 动态博弈
一 竞争者-垄断者博弈
竞争者
进 入 不进入
竞争者
进 入 不进入

垄制


不 抵

600
900
800
1300
1200
900
900
1300

垄制


不 抵

600
900
800
1300
1200
900
700
1300
23
第三节 混合策略均衡 一、混合策略与策略组合
第三节 混合策略均衡
一 混合策略与策略组合
❖ 在混合策略博弈中,对于每一个混合策略组合也
存在一个支付组合。 ❖ 参与人都以一定的概率
乙厂商
q1
q2
来选择其纯策略,相应
形成“期望支付”。 甲 p1
1
p1 0,1
q1 0.7 q1 0.7
0
q1 0,1
p1厂 0.5 p1商 0p.52
0 q1 0.7
1 p1 0.5
6– 4

博弈论PPT课件

博弈论PPT课件
有i si 0, i si 1 si Si
这就是混合策略。
混合策略的纳什均衡定义
如果对于博弈中所有的游戏者i,对于所有的 σi∈Mi,都有ui﹙σ*﹚≥ui﹙σi,σ-i*﹚,则称 σ*就是一个混合策略的纳什均。
如何求混合策略的纳什均衡
猜硬币的博弈中 解:设猜方猜正方的概率为p,猜反方的概率则为1-
无名氏(大众)定理
无名氏定理:在无穷次重复的由n个游戏者参与的 博弈里,如果在每一次重复中博弈的行动集是有限 的,则在满足下列三个条件时,在任何有限次重复 中所观察到的任何行动组合都是某个子博弈完美均 衡的惟一结果:
条件1:贴现因子接近于1; 条件2:在每一次重复中,博弈结束的概率或等于0,或 为非常小的一个正值; 条件3:严格占优于一次性博弈中的最小最大收益组合的 那个收益组合集是n维的。
博弈方
博弈方:独立决策、独立承担博弈结果的个人 或组织
博弈规则面前博弈方之间平等,不因博弈方之 间权利、地位的差异而改变
博弈方数量对博弈结果和分析有影响 根据博弈方数量分单人博弈、两人博弈、多人
博弈等。最常见的是两人博弈,单人博弈是退 化的博弈
策略
策略:博弈中各博弈方的选择内容 策略有定性定量、简单复杂之分 不同博弈方之间不仅可选策略不同,而且可
游戏和经济等决策竞争较量的共同特征:规 则、结果、策略选择,策略和利益相互依存, 策略的关键作用
游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊朗、以色列和巴勒斯 坦、中国和日本等等。
博弈的基本要素
博弈的参加者(Player)——博弈方 各博弈方的策略(Strategies)或行动(Actions) 博弈的次序(Order) 博弈方的收益(Payoffs) (或称支付,或得益)

第九章 博弈论 《微观经济学》PPT课件

第九章 博弈论 《微观经济学》PPT课件




1,-1
3,-3
A
图9-3 写字博弈的收益矩阵
9.2 占优策略
• 在一个有n个人参与的博弈G={S1,…,Sn;u1,…,un}中,令 si′和si″是第i个参与人可选择的两个策略,如果对其他所有参与 人任意的策略组合s-i,总有 Ui(si′, s-i)<ui(si″, s-i)s-i(9-4)
• 式中:t-i表示除参与人i以外的其他参与人的类型。
9.4* 贝叶斯纳什均衡
9.4.3 不完全信息古诺模型
• 现在我们假定市场反需求函数为P=a-q1-q2,ci为每个厂商不变的 单位成本,那么厂商的利润函数为:
πi=qi(a-q1-q2-ci)=qi(ti-q1-q2) (i=1, 2) • 式中:ti=a-ci。更进一步假定a=2,c1=1,=3/4,=5/4,μ=1/2,
ቤተ መጻሕፍቲ ባይዱ囚徒B
坦白
不坦白

坦白
-3,-3
0,-6

A
不坦白
-6,0
-1,-1
9.1 基本描述
9.1.2 基本概念 • 博弈是指任何一种由一人、两人或多人参与竞争的情形。 • 任何一个博弈都必须至少具备以下3个基本要素:参与人、策
略和支付。除此之外,行动、信息等也都是博弈的要素。
9.1 基本描述
• 参与人是指博弈中每个策略的决策者,他的目的是通过自己个 人的理性决策来最大化自己的支付水平。
9.3 纳什均衡
2.伯特兰模型 • 伯特兰模型是寡头厂商联合定价博弈。与古诺模型不同,伯特
兰模型中厂商同时选择的不是产量,而是产品价格。 • 因此,该伯特兰模型的纳什均衡为((a+c)/(2-b),

人大版微经 博弈论初步(博弈论)PPT课件

人大版微经 博弈论初步(博弈论)PPT课件
人的支付。 所谓参与人(或称局中人),就是在博弈中进行
决策的个体;所谓参与人的策略,指的是一项规则, 根据该规则,参与人在博弈的每一时点上选择如何行 动;所谓参与人的支付则是指,在所有参与人都选择 了各自的策略且博弈已经完成之后,参与人获得的效 用(或期望效用)。
2020/8/3
.
3
第十章 博弈论初步 第一节 博弈论和策略行为
2020/8/3
.
16
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
五、寻找纳什均衡的方法——条件策略下划线法
2.条件策略下划线方法的五步法 第四,将已经画好线的甲厂商的支付矩阵和乙厂商的 支付矩阵再合并起来,得到整个的有下划线的支付矩 阵
2020/8/3
.
10
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
四、纳什均衡
2.纳什均衡的概念 第一,纳什均衡的概念
所谓纳什均衡,指的是参与人的这样一种策略组 合,在该策略组合上,任何参与人单独改变策略都不 会得到好处。或者说,在一个策略组合中,如果所有 其他人都不改变策略,没有人会改变自己的策略,则 该策略组合就是一个纳什均衡。
3.博弈的简单分类 根据参与人的数量,可以分为二人博弈和多人博
弈;根据参与人的支付情况,可分为零和博弈和非零 和博弈;根据参与人拥有的策略的数量多少,可分为 有限博弈和无限博弈;根据参与人在实施策略上是否 有时间的先后,可分为同时博弈和序贯博弈。
2020/8/3
.
4
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
策和采取策略性行动的科学。 策略性环境是指,每一个人进行的决策和采取的
行动都会对其他人产生影响;策略性决策和策略性行 动是指,每个人要根据其他人的可能反应来决定自己 的决策和行动。

博弈论完整版PPT课件

博弈论完整版PPT课件
R3 3, 2 0, 4 4, 3 50, 1 会将C4从C的战略空间中剔除, 所以 R4 2, 93 0, 92 0, 91 100, 90 R不会选择R4;
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。

《博弈论》课程ppt课件

《博弈论》课程ppt课件

10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。

博弈论讲义完整PPT课件

博弈论讲义完整PPT课件
• 两个寡头企业选择产量的博弈:
如果两个企业联合起来形成卡特尔,选择垄断利润最大化的产量,每 个企业都可以得到更多的利润。给定对方遵守协议的情况下,每个企业都 想增加产量,结果是,每个企业都只得到纳什均衡产量的利润,它严格小 于卡特而产量下的利润。
• 请举几个囚徒困境的例子
第18页/共293页
第一章 导论-囚徒困境
知识:完全信息博弈和不完全信息博弈。 ❖完全信息:每一个参与人对所有其他参与人的(对手)的特征、
战略空间及支付函数有准确的 知识,否则为不完全信息。
第33页/共293页
第一章 导论-基本概念
• 博弈的划分:
行动顺序 信息
完全信息
静态
完全信息静态博弈 纳什均衡
纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
0,300 0,300
纳什均衡:进入,默许;不进入,斗争
第29页/共293页
第一章 导论
• 人生是永不停歇的博弈过程,博弈意略达到合意的结果。 • 作为博弈者,最佳策略是最大限度地利用游戏规则,最
大化自己的利益; • 作为社会最佳策略,是通过规则使社会整体福利增加。
第30页/共293页
第一章 导论-基本概念
一只河蚌正张开壳晒太阳,不料,飞 来了一只鸟,张嘴去啄他的肉,河蚌连忙合 起两张壳,紧紧钳住鸟的嘴巴,鸟说:“今 天不下雨,明天不下雨,就会有死蚌肉。” 河蚌说:“今天不放你,明天不放你,就会 有死鸟。”谁也不肯松口,有一个渔夫看见 了,便过来把他们一起捉走了。
第17页/共293页
第一章 导论-囚徒困境
✓“要害”是否在于“利己主义”即“个人理
性”?
第20页/共293页

博弈论入门(课堂PPT)

博弈论入门(课堂PPT)

共同价值和赢者的诅咒
• 两家代理:1个积极估价,1个消极估价
prob(v/s)11//22
vs2 vs2
• v均匀分布
• 出价b=?(一家和两家出价时有不同吗)
• 考察b=s-1这样一个对称策略
• 德士古公司的例子
15
几种常见的拍卖形式
• 英式公开叫价拍卖 • 荷式公开叫价拍卖 • 一价密封拍卖 • 二价密封拍卖
• 通过改革,陪审团制度在美国得到了比英国更 好的发展。
22
投票程序
23
• 每个陪审员在陪审之前已经有一个大体 的判断
• 他们的类型 • 非专业性——从众行为
– 如果评判有罪的人数多于无罪,则投有罪 – 如果评判无罪的人数多于有罪,则投无罪 – 如果双方人数相等,则依照自己的评判结果
投票
24
• 陪1:假设投有罪 • 陪2:若评判有罪,则投有罪;若评判无
• 在被问及对最终的价格是否感到意外时 ,Frija抛下一个“不”字,随即离开了
11
简化的暗标拍卖
密封递交标书 统一时间公正开标 标价最高者以所报标价中标 中标博弈方的得益不仅取决于标价,还取决于他对拍
卖标的物的带有很大主观性的估计 每个博弈方的估价通常是自己的私人信息
12
0.6
0.4
• 考虑这样一个对称策略:给定其他两个 委员采取相同策略,以及对于其他成员 拥有哪个政策更好的知识的信念,不论 这个参与者什么类型,采取这个策略都 使他收益最大。
19
• 自然决定四项:哪个政策更好,以及三 个委员的类型。
• 当一个委员了解新政策时:投票给自己 认为更好的策略是一个弱占优策略。
– 当另外两位投票相同时 – 当另外两位投票分歧时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
策和采取策略性行动的科学。 策略性环境是指,每一个人进行的决策和采取的
行动都会对其他人产生影响;策略性决策和策略性行 动是指,每个人要根据其他人的可能反应来决定自己 的决策和行动。
2020/4/23
.
2
第十章 博弈论初步 第一节 博弈论和策略行为
2.博弈的三个基本要素 三个基本要素,即参与人、参与人的策略和参与
2.条件策略下划线方法的五步法 第二,在甲厂商的支付矩阵中,找出每一列的最大者 (每列的最大者可能不止一个),并在其下画线
2020/4/23
.
15
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
五、寻找纳什均衡的方法——条件策略下划线法
2.条件策略下划线方法的五步法 第三,在乙厂商的支付矩阵中,找出每一行的最大者 (每行的最大者也可能不止一个),并在其下画线
甲厂商分别有两个条件策略和条件策略组合。
2020/4/23
.
8
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
三、条件策略和条件策略组合
2.乙厂商的条件策略和条件策略组合 把乙厂商在甲厂商选择合作条件下的最优策略即
合作叫做乙厂商的条件优势策略或相对优势策略,简 称为条件策略。
把与乙厂商的条件策略相联系的策略组合叫做乙 厂商的条件优势策略组合或相对优势策略组合,简称 为条件策略组合。
人的支付。 所谓参与人(或称局中人),就是在博弈中进行
决策的个体;所谓参与人的策略,指的是一项规则, 根据该规则,参与人在博弈的每一时点上选择如何行 动;所谓参与人的支付则是指,在所有参与人都选择 了各自的策略且博弈已经完成之后,参与人获得的效 用(或期望效用)。
2020/4/23
.
3
第十章 博弈论初步 第一节 博弈论和策略行为
2020/4/23
.
16
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
五、寻找纳什均衡的方法——条件策略下划线法
2.条件策略下划线方法的五步法 第四,将已经画好线的甲厂商的支付矩阵和乙厂商的 支付矩阵再合并起来,得到整个的有下划线的支付矩 阵
2020/4/23
.
7
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
三、条件策略和条件策略组合
1.甲厂商的条件策略和条件策略组合 把甲厂商在乙厂商选择合作条件下的最优策略即
合作叫做甲厂商的条件优势策略或相对优势策略,简 称为条件策略。
把与甲厂商的条件策略相联系的策略组合叫做甲 厂商的条件优势策略组合或相对优势策略组合,简称 为条件策略组合。
3.博弈的简单分类 根据参与人的数量,可以分为二人博弈和多人博
弈;根据参与人的支付情况,可分为零和博弈和非零 和博弈;根据参与人拥有的策略的数量多少,可分为 有限博弈和无限博弈;根据参与人在实施策略上是否 有时间的先后,可分为同时博弈和序贯博弈。
2020/4/23
.
4
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
2020/4/23
.
12
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
五、寻找纳什均衡的方法——条件策略下划线法
1.基本方法 先用下划线法分别表示甲厂商和乙厂商的条件策
略,最后确定博弈的均衡(就是找到在两个数字之下 都画线的单元格即可,与这些单元格相对应的策略组 合就是所要求的均衡策略组合)。
2020/4/23
一、例子:寡头博弈
假定在某个寡头市场上,只有甲、乙两个厂商。 每个厂商都有两个可供选择的策略,即合作和不合作。 两个厂商各自选择的策略共形成四个组合。
2020/4/23
.
5
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
二、支付矩阵
1.支付矩阵 使用支付矩阵来描述和分析只有两人参加且两人
同时进行决策的简单博弈。 矩阵的左边表示甲厂商的策略,上边表示乙厂商
本PPT的配套教材 《西方经济学(微观部分)》
高鸿业教授主编 中国人民大学出版社,2011年1月第五版
—————— 本PPT结合该教材的光盘课件使用
—————— 制作者:张昌廷(河北经贸大学)
一节 博弈论和策略行为
1.博弈论的含义 博弈论是研究在策略性环境中如何进行策略性决
2020/4/23
.
10
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
四、纳什均衡
2.纳什均衡的概念 第一,纳什均衡的概念
所谓纳什均衡,指的是参与人的这样一种策略组 合,在该策略组合上,任何参与人单独改变策略都不 会得到好处。或者说,在一个策略组合中,如果所有 其他人都不改变策略,没有人会改变自己的策略,则 该策略组合就是一个纳什均衡。
2020/4/23
.
11
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
四、纳什均衡
2.纳什均衡的概念 第二,对纳什均衡的理解
一是“单独改变策略”是指任何一个参与人在所 有其他人都不改变策略的情况下改变自己的策略。其 他人也同时改变策略的情况不在考虑之列。
二是“不会得到好处” 是指任何一个参与人在 单独改变策略之后自己的支付不会增加,这包括两种 情况:或者支付减少,或者支付不变。
乙厂商也分别有两个条件策略和条件策略组合。
2020/4/23
.
9
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
四、纳什均衡
1.博弈均衡的概念 当两个厂商的条件策略组合恰好相同,从而,两
个厂商都不再有单独改变策略的倾向时,整个博弈就 达到了均衡,即博弈均衡。
博弈均衡是博弈各方最终选取的策略组合,是博 弈的最终结果,是博弈的解。
的策略;矩阵中四个单元格里的数字组合分别表示博 弈的四个结果即支付,其中每一个数字组合的第一个 数字是甲厂商得到的支付,第二个数字是乙厂商得到 的支付。
2020/4/23
.
6
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
二、支付矩阵
2.子矩阵 支付矩阵可以一分为二,即拆成两个“小”的子
支付矩阵。其中,一个为甲厂商的支付矩阵,由原矩 阵每一单元格中的第一个数字组成;另一个为乙厂商 的支付矩阵,由原矩阵每一单元格中的第二个数字组 成。
.
13
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
五、寻找纳什均衡的方法——条件策略下划线法
2.条件策略下划线方法的五步法 第一,把整个的支付矩阵分解为甲厂商的支付矩阵和 乙厂商的支付矩阵
2020/4/23
.
14
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
五、寻找纳什均衡的方法——条件策略下划线法
相关文档
最新文档