博弈论培训课件.ppt
合集下载
博弈论非常好的讲解ppt课件

Because We Had a Flat Tire”
“乘客侧前轮”看起来是一个合乎逻辑的选 择。
但真正起作用的是你的朋友是否使用同样的 逻辑,或者认为这一选择同样显然。并且是 否你认为这一选择是否对他同样显然;反之, 是否她认为这一选择对你同样显然。……以 此类推。
也就是说,需要的是对这样的情况下该选什 么的预期的收敛。这一使得参与者能够成功 合作的共同预期的策略被称为焦点。心有灵 犀一点通。
获奖原因:“通过博弈论分析加强了 我们对冲突和合作的理解”所作出 的贡献而获奖。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
1994年诺贝尔经济学奖获得者
美国人约翰-海萨尼(John C. Harsanyi) 和美国人约翰-纳什(John F. Nash Jr.) 以及德国人莱因哈德-泽尔腾(Reinhard Selten)
获奖理由:在非合作博弈的均衡分析理 论方面做出了开创性的贡献,对博弈论 和经济学产生了重大影响 。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
例2:焦点博弈 “We Can’t Take the Exam,
Because We Had a Flat Tire”
ቤተ መጻሕፍቲ ባይዱ
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
“乘客侧前轮”看起来是一个合乎逻辑的选 择。
但真正起作用的是你的朋友是否使用同样的 逻辑,或者认为这一选择同样显然。并且是 否你认为这一选择是否对他同样显然;反之, 是否她认为这一选择对你同样显然。……以 此类推。
也就是说,需要的是对这样的情况下该选什 么的预期的收敛。这一使得参与者能够成功 合作的共同预期的策略被称为焦点。心有灵 犀一点通。
获奖原因:“通过博弈论分析加强了 我们对冲突和合作的理解”所作出 的贡献而获奖。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
1994年诺贝尔经济学奖获得者
美国人约翰-海萨尼(John C. Harsanyi) 和美国人约翰-纳什(John F. Nash Jr.) 以及德国人莱因哈德-泽尔腾(Reinhard Selten)
获奖理由:在非合作博弈的均衡分析理 论方面做出了开创性的贡献,对博弈论 和经济学产生了重大影响 。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
例2:焦点博弈 “We Can’t Take the Exam,
Because We Had a Flat Tire”
ቤተ መጻሕፍቲ ባይዱ
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
博弈论PPT课件

有i si 0, i si 1 si Si
这就是混合策略。
混合策略的纳什均衡定义
如果对于博弈中所有的游戏者i,对于所有的 σi∈Mi,都有ui﹙σ*﹚≥ui﹙σi,σ-i*﹚,则称 σ*就是一个混合策略的纳什均。
如何求混合策略的纳什均衡
猜硬币的博弈中 解:设猜方猜正方的概率为p,猜反方的概率则为1-
无名氏(大众)定理
无名氏定理:在无穷次重复的由n个游戏者参与的 博弈里,如果在每一次重复中博弈的行动集是有限 的,则在满足下列三个条件时,在任何有限次重复 中所观察到的任何行动组合都是某个子博弈完美均 衡的惟一结果:
条件1:贴现因子接近于1; 条件2:在每一次重复中,博弈结束的概率或等于0,或 为非常小的一个正值; 条件3:严格占优于一次性博弈中的最小最大收益组合的 那个收益组合集是n维的。
博弈方
博弈方:独立决策、独立承担博弈结果的个人 或组织
博弈规则面前博弈方之间平等,不因博弈方之 间权利、地位的差异而改变
博弈方数量对博弈结果和分析有影响 根据博弈方数量分单人博弈、两人博弈、多人
博弈等。最常见的是两人博弈,单人博弈是退 化的博弈
策略
策略:博弈中各博弈方的选择内容 策略有定性定量、简单复杂之分 不同博弈方之间不仅可选策略不同,而且可
游戏和经济等决策竞争较量的共同特征:规 则、结果、策略选择,策略和利益相互依存, 策略的关键作用
游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊朗、以色列和巴勒斯 坦、中国和日本等等。
博弈的基本要素
博弈的参加者(Player)——博弈方 各博弈方的策略(Strategies)或行动(Actions) 博弈的次序(Order) 博弈方的收益(Payoffs) (或称支付,或得益)
这就是混合策略。
混合策略的纳什均衡定义
如果对于博弈中所有的游戏者i,对于所有的 σi∈Mi,都有ui﹙σ*﹚≥ui﹙σi,σ-i*﹚,则称 σ*就是一个混合策略的纳什均。
如何求混合策略的纳什均衡
猜硬币的博弈中 解:设猜方猜正方的概率为p,猜反方的概率则为1-
无名氏(大众)定理
无名氏定理:在无穷次重复的由n个游戏者参与的 博弈里,如果在每一次重复中博弈的行动集是有限 的,则在满足下列三个条件时,在任何有限次重复 中所观察到的任何行动组合都是某个子博弈完美均 衡的惟一结果:
条件1:贴现因子接近于1; 条件2:在每一次重复中,博弈结束的概率或等于0,或 为非常小的一个正值; 条件3:严格占优于一次性博弈中的最小最大收益组合的 那个收益组合集是n维的。
博弈方
博弈方:独立决策、独立承担博弈结果的个人 或组织
博弈规则面前博弈方之间平等,不因博弈方之 间权利、地位的差异而改变
博弈方数量对博弈结果和分析有影响 根据博弈方数量分单人博弈、两人博弈、多人
博弈等。最常见的是两人博弈,单人博弈是退 化的博弈
策略
策略:博弈中各博弈方的选择内容 策略有定性定量、简单复杂之分 不同博弈方之间不仅可选策略不同,而且可
游戏和经济等决策竞争较量的共同特征:规 则、结果、策略选择,策略和利益相互依存, 策略的关键作用
游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊朗、以色列和巴勒斯 坦、中国和日本等等。
博弈的基本要素
博弈的参加者(Player)——博弈方 各博弈方的策略(Strategies)或行动(Actions) 博弈的次序(Order) 博弈方的收益(Payoffs) (或称支付,或得益)
第六讲博弈论课件

❖ 对于矩阵博弈,其主要的任务就是求出矩阵 博弈的Nash均衡解-----双方尽可能满意的结 果。
例12.1 智猪博弈模型
❖ 每次踩出6个单位的食物,按者支付2个单位 成本,小踩,(1,5)大踩(4,2)同时 (2,4)
大猪
小猪
踩
踩 2,4 等待 4,2
等待
1,5 0,0
小猪的收入矩阵
A
2, 4,
❖ 20世纪50年代以来,纳什、泽尔腾、海萨尼 等人使博弈论最终成熟并进入实用。
三位大师主要的贡献
❖ 1950年和1951年纳什的两篇关于非合作博弈 论的重要论文,彻底改变了人们对竞争和市 场的看法。他证明了非合作博弈及其均衡解, 并证明了均衡解的存在性,即著名的纳什均 衡。从而揭示了博弈均衡与经济均衡的内在 联系。因为在现实世界中,非合作博弈要比 合作博弈普遍得多。
囚徒困境的意义
❖ “囚徒的两难选择”有着广泛而深刻的意义。 个人理性与集体理性的冲突,各人追求利己 行为而导致的最终结局是一个“纳什均衡”, 也是对所有人都不利的结局。
❖ 他们两人都是在坦白与抵赖策略上首先想到 自己,这样他们必然要服长的刑期。只有当 他们都首先替对方着想时,或者相互合谋(串 供)时,才可以得到最短时间的监禁的结果。
顺序和信息
❖ 博弈论非常强调时间和信息的重要性,认为 时间和信息是影响博弈均衡的主要因素。
❖ 在博弈过程中,参与者之间的信息传递决定 了其行动空间和最优战略的选择;
❖ 同时,博弈过程中始终存在一个先后问题 Sequence order,参与人的行动次序对博弈 最后的均衡有直接的影响。
分类
❖ 博弈的划分可以从参与人行动的次序和参与 人对其它参与人的特征、战略空间和支付的 知识、信息,是否了解两个角度进行。
例12.1 智猪博弈模型
❖ 每次踩出6个单位的食物,按者支付2个单位 成本,小踩,(1,5)大踩(4,2)同时 (2,4)
大猪
小猪
踩
踩 2,4 等待 4,2
等待
1,5 0,0
小猪的收入矩阵
A
2, 4,
❖ 20世纪50年代以来,纳什、泽尔腾、海萨尼 等人使博弈论最终成熟并进入实用。
三位大师主要的贡献
❖ 1950年和1951年纳什的两篇关于非合作博弈 论的重要论文,彻底改变了人们对竞争和市 场的看法。他证明了非合作博弈及其均衡解, 并证明了均衡解的存在性,即著名的纳什均 衡。从而揭示了博弈均衡与经济均衡的内在 联系。因为在现实世界中,非合作博弈要比 合作博弈普遍得多。
囚徒困境的意义
❖ “囚徒的两难选择”有着广泛而深刻的意义。 个人理性与集体理性的冲突,各人追求利己 行为而导致的最终结局是一个“纳什均衡”, 也是对所有人都不利的结局。
❖ 他们两人都是在坦白与抵赖策略上首先想到 自己,这样他们必然要服长的刑期。只有当 他们都首先替对方着想时,或者相互合谋(串 供)时,才可以得到最短时间的监禁的结果。
顺序和信息
❖ 博弈论非常强调时间和信息的重要性,认为 时间和信息是影响博弈均衡的主要因素。
❖ 在博弈过程中,参与者之间的信息传递决定 了其行动空间和最优战略的选择;
❖ 同时,博弈过程中始终存在一个先后问题 Sequence order,参与人的行动次序对博弈 最后的均衡有直接的影响。
分类
❖ 博弈的划分可以从参与人行动的次序和参与 人对其它参与人的特征、战略空间和支付的 知识、信息,是否了解两个角度进行。
博弈论完整版PPT课件

R3 3, 2 0, 4 4, 3 50, 1 会将C4从C的战略空间中剔除, 所以 R4 2, 93 0, 92 0, 91 100, 90 R不会选择R4;
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。
《博弈论》课程ppt课件

10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。
博弈论PPT课件

第1个数字表示企业1 的收入, 第2个数字表示企业2的收入。
13
7.2.2合作博弈:建立卡特尔 • 合作是避免囚徒困境的有效方法 • 合作博弈与欺骗者
14
7.2.3重复性博弈:怎样对付欺骗者 • 重复性博弈:反复进行多次博弈 • 重复性博弈的最优策略——针锋相对:模仿上一
次博弈中对手的行为 • 针锋相对是最优策略 • 好的博弈四原则 ☞简单,不易误解 ☞针锋相对不是先搞欺骗 ☞不允许欺骗行为,但要给欺骗行为以处罚 ☞针锋相对是宽大的,允许对方恢复合作
可以采取降价策略,使新的进入者不敢贸然进入 • 投资于剩余生产能力的决策:投资引起的当前的
利润损失低于新企业进入而引起的将来的利润损 失
29
7.3.4先发制人:使市场饱和
• 在各地布点,使新的进入者无法利用高运 输成本的机会
N1 E N2
E1
E2
E4
E3
30
7.3.5 市场渗透定价 •通过制定低价抢占市场份额的策略。 •市场渗透定价是网络外部性明显的产业常用策 略。
的违约问题 • 先合作,第N次违约的收入:
30+30+30+30+······+40
• 现实:不知道N是多少→选择合作策略 • 如何在员工工作的最后一天激励员工? • 有结止日期的有限重复博弈等于一次性博弈
17
•市场中的重复博弈的作用 •市场中的一次性博弈使得生产劣质产品的企业有 利 •市场中的重复博弈促使生产者生产高质量产品
15
重复性博弈下的行为选择
• 合作收入:30+30+30+30+······
• 不合作收入:40+20+20+20 +······
博弈论与市场运作培训ppt

最大化共同利益。
合作博弈
非合作博弈
动态博弈
研究在无约束条件下,参与者如何通过策略选择实现自身利益最大化。
研究参与者之间的行动和反应的顺序和相互依赖关系。
03
02
01
在博弈论中,策略是指参与者为达到预期目标而采取的行动方案。
策略
均衡是指所有参与者最优策略的组合,即在没有外部干扰的情况下,所有参与者都不愿意单方面改变自己的策略。
在全球化和互联网的背景下,博弈论在市场运作中的应用越来越广泛,对于企业来说,掌握博弈论的原理和方法是必不可少的。
博弈论还可以用于解决市场中的信息不对称问题,通过信号传递和甄别机制,降低交易成本,提高市场效率。
在竞争激烈的市场环境中,博弈论可以帮助企业识别竞争对手的弱点,制定有针对性的营销和定价策略,从而获得竞争优势。
完全竞争市场
垄断竞争市场
寡头市场
完全垄断市场
01
02
03
04
市场中存在大量的小规模生产者,产品同质,价格由市场决定。
市场中存在一定数量的生产者,产品具有一定差异,价格由生产者与消费者协商决定。
市场中少数几家大型生产者占据主导地位,价格和产量由寡头之间的博弈决定。
市场中只有一个生产者,产品无替代品,价格和产量由生产者自行决定。
随着技术的发展和市场环境的变化,博弈论的研究将更加注重动态性和复杂性。例如,研究市场参与者之间的即时互动和演化过程,以及如何利用大数据和人工智能技术进行更精确的预测和决策。
THANK YOU FOR YOUR WATCHING
在合作博弈中,企业可以通过资源共享、技术交流等方式实现互利共赢。例如,某些企业可能通过合作来共同开发新产品、开拓新市场等。合作博弈有助于提高企业的竞争力,促进产业的发展。
合作博弈
非合作博弈
动态博弈
研究在无约束条件下,参与者如何通过策略选择实现自身利益最大化。
研究参与者之间的行动和反应的顺序和相互依赖关系。
03
02
01
在博弈论中,策略是指参与者为达到预期目标而采取的行动方案。
策略
均衡是指所有参与者最优策略的组合,即在没有外部干扰的情况下,所有参与者都不愿意单方面改变自己的策略。
在全球化和互联网的背景下,博弈论在市场运作中的应用越来越广泛,对于企业来说,掌握博弈论的原理和方法是必不可少的。
博弈论还可以用于解决市场中的信息不对称问题,通过信号传递和甄别机制,降低交易成本,提高市场效率。
在竞争激烈的市场环境中,博弈论可以帮助企业识别竞争对手的弱点,制定有针对性的营销和定价策略,从而获得竞争优势。
完全竞争市场
垄断竞争市场
寡头市场
完全垄断市场
01
02
03
04
市场中存在大量的小规模生产者,产品同质,价格由市场决定。
市场中存在一定数量的生产者,产品具有一定差异,价格由生产者与消费者协商决定。
市场中少数几家大型生产者占据主导地位,价格和产量由寡头之间的博弈决定。
市场中只有一个生产者,产品无替代品,价格和产量由生产者自行决定。
随着技术的发展和市场环境的变化,博弈论的研究将更加注重动态性和复杂性。例如,研究市场参与者之间的即时互动和演化过程,以及如何利用大数据和人工智能技术进行更精确的预测和决策。
THANK YOU FOR YOUR WATCHING
在合作博弈中,企业可以通过资源共享、技术交流等方式实现互利共赢。例如,某些企业可能通过合作来共同开发新产品、开拓新市场等。合作博弈有助于提高企业的竞争力,促进产业的发展。
博弈论课件

博弈论强调参与者之间的互动关系,通过数学模型和理论分析来研究 策略选择和均衡结果。
博弈论的发展历程
博弈论的起源可以追溯到20世纪初,当时数学家和经 济学家开始研究游戏中的策略和均衡。
1944年,冯·诺依曼和摩根斯坦合著的《博弈论与经济 行为》标志着博弈论的诞生。
随后,纳什、泽尔腾和哈萨尼等学者进一步发展了博弈 论,形成了现代博弈论的基础。
商业竞争与合作
商业竞争
博弈论可以用于分析商业竞争中的策略和行为,例如价格战、广告战等。通过 博弈论,企业可以更好地理解竞争对手的策略,制定出更有效的竞争策略。
商业合作
博弈论也可以用于分析商业合作中的策略和行为,例如供应链管理、合资企业 等。通过博弈论,企业可以更好地理解合作伙伴的需求和期望,制定出更有效 的合作策略。
贝叶斯纳什均衡
在不完全信息博弈中,如果所有参与 者都根据自己掌握的信息选择最优策 略,则所有参与者都能获得最大收益 。
静态博弈与动态博弈
01
静态博弈
02
动态博弈
所有参与者在同一时间点选择策略并获得收益。
参与者的选择有先后顺序,后选择的参与者可以观察到先选择的参与 者的策略和收益。
03
纳什均衡
纳什均衡的定义
博弈优化方法
线性规划
线性规划是一种数学优化方法, 用于找到在满足一组约束条件下 最大化或最小化目标函数的最优
解。
非线性规划
非线性规划是数学优化的一种方 法,用于找到一组变量的最优值 ,使得一个或多个目标函数达到
最优。
动态规划
动态规划是一种通过将问题分解 为相互重叠的子问题来解决问题 的方法,每个子问题的解被保存
博弈论课件
汇报人:
汇报时间:202X-01-04
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品
默许 900,1100
进入
垄断者 (2)
商战 -200,600
潜在进入者
进入成本200万元
(1)
不进入
0,3000
图6.2 阴止市场进入博弈的扩展形式
这里出现的结局只有三种
精品
二、承诺与可信性
所谓“承诺”是指对局者在不实行这种威胁会遭受更大损失的时候,采取的 某种行动,这种行动使其威胁成为一种令人可信的威胁。
一、“保证最低价格”的策略 “保证最低价格”策略是顾客在本商店购买产品在规定时间内,如果发 现其他任何商店以更低的价格出售同样的商品,本店将退还差价并给予 顾客一定的补偿。保证最低价格条款使消费者至少在规定的时间内不会 因为商品降价而后悔。它无疑是厂商之间竞争的一种手段。
保证最低价格条款是一种承诺,由于法律的限制,它是绝对可信的。
潜在进入者
进入 不进入
垄断者
商战
默许
-200,600
900,300
0,2 200
0,2 200
精品
默许 900,300
潜在进入者 (2)
进入 不进入
垄断者 (3) 0,2200
商战 -200,600
承诺 垄断者
(0)
无承诺
潜在进入者 (1)
进入 900,1100 不进入 0,3000
图6. 3 承诺对精阻品止市场进入的有效性
第六章 博 弈 论
● 博弈论的基本问题 ● 简单博弈与博弈均衡 ● 重复博弈与序列博弈 ● 威胁与承诺 ● 几种相关的策略
精品
第一节、博弈论的基本问题
一、博弈论的演化历程 最早的对策论思想产生于中国春秋时期,孙
武的《孙子兵法》 现代经济博弈论是在20世纪50年代由美国著
名数学家冯·诺依曼(John Neumann)的经 济学家奥·摩根斯坦(Oscar Morgensten)引 入经济学的
精品
第一节 简单博弈与博弈均衡
一、囚犯的困境
那库尔斯
斯卡尔菲丝
坦白
不坦白
坦白
-5,-5
-1,-8
不坦白
-8,-1
精品
-2,-2
二、上策与上策均衡
所谓上策,是指这样一种策略,即不管对手采取什么策略,这种策略都是最优的。 而当对局者选择的都是上策的时候,这种均衡叫做上策均衡 所谓均衡是指一种稳定的结局,当这种结局出现的时候,所有的对局者都不想 再改变他们所选择的策略。 上策均衡与前面的均衡的区别: 第一,完全竞争、垄断竞争等市场结构中最终实现的均衡状态都是在假 定厂商是追求最大利润的,而且厂商在均衡状态也实现了最大利润 第二,在上述几种竞争模式中,可供厂商选择的竞争策略也相对较少。 上策均衡是博弈均衡的一种特殊状态。
精品
二、序列博弈
序列博弈是指对局者选择策略有时间先后的顺序,因此,某些对局者可能 率先采取行动,它是动态博弈的一种表现形式。 在序列博弈中,先行者可能占据一定的有利地位,我们把它叫做先行者优势市场进入博弈来自厂商A进入 不进入
厂商B
进入
不进入
-20,-20
50,0
0,50
0,0
精品
厂商A (1)
进入
精品
三、纳什均衡 纳什均衡是指在对手策略既定的情况下,各自对局者所选择的策略都是最好的。
1.上策均衡与纳什均衡的区别: ⑴ 上策均衡是指不管你选择什么策略,我所选择的是最好的;不管我 选择什么策略,你所选择的是最好的。 ⑵ 纳什均衡是指给定你的策略,我所选择的是最好的;给定我的策 略,你所选择的是最好的。 ⑶ 上策均衡是纳什均衡的一种特殊情况,但纳什均衡却不一定是上策 均衡。
精品
二、研究与开发(R&D)策略
与承诺相比,空投威胁无法有效阻止市场进入的主要原因是,它是不 需要任何成本的。
垄断者的商战与垄断者的生产成本有关,商战的形式通常是低价竞争。
潜在进入者
垄断者
商战
默许
进入 不进入
-200,600 0,2 200
900,300 0,2 200
精品
实施承诺后的阻止市场进入博弈
实施承诺后的阻止市场进入博弈
精品
二、博弈的基本要素
一般的博弈问题由三个要素所构成:即参与 者、策略集合和收益函数。所有的博弈问题 都会遇到这三个要素。
(一)参与者 (二)策略集合 (三)收益函数
精品
三、博弈类型
(一)双人博弈与多人博弈 (二)合作博弈与非合作博弈 (三)常和博弈与变和博弈 (四)静态博弈与动态博弈 (五)完全信息博弈与不完全信息博弈
精品
2.纳什均衡的意义 纳什均衡是指在对手策略既定的情况下,各自对局者所选择的策略都是最好的。 合作是有利的“利己策略”。但它必须符合以下黄金律:按照你愿意别人对你 的方式来对别人,但只有他们也按同样方式行事才行。也就是中国人说的“己 所不欲勿施于人”。但前提是人所不欲勿施于我。 其次,“纳什均衡”是一种非合作博弈均衡,在现实中非合作的情况要比 合作情况普遍。
承诺能够阻止市场进入的关键在于其可信性,但承诺同时也给厂 商自身的行为带来一定的限制。这种通过限制自己的行为来获得 竞争优势的做法被称为“策略性行动”。策略性行动就是某人通 过 影响其他人对自己的行为的预期,来促使其他人选择对自己有利 的策略,是某人通过限制自己的行为来限制其对局者的选择。
精品
第四节 几种相关的策略
所以“纳什均衡”是对冯·诺依曼和摩根斯特恩的合作博弈理论的重大发 展,甚至可以说是一场革命。
精品
第二节 重复博弈与序列博弈
一、重复博弈
重复博弈的策略原则:“以牙还牙”,所谓“善有善报,恶有恶报”,而且“无论 善恶,立即得报”,这种策略既是毫不留情的,又是毫不记恨的。 重复博弈策略能够获胜的条件:博弈是无限次重复的。即对局者都预期这一博弈将 永远持续下去而不会停止。 对于有限次博弈来说,在理论上有限次的博弈与一次性博弈在本质上没有什么不同, 它们都将得到同样的结果。实际上,只要竞争的时期足够长,竞争的双方都将预期 在未来还要进行很多次对局,那么,竞争的格局就可能近似于无限次重复博弈,厂 商就可能选择“以牙还牙”的策略,并导致相互合作的结局。
厂商B (2)
进入 -20,-20 不进入 50,0
不进入
厂商B (3)
进入 0,50 不进入 0,0
图6.1 市场进入博弈的扩展形式
精品
第三节 威胁与承诺
一、阻止市场进入的威胁
阻止市场进入的威胁博弈
潜在进入者
进入 不进入
垄断者
商战
默许
-200,600 0,3 000
900,1 100 0,3 000