成都市初三中考数学模拟试题(1)(含答案)

合集下载

2022年成都市中考数学模拟试题(1)(解析版)

2022年成都市中考数学模拟试题(1)(解析版)

2022年成都市中考数学模拟试题(1)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.﹣2021的倒数是()A.2021 B.C.﹣2021 D.【答案】D【解析】﹣2021的倒数是:﹣.故选:D.2.如图所示的几何体的从左面看到的图形为()A.B.C.D.【答案】D【解析】从这个几何体的左面看,所得到的图形是长方形,能看到的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此,选项D的图形,符合题意,故选:D.3.据统计,某城市去年接待旅游人数约为89 000 000人,89 000 000这个数据用科学记数法表示为()A.8.9×106B.8.9×105C.8.9×107D.8.9×108【答案】C【解析】89 000 000这个数据用科学记数法表示为8.9×107.故选:C.4.在平面直角坐标系中,点A(m﹣1,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2 B.m=﹣2,n=3 C.m=2,n=3 D.m=﹣2,n=2【答案】D【解析】∵点A(m﹣1,2)与点B(3,n)关于y轴对称,∴m﹣1=﹣3,n=2,解得:m=﹣2,故选:D.5.下列运算正确的是()A.a2•a3=a6B.(a﹣b)2=a2﹣b2C.(a2)3=a6D.5a2﹣3a=2a【答案】C【解析】A、a2•a3=a5,故本选项不合题意;B、(a﹣b)2=a2﹣2ab+b2,故本选项不合题意;C、(a2)3=a2×3=a6,故本选项符合题意;D、5a2与﹣3a不是同类项,所以不能合并,故本选项不合题意;故选:C.6.如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,不能保证△ABE和△ADF一定全等的条件是()A.∠BAF=∠DAE B.EC=FC C.AE=AF D.BE=DF【答案】C【解析】A.∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵∠BAF=∠DAE,∴∠BAE=∠CAF,∴△ABE≌△ADF(AAS),故选项A不符合题意;B..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=BD,∵EC=FC,∴BE=DF,∴△ABE≌△ADF(SAS),故选项B不符合题意;C..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵AE=AF,∴△ABE和△ADF只满足两边和一边的对角相等,两个三角形不一定全等,故选项C符合题意;D..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DE,∴△ABE≌△ADF(SAS),故选项D不符合题意.故选:C.7.给出一组数据:3,2,5,3,7,5,3,7,这组数据的中位数是()A.3 B.4 C.5 D.7【答案】B【解析】这组数据按从小到大的顺序排列为:2,3,3,3,5,5,7,7,则中位数为:(3+5)÷2=4.故选:B.8.分式方程=的解是()A.x=9 B.x=7 C.x=5 D.x=﹣1【答案】A【解析】去分母得:2(x﹣2)=x+5,去括号得:2x﹣4=x+5,解得:x=9,经检验x=9是分式方程的解.故选:A.9.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【答案】D【解析】设大马有x匹,小马有y匹,由题意得:,故选:D.10.如图,已知点O是正六边形ABCDEF的中心,扇形AOE的面积是12π,则该正六边形的边长是()A.6 B.C.D.12【答案】A【解析】连接OF,设⊙O的半径为R,∵O是正六边形ABCDEF的中心,∴∠AOF=∠EOF==60°,∴∠AOE=120°,∵OA=OF,∴△OAF是等边三角形,∴AF=OA=R,∵扇形AOE的面积是12π,∴=12π,∴R2=36,∴AF=R=6,∴正六边形的边长是6,故选:A.二.填空题(共4小题,满分16分,每小题4分)11.(4分)分解因式m2﹣4的结果为________.【答案】(m+2)(m﹣2).【解析】m2﹣4=(m+2)(m﹣2).12.(4分)在△ABC中,∠A=45°,AB=,∠ABC=75°.则BC长为________.【答案】4.【解析】过点B作BD⊥AC于点D,如图:∵BD⊥AC,∴∠ADB=∠CDB=90°.在△ABC中,∠A=45°,∠ABC=75°,∴∠C=180°﹣∠A﹣∠ABC=60°,∴∠DBC=30°,∠ABD=∠A=45°,∴AD=BD,BC=2CD,∵AB=,∴AB2=AD2+BD2=2BD2,∴=2BD2,∴BD=2(舍负),设CD=x,则BC=2x,∴+x2=(2x)2,解得:x=2(舍负),∴BC=2x=4.13.(4分)如果抛物线y=ax2﹣3x+1与x轴有交点,那么a的取值范围是________.【答案】a≤且a≠0.【解析】∵抛物线y=ax2﹣3x+1与x轴有交点,∴a≠0,△≥0,∴9﹣4a×1≥0,∴a≤,14.(4分)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若BD=2,则CD的长为________.【答案】.【解析】过点D作DH⊥AB,则DH=DC,由题目作图知,AD是∠CAB的平分线,则CD=DH,∵△ABC为等腰直角三角形,故∠B=45°,则△DHB为等腰直角三角形,故BD=HD=2,则DH=DC=三.解答题(共6小题,满分54分)15.(12分)(1)计算:(﹣3)0+|﹣2|﹣tan60°;(2)解不等式组:.【答案】见解析【解析】(1)原式=1+2﹣=1+2﹣3,=0.(2),由①得x>﹣3,由②得x≤2.故不等式组的解集为﹣3<x≤2.16.(6分)化简:(﹣a+1)÷.【答案】见解析【解析】原式=(﹣)×=×=×=.17.(8分)今年是建党100周年,学校决定开展观看爱国电影、制作手抄报、朗诵经典和唱响红歌四项活动喜迎建党100周年.为了解学生对四种活动的喜爱程度,随机调查了m名学生最喜爱的一项活动(每名学生只能选择一项),并将调查结果绘制成两幅不完整的统计图表.活动学生人数观看电影60制作手抄报36朗诵经典50唱响红歌x合计m请根据统计图表提供的信息,解答下列问题:(1)m=________,n=________,x=________;(2)在扇形统计图中,“朗诵经典”所对应的圆心角度数是________度;(3)若该学校有1000人,请你估计喜欢“制作手抄报”和“唱响红歌”的学生共有________名.【答案】见解析【解析】(1)由题意可得,m=60÷30%=200,n%=50÷200=25%,x=200﹣﹣36﹣50=54,故答案为:200,25,54;(2)扇形统计图中,朗诵经典”所对应的圆心角度数是360°×25%=90°;故答案为:90;(3)由题意可得,全校1000名学生中,喜爱“制作手抄报”的学生有:1000×=180(名),喜爱“唱响红歌”的学生有:1000×=270(名),180+270=450(名),答:估计喜欢“制作手抄报”和“唱响红歌”的学生共有450名.故答案为:450.18.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m (即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB 的高度.(参考数据:tan30°≈0.58,结果保留整数)【答案】见解析【解析】作DG⊥AE于G,则∠BDG=α,则四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×0.58=20.3m,∴BE=20.3+1.6=21.9m.∵斜坡AC的坡比为i AC=1:10,CE=35m,∴EA=35×=3.5,∴AB=BE﹣AE=21.9﹣3.5≈18m.答:旗杆AB的高度为18m.19.如图,在平面直角坐标系xOy中,函数y=(x<0)的图象经过点(﹣6,1),直线y=mx+m 与y轴交于点(0,﹣2).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx+m于点A,交函数y=(x<0)的图象于点B.①当n=﹣1时,判断线段PA与PB的数量关系,并说明理由;②若PB≥2PA,结合函数的图象,直接写出n的取值范围.【答案】见解析【解析】(1)∵函数y=(x<0)图象经过点(﹣6,1),∴k=﹣6×1=﹣6,∵直线y=mx+m与y轴交于点(0,﹣2),∴m=﹣2;(2)①PB=2PA,理由如下:当n=﹣1时,点P坐标为(﹣1,2),∴点A坐标为(﹣2,2),点B坐标为(﹣3,2),∴PA=1,PB=2,∴PB=2PA;②∵点P坐标为(n,﹣2n),PA平行于x轴,把y=﹣2n分别代入y=(x<0)和y=﹣2x﹣2得,点B坐标为(,﹣2n),点A坐标为(n﹣1,﹣2n),∴PA=n﹣(n﹣1)=1,PB=|n﹣|,当PB=2PA时,则|n﹣|=2,如图1,当n﹣=2,解得n1=﹣1,n2=3(不合题意,舍去),如图2,当﹣n=2解得n1=﹣3,n2=1(不合题意,舍去),∴PB≥2PA时,n≤﹣3或﹣1≤n<0.20.如图所示,过圆w外一点K做圆w的两条切线,其切点分别为L和N,在KN的延长线上取一点M,△KLM的外接圆和圆w相交于点P(异于点L),QN⊥LM于Q,LM与圆w相交于点R,求证:∠MPQ=2∠MPR=2∠KML.【答案】见解析【解析】证明:延长KL至A,延长PR交KM于T,连接PL、RN、LN、QT,设△KLM外接圆为⊙O,如图:∵四边形KLPM是⊙O的内接四边形,∴∠LPM=180°﹣∠K,同理∠LPR=180°﹣∠LNR,∴∠MPT=∠LPM﹣∠LPR=(180°﹣∠K)﹣(180°﹣∠LNR)=∠LNR﹣∠K,∵KA是⊙W的切线,∴∠LNR=∠ALM,∴∠MPT=∠ALM﹣∠K=∠LMK,即∠MPT=∠RMT,∵∠PTM=∠MTR,∴△PTM∽△MTR,∴=,即MT2=PT•RT,∵TN是⊙W的切线,∴NT2=PT•RT,∴MT=NT,∵NQ⊥LM,∴QT是Rt△NQM斜边MN的中线,∴QT=MT=NT,∴=,∠TQM=∠TMQ,∵∠QTR=∠PTQ,∴△QTR∽△PTQ,∴∠QPT=∠TQR,∴∠QPT=∠TQM=∠TMQ=∠MPT,∴∠MPQ=2∠MPR=2∠KML.B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)已知一次函数y=x+3k﹣2的图象不经过第二象限,则k的取值范围是________.【答案】k≤.【解析】一次函数y=x+3k﹣2的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,3k﹣2=0,解得k=,经过一三四象限时,3k﹣2<0.解得k<故k≤.22.(4分)设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为1000.【答案】1000.【解析】∵m、n是方程x2+x﹣1001=0的两个实数根,∴m+n=﹣1,并且m2+m﹣1001=0,∴m2+m=1001,∴m2+2m+n=m2+m+m+n=1001﹣1=1000.23.(4分)在平面直角坐标系xOy中,⊙O的半径为13,直线y=kx﹣3k+4与⊙O交于B,C两点,则弦BC长的最小值等于________.【答案】24.【解析】∵y=kx﹣3k+4,∴(x﹣3)k=y﹣4,∵k为无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线y=kx﹣3k+4过定点(3,4),如图,P(3,4),连接OB,如图,当BC⊥OP时,弦BC最短,此时BP=PC,∵OP==5,∴BP==12,∴BC=2BP=24,即弦BC长的最小值等于24.24.(4分)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=________cm.【答案】.【解析】如图,分别过G、E作GM⊥HE于M,EN⊥GH于N,延长GF、延长HE至点P,则GM=AB=2cm,由题意,∠AEF=α,由折叠性质可得∠PEF=∠AEF=α,∵四边形ABCD为矩形,∴GF∥HE,∴∠GFE=∠PEF=α,∴GE=GF.同理可得:GE=HE.∴HE=GF,∴四边形GHEF为平行四边形.∴∠GFE=∠GHE=α,∵EN⊥GH于N,HE=GE,∴由等腰三角形三线合一性质可得:HN=GN=,∵sin∠GHE=sinα==,∴HG=,在Rt△HEN中,cos∠GHE=cosα=,∴HE====.25.(4分)如图电路中,随机闭合开关S1,S2,S3,S4中的两个,能够点亮灯泡的概率为.【答案】.【解析】用列表法表示所有可能出现的情况如下:共有12种可能出现的情况,其中能够点亮灯泡的有8种,∴P==,(点亮灯泡)二.解答题(共3小题,满分30分)26.(8分)某电信公司推出20M宽带业务,第一天办理“包一年”业务的有10个顾客,“包两年”的有5个顾客,共收费20500元;第二天办理“包一年”业务的有15个顾客,“包两年”的有10个顾客,共收费35500元.(1)请求出办理“包一年”、“包两年”这两种业务分别应交的费用;(2)电信公司平时的手机收费标准是:主叫300分钟以内.每分钟0.2元;超过300分钟.超过的时间每分钟0.1元.为业务发展需要,电信公司推出20M宽带和手机的捆绑礼包业务,内容如下:使用时间礼包内容手机主叫超过300分钟费用20M宽带免费手机每月最低消费99元(每月免费0.2元/分钟24个月主叫时长300分钟)小方要在该公司办理20M宽带两年的业务,假设他使用该公司的手机,每月主叫时间一样,且手机在使用过程中再无其他费用产生,请你说明选择哪种方案更合算.【答案】见解析【解析】(1)设办理“包一年”业务应交x元,办理“包两年”业务应交y元,依题意,得:,解得:.答:办理“包一年”业务应交1100元,办理“包两年”业务应交1900元.(2)设小方每月主叫时间为m分钟(m为整数,不为整数的按照进一法取整).①当0<m≤300时,选择平时的手机收费标准2年所需费用为1900+12×2×0.2m=(4.8m+1900)元,选择宽带和手机的捆绑礼包业务2年所需费用为12×2×99=2376元.令4.8m+1900<2376,解得:m<99,令4.8m+1900=2376,解得:m=99,令4.8m+1900>2376,解得:m>99.∵m为正整数(利用进一法取整),∴当m≤99时,选择平时的手机收费标准划算;当99<m≤300时,选择宽带和手机的捆绑礼包业务划算;②当m>300时,选择平时的手机收费标准2年所需费用为1900+12×2×[300×0.2+0.1(x﹣300)]=(2.4x+2620)元,选择宽带和手机的捆绑礼包业务2年所需费用为12×2×[99+0.2(x﹣300)]=(4.8x+936)元.令2.4x+2620<4.8x+936,解得:x>701;令2.4x+2620=4.8x+936,解得:x=701;令2.4x+2620>4.8x+936,解得:x<701.∵m为正整数(利用进一法取整),∴当300<m≤701时,选择宽带和手机的捆绑礼包业务划算;当m>701时,选择平时的手机收费标准划算.综上所述:当m≤99或m>701时,选择平时的手机收费标准划算;当99<m≤701时,选择宽带和手机的捆绑礼包业务划算.27.在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH=BF;(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP+MP 最小时,直接写出△DPN的面积.【答案】见解析【解析】(1)①过D作DH⊥GC于H,如图:∵线段EF绕点E逆时针旋转60°得到线段EG,点E与点B重合,且GF的延长线过点C,∴BG=BF,∠FBG=60°,∴△BGF是等边三角形,∴∠BFG=∠DFC=60°,BF=GF,∵等边△ABC,AB=6,BD⊥AC,∴∠DCF=180°﹣∠BDC﹣∠DFC=30°,∠DBC=∠ABC=30°,CD=AC=AB=3,∴∠BCG=∠ACB﹣∠DCF=30°,∴∠BCG=∠DBC,∴BF=CF,∴GF=CF,Rt△FDC中,CF===2,∴GF=2,Rt△CDH中,DH=CD•sin30°=,CH=CD•cos30°=,∴FH=CF﹣CH=,∴GH=GF+FH=,Rt△GHD中,DG==;②过E作EP⊥AB交BD于P,过H作MH⊥BC交BD于M,连接PG,作BP中点N,连接EN,如图:∵EF绕点E逆时针旋转60°得到线段EG,∴△EGF是等边三角形,∴∠EFG=∠EGF=∠GEF=60°,∠EFH=120°,EF=GF,∵△ABC是等边三角形,∴∠ABC=60°,∴∠ABC+∠EFH=180°,∴B、E、F、H共圆,∴∠FBH=∠FEH,而△ABC是等边三角形,BD⊥AC,∴∠DBC=∠ABD=30°,即∠FBH=30°,∴∠FEH=30°,∴∠FHE=180°﹣∠EFH﹣∠FEH=30°,∴EF=HF=GF①,∵EP⊥AB,∠ABD=30°,∴∠EPB=60°,∠EPF=120°,∴∠EPF+∠EGF=180°,∴E、P、F、G共圆,∴∠GPF=∠GEF=60°,∵MH⊥BC,∠DBC=30°,∴∠BMH=60°,∴∠BMH=∠GPF②,而∠GFP=∠HFM③,由①②③得△GFP≌△HFM(AAS),∴PF=FM,∵EP⊥AB,BP中点N,∠ABD=30°,∴EP=BP=BN=NP,∴PF+NP=FM+BN,∴NF=BM,Rt△MHB中,MH=BM,∴NF=MH,∴NF+BN=MH+EP,即BF=MH+EP,Rt△BEP中,EP=BE•tan30°=BE,Rt△MHB中,MH=BH•tan30°=BH,∴BF=BE+BH,∴BE+BH=BF;(2)以M为顶点,MP为一边,作∠PML=30°,ML交BD于G,过P作PH⊥ML于H,设MP 交BD于K,如图:Rt△PMH中,HP=MP,∴NP+MP最小即是NP+HP最小,此时N、P、H共线,∵将线段EF绕点E顺时针旋转60°得到线段EP,∴F在射线QF上运动,则P在射线MP上运动,根据“瓜豆原理”,F为主动点,P是从动点,E 为定点,∠FEP=60°,则F、P轨迹的夹角∠QKP=∠FEP=60°,∴∠BKM=60°,∵∠ABD=30°,∴∠BMK=90°,∵∠PML=30°,∴∠BML=60°,∴∠BML=∠A,∴ML∥AC,∴∠HNA=180°﹣∠PHM=90°,而BD⊥AC,∴∠BDC=∠HNA=∠PHM=90°,∴四边形GHND是矩形,∴DN=GH,∵等边△ABC中,AB=6,BD⊥AC,∴CD=3,又DN=2NC,∴DN=GH=2,∵等边△ABC中,AB=6,点E为AB中点时,点M为BE中点,∴BM=,BD=AB•sin A=6×sin60°=3,Rt△BGM中,MG=BM=,BG=BM•cos30°=,∴MH=MG+GH=,GD=BD﹣BG=,Rt△MHP中,HP=MH•tan30°=,∴PN=HN﹣HP=GD﹣HP=,∴S△DPN=PN•DN=.28.(12分)定义:在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴的交点坐标为(0,c),那么我们把经过点(0,c)且平行于x轴的直线称为这条抛物线的极限分割线.[特例感知](1)抛物线y=x2+2x+1的极限分割线与这条抛物线的交点坐标为________.[研究深入](2)经过点A(﹣1,0)和B(x,0)(x>﹣1)的抛物线y=﹣x2+mx+n与y轴交于点C,它的极限分割线与该抛物线的另一个交点为D,请用含m的代数式表示点D的坐标.[深入拓展](3)在(2)的条件下,设抛物线y=﹣x2+mx+n的顶点为P,直线EF垂直平分OC,垂足为E,交该抛物线的对称轴于点F.①当∠CDF=45°时,求点P的坐标.②若直线EF与直线MN关于极限分割线对称,是否存在使点P到直线MN的距离与点B到直线EF的距离相等的m的值?若存在,直接写出m的值;若不存在,请说明理由.【答案】见解析【解析】(1)∵抛物线y=x2+2x+1的对称轴为直线x=﹣1,极限分割线为y=1,∴极限分割线与这条抛物线的一个交点坐标为(0,1),则另一个交点坐标为(﹣2,1).故答案为:(0,1)和(﹣2,1).(2)∵抛物线经过点A(﹣1,0),∴﹣×(﹣1)2+m×(﹣1)+n=0,∴n=m+.∵y=﹣x2+mx+n=﹣(x﹣m)2+m2+n=﹣(x﹣m)2+m2+m+,∴对称轴为直线x=m,∴点D的坐标为(2m,m+).(3)①设CD与对称轴交于点G,若∠CDF=45°,则DG=GF.∴|m|=|m+|,∴m=或m=﹣.∴当m=时,y=×++=,点P的坐标为(,);当m=﹣时,y=×+(﹣)+=,点P的坐标为(﹣,).∴点P的坐标为(,)或(﹣,).②存在,m的值为0或1+或1﹣.如图,设MN与对称轴的交点为H.由(2)知,n=m+,y=﹣(x﹣m)2+m2+m+,∴P(m,m2+m+),∴抛物线y=﹣x2+mx+n的极限分割线CD:y=m+,∵直线EF垂直平分OC,∴直线EF:y=m+.∴点B到直线EF的距离为|m+|.∵直线EF与直线MN关于极限分割线CD对称,∴直线MN:y=m++m+=m+.∵P(m,m2+m+),∴点P到直线MN的距离为|m2+m+﹣(m+)|=|m2﹣m﹣|,∵点P到直线MN的距离与点B到直线EF的距离相等,∴|m2﹣m﹣|=|m+|,∴m=0或m=1+或m=1﹣.。

四川成都19-20学年九年级中考模拟试题一--数学(word解析版)

四川成都19-20学年九年级中考模拟试题一--数学(word解析版)

四川成都19-20学年九年级中考模拟试题一--数学(word解析版)班级姓名学号A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小題,每小题3分,共30分,每小题均有四个选项)1. 5的相反数是()A.-5B. 5C.15-D.15【答案】A【解析】本题考查了相反数的定义,5相反数为-5 ,故选A.2.如图是一个L形状的物体,则它的俯视图是()【答案】B【解析】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.故选:B.3.我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为( )A.37×104B.3.7×105C.0.37×106D.3.7×106【答案】B【解析】370000=3.7×105,故选B.4. 在平面直角坐标系中,点P(-3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】m2是非负数,m2+1一定是正数,所以点P(-3,m2+1)在第二象限。

关于原点对称的两个点横、纵坐标都互为相反数。

由此得点P关于原点的对称点在第四象限。

5.如图,∠1+∠2=180°,∠3=104°,则∠4的度数是(A) 74°(B) 76°(C) 84°(D) 86°【答案】B【解析】由于∠1+∠2=180°可知两直线平行,所以∠3的对顶角与∠4互补,因为∠3=104°,所以,∠4的度数是76°,所以选B6.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2 B.1 C.﹣1 D.0【答案】A【解析】解:根据题意,得:2m﹣1=m+1,解得m=2.故选:A.【知识点】同类项7.计算11aa a-+,正确的结果是()A.1 B.12C.a D.1a【答案】A.【解析】∵11aa a-+=11aa-+=aa=1,∴选A.8.某射击运动员在训练中射击了10次,成绩如图所示:第6题图下列结论不正确...的是A.众数是8B.中位数是8C.平均数是8.2D.方差是1.2【答案】D【解析】10次设计成绩依次是:9,6,8,8,7,10,7,9,8,10,其中8出现次数最多,故众数是8,A正确;按顺序排列,为6,7,7,8,8,8,9,9,10,10,中间两个数是8和8 ,故中位数为8,B正确;平均数为8.2,C正确;方差为1.56,D错误,故选D.9.如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°【答案】C.【解析】∵正五边形ABCDE内接于⊙O,∴∠ABC=∠C=(52)1805-⨯︒=108°,CB=CD.∴∠CBD=∠CDB=1801082︒-︒=36°.∴∠ABD=∠ABC-∠DBC=108°-72°=36°.故选C.10.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y C.y=x2D.y=﹣x2【答案】D【解析】解:∵A(﹣1,m),B(1,m),∴点A与点B关于y轴对称;OECB第7题图由于y =x ,y的图象关于原点对称,因此选项A 、B 错误;∵n >0,∴m ﹣n <m ; 由B (1,m ),C (2,m ﹣n )可知,在对称轴的右侧,y 随x 的增大而减小,对于二次函数只有a <0时,在对称轴的右侧,y 随x 的增大而减小,∴D 选项正确故选:D .第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11. ﹣2的绝对值是 ;的倒数是 .【答案】2,2【解析】解:﹣2的相反数是 2;的倒数是 2.12.正九边形的一个内角的度数是 .A .108︒B .120︒C .135︒D .140︒ 【答案】D【解析】解:该正九边形内角和180(92)1260=︒⨯-=︒,则每个内角的度数12601409︒==︒. 故选:D .13.已知一次函数y kx b =+的图象经过点11(,)A x y 、22(,)B x y ,且211x x =+时,212y y =-,则k 等于 .A .1B .2C .1-D .2-【答案】D【解析】因为一次函数y kx b =+的图象经过点11(,)A x y 、22(,)B x y ,所以11y kx b =+,22y kx b =+,因为当211x x =+时,212y y =-,所以当211x x =+时,212kx b kx b +=+-,即11(1)2k x b kx b ++=+-,解得2k =-.14. 把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_______.图3图2图115【答案】12【解析】设图1中小直角三角形的两直角边长分别为a ,b (a>b );则由图2和图3列得方程组51a b a b +=⎧⎨-=⎩,由加减消元法得32a b =⎧⎨=⎩,∴菱形的面积1144321222S ab =⨯=⨯⨯⨯=. 故填12.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:40(1)|13|6tan 30(327)---+︒--.【思路分析】直接利用特殊角的三角函数值以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解题过程】解:原式31(31)61=--+⨯- 131231=-++- 13=+.(2)解不等式组: 12,123.2x x x +>⎧⎪⎨+⎪⎩… 【思路分析】分别求出各不等式的解集,再求出其公共解集即可.【解题过程】解:121232x x x +>⎧⎪⎨+⎪⎩①②… 解不等式①,得1x >,解不等式②,得2x -…,∴不等式组的解集是1x >.16.(6分)先化简,再求值:(1),然后从﹣2≤a <2中选出一个合适的整数作为a 的值代入求值.【思路分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2≤a <2中选出一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解题过程】解:(1),当a =﹣2时,原式1.17.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.第17题图(1)参加此次诗词大会预选赛的同学共有 ▲ 人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ▲ ;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【思路分析】(1)根据样本容量=鼓励奖人数÷鼓励奖百分率为求样本容量;(2)根据三等奖所对应的圆心角=样本数10÷样本容量×360°求圆心角;(3)先求二等奖人数,再得一等奖人数,最后画出条形图;(4)求出七年级、八年级、九年级的人数,画出树状图,再根据树状图求出概率.【解题过程】(1)鼓励奖人数为18,百分率为45%,所以样本容量为:18÷45%=40(人)(2)三等奖所对应的圆心角=4010×360°=90°; (3)二等奖人数为:20%×40=8(人),一等奖人数为:40-8-10-18=4(人),条形统计图如下:第21题答图①(4)一等奖有4人,则七年级有1人,八年级1人,九年级2人,用树状图表示如下:第21题答图②由树状图可得,总共有12种结果,符合条件的有4种,故所选两名同学中,恰好是一名七年级和一名九年级同学的概率是4÷12=13.18.(8分)如图,为了测得某建筑物的高度AB ,在C 处用高为1米的测角仪CF ,测得该建筑物顶端A 的仰角为45︒,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为60︒.求该建筑物的高度AB .(结果保留根号)【思路分析】设AM x =米,根据等腰三角形的性质求出FM ,利用正切的定义用x 表示出EM ,根据题意列方程,解方程得到答案.【解题过程】解:设AM x =米,在Rt AFM ∆中,45AFM ∠=︒,FM AM x ∴==,在Rt AEM ∆中,tan AM AEM EM ∠=, 则3tan 3AM EM x AEM ==∠, 由题意得,FM EM EF -=,即3403x x -=, 解得,60203x =+,,答:该建筑物的高度AB 为米.19.(10分)双曲线(k y k x =为常数,且0)k ≠与直线2y x b =-+,交于1(2A m -,2)m -,(1,)B n 两点. (1)求k 与b 的值; (2)如图,直线AB 交x 轴于点C ,交y 轴于点D ,若点E 为CD 的中点,求BOE ∆的面积.【思路分析】(1)将A 、B 两点的坐标代入一次函数解析式可得b 和n 的值,则求出点(1,2)B -,代入反比例函数解析式可求出k 的值.(2)先求出点C 、D 两点的坐标,再求出E 点坐标,则1()2BOE ODE ODB B E S S S OD x x ∆∆∆=+=-g ,可求出BOE ∆的面积.【解题过程】解:(1)Q 点1(2A m -,2)m -,(1,)B n 在直线2y x b =-+上, ∴22m b m b n +=-⎧⎨-+=⎩,解得22b n =-⎧⎨=-⎩,(1,2)B ∴-, 代入反比例函数解析式k y x =,∴21k -=,2k ∴=-. (2)Q 直线AB 的解析式为22y x =--,令0x =,解得2y =-,令0y =,解得1x =-,(1,0)C ∴-,(0,2)D -,Q 点E 为CD 的中点,1(,1)2E ∴--, 111()2(1)222BOE ODE ODB B E S S S OD x x ∆∆∆∴=+=-=⨯⨯+g 32=.20.(10分)如图1,在△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF .(1)求证:ED =EC ;(2)求证:AF 是⊙O 的切线;(3)如图2,若点G 是△ACD 的内心,BC •BE =25,求BG 的长.【思路分析】(1)由AB =AC 知∠ABC =∠ACB ,结合∠ACB =∠BCD ,∠ABC =∠ADC 得∠BCD =∠ADC ,从而得证;(2)连接OA ,由∠CAF =∠CFA 知∠ACD =∠CAF +∠CFA =2∠CAF ,结合∠ACB =∠BCD 得∠ACD =2∠ACB ,∠CAF =∠ACB ,据此可知AF ∥BC ,从而得OA ⊥AF ,从而得证;(3)证△ABE ∽△CBA 得AB 2=BC •BE ,据此知AB =5,连接AG ,得∠BAG =∠BAD +∠DAG ,∠BGA =∠GAC +∠ACB ,由点G 为内心知∠DAG =∠GAC ,结合∠BAD +∠DAG =∠GDC +∠ACB 得∠BAG =∠BGA ,从而得出BG =AB =5.【解题过程】解:(1)∵AB =AC ,∴∠ABC =∠ACB ,又∵∠ACB =∠BCD ,∠ABC =∠ADC ,∴∠BCD =∠ADC ,∴ED =EC ;(2)如图1,连接OA ,∵AB=AC,∴,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴,∴AB2=BC•BE,∴BC•BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GDC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.B卷一、填空题(本大题共5个小题,每小题4分,共20分)21.若293==nm.则=+nm23▲.【答案】4【解析】3m+2n=3m×32n=3m×(32)n=3m×9n=2×2=4.22.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有个〇.【答案】6058【解析】解:由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,……∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.23. 对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<-3 B.c<-2 C.14c<D.c<1【答案】B【解析】当y=x时,x=x2+2x+c,即为x2+x+c=0,由题意可知:x1、x2是该方程的两个实数根,所以:12121x xx x c+=-⎧⎨⋅=⎩∵x1<1<x2,∴(x1-1)(x2-1)<0即x1x2-(x1+x2) +1<0∴c-(-1) +1<0∴c<-2又知方程有两个不相等的实数根,故Δ>0即12-4c>0,解得:c<14∴c的取值范围为c<-224.如图,矩形OABC的顶点A,C 分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y =(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.【答案】4.【解析】解:∵四边形OCBA是矩形,∴AB=OC,OA =BC,设B点的坐标为(a ,b),则E的坐标为E(a ,),∵D为AB的中点,∴D(a,b)∵D、E在反比例函数的图象上,∴ab=k,∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣k﹣k﹣•a•(b﹣)=3,∴ab﹣k﹣k﹣ab+k=3,解得:k=4,故答案为:4.25.如图,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.则y的最小值是.【答案】2【分析】通过折叠中的角度关系证得四边形AFGE为菱形,通过三角形的两个对应角对应相等可得两个三角形相似,用相似三角形的对应边成比例可得y和x的函数关系式,通过公式法求出二次函数的最小值.【解题】ANDB C GEFD图1 图2MAB C GEF∵矩形ABCD 中,AD ∥BC ,∴∠DAG =∠AGF , ∵∠DAG =∠FAG , ∠DAG =∠AGF ,∴∠FAG =∠AGF ,∴AF =FG =10,∴BG =BF +FG =6+10=16.∵矩形ABCD 中∠B =90°,∴AB 2+BG 2=AG 2,∴222281685AG AB BG =+=+=∵AD =FG ,AD ∥FG ,∴四边形AFGE 是平行四边形,又∵AD =AF ,∴平行四边形AFGE 是菱形,∴DG =DA =10,∴∠DAG =∠DGA ,∵∠DMG =∠DMN +∠NAG =∠DAM +∠ADM , ∠DMN =∠DAM ,∴∠NMG =∠ADM .在△ADM 和△MNG 中,∠ADM =∠NMG , ∠DAG =∠DGA ,∴△ADM ∽△GMN .∴AD AM MG NG =,∴1085x yx =--,∴21451010y x x =-+, ∵110>0,∴当455451210x -=-=⨯时,y 有最小值为21454101021410⎛⎫⨯⨯-- ⎪⎝⎭=⨯. ∴y 关于x 的函数解析式是:21451010y x x =-+,当x =45时,y 有最小值为2.二、解答题(本大题共3个小题,共30分)26.(8分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【思路分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得2(30)(2160)2(55)1250w x x x =--+=--+,即可求解;(3)由题意得(30)(2160)800x x --+…,解不等式即可得到结论.【解题过程】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b=+⎧⎨=+⎩, 解得:2160k b =-⎧⎨=⎩, 故函数的表达式为:2160y x =-+;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<Q ,故当55x <时,w 随x 的增大而增大,而3050x 剟, ∴当50x =时,w 由最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(30)(2160)800x x --+…,解得:70x …,∴每天的销售量216020y x =-+…,∴每天的销售量最少应为20件.27.(10分)在△ABC 中,∠BAC =90°,AB =AC,AD ⊥BC 于点D.(1)如图1,点M,N 分别在AD,AB 上,且∠BMN =90°,当∠AMN =30°,AB =2时,求线段AM 的长;(2)如图2,点E,F 分别在AB,AC 上,且∠EDF =90°,求证:BE =AF;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且∠BMN =90°,求证:AB+AN =2AM.【思路分析】(1)在△ABD 中得到BD 和AD,在△BDM 中求出MD,进而得到AM 的长度;(2)通过证明△BED ≌△AFD 得到BE =AF;(3)过点M 作AB,AC 的垂线,构造全等三角形,将AB+AN 转化为正方形的两条边长的和,进而利用正方形的性质得到结论.【解题过程】(1)在△ABC 中,AB =AC,AD ⊥BC 于点D,∴BD =DC,∠BAD =12∠BAC,∵∠BAC =90°,∴∠BAD =45°,在Rt △ABD 中,∠BAD+∠ABD =90°,∴∠ABD =∠BAD =45°,∴AD =BD,∵AB =2,∴AD =BD 2AB 2,∵∠BMN =90°,∠AMN =30°,∴∠BMD =60°,在Rt △BMD 中,MD =tan BD BMD∠6,∴AM =AD -MD 26(2)∵AD ⊥BC,∴∠BDE+∠EDA =90°,∵∠EDF =90°,∴∠EDA+∠ADF =90°,∴∠BDE =∠ADF,在△ABC 中,∠BAC =90°,∴∠B+∠C =90°,∵AD ⊥BC,∴∠DAC+∠C =90°,∴∠B =∠DAF,∵AD =BD,∴△BED ≌△AFD(ASA),∴BE =AF;(3)过点M 作ME ⊥AB 于点E,作MF ⊥AC 于点F,∴∠MEB =∠MFN =90°,∵AM 平分∠BAC,∴ME =MF,在四边形AEMF 中,∵∠BAC =∠MEB =∠MFN =90°,∴四边形AEMF 是矩形,∠EMF =90°,∴∠EMN+∠NMF =90°,∵∠BMN =90°,∴∠BME+∠EMN =90°,∴∠BME =∠NMF,∴△BME ≌△NMF(ASA),∴BE =NF,在矩形AEMF 中,ME =MF,∴矩形AEMF是正方形,∴AE=AF=2AM,∴AB+AN=AE+AF=2×2AM=2AM.28.(12分)如图,在平面直角坐标系中,直线y x+2与x轴交于点A,与y轴交于点B,抛物线y x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.【思路分析】(1)求得A、B两点坐标,代入抛物线解析式,获得b、c的值,获得抛物线的解析式.(2)通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.(3)B、O、E、F四点作平行四边形,以已知线段OB为边和对角线分类讨论,当OB为边时,以EF=OB的关系建立方程求解,当OB为对角线时,OB与EF互相平分,利用直线相交获得点E坐标.【解题过程】解:(1)在中,令y=0,得x=4,令x=0,得y=2∴A(4,0),B(0,2)把A(4,0),B(0,2),代入,得,解得∴抛物线得解析式为(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F∵BE∥x轴,∴∠BAC=∠ABE∵∠ABD=2∠BAC,∴∠ABD=2∠ABE即∠DBE+∠ABE=2∠ABE∴∠DBE=∠ABE∴∠DBE=∠BAC设D点的坐标为(x,),则BF=x,DF∵tan∠DBE,tan∠BAC∴,即解得x1=0(舍去),x2=2当x=2时, 3∴点D的坐标为(2,3)(3)当BO为边时,OB∥EF,OB=EF设E(m,),F(m,)EF=|()﹣()|=2解得m1=2,,当BO为对角线时,OB与EF互相平分过点O作OF∥AB,直线OF交抛物线于点F()和()求得直线EF解析式为或直线EF与AB的交点为E,点E的横坐标为或∴E点的坐标为(2,1)或(,)或()或()或()。

中考强化训练2022年四川省成都市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析)

中考强化训练2022年四川省成都市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析)

2022年四川省成都市中考数学备考真题模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若反比例函数k y x =的图象经过点()2,2P -,则该函数图象不经过的点是( ) A .(1,4)B .(2,-2)C .(4,-1)D .(1,-4)2、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( ) A .B .C .D . 3、下列格点三角形中,与右侧已知格点ABC 相似的是( )·线○封○密○外A .B .C .D .4、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A .的B .祖C .国D .我5、下列式子运算结果为2a 的是( ).A .a a ⋅B .2a +C .a a +D .3a a ÷6、平面直角坐标系中,已知点()21,P m n -,()2,1Q m n -,其中0m >,则下列函数的图象可能同时经过P ,Q 两点的是( ).A .2y x b =+B .22y x x c =--+C .()20y ax a =+>D .()220y ax ax c a =++> 7、下列运算中,正确的是( ) A6 B5 C=4 D8、下列说法中不正确的是( )A .平面内,垂直于同一条直线的两直线平行B .过一点有且只有一条直线与已知直线平行C .平面内,过一点有且只有一条直线与已知直线垂直D .直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离9、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )A .50°B .65°C .75°D .80°10、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是( ) A . B .·线○封○密○外C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:60°18′________°.2、如图,在△AAA中,AB=AC=6,BC=4,点D在边AC上,BD=BC,那么AD的长是______3、如图,∠A=∠A,AA⊥AA,AB EF,AA=25,AA=8,则AA=_______.4、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果应为______.5、若关于x的二次三项式A2−2(A+1)A+4是完全平方式,则k=____.三、解答题(5小题,每小题10分,共计50分)∥交CD的延长线于点E,点N是线段AC 1、如图,在ABC中,D是边AB的中点,过点B作BE AC上一点,连接BN 交CD 于点M ,且BM AC =. (1)若55E ∠=︒,65A ∠=︒,求CDB ∠的度数;(2)求证:CN MN =. 2、小明根据学习函数的经验,对函数y =﹣|x |+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题. (1)如表y 与x 的几组对应值:①a = ;②若A (b ,﹣7)为该函数图象上的点,则b = ; (2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:·线○封○密·○外①该函数有 (填“最大值”或“最小值”),并写出这个值为 ;②求出函数图象与坐标轴在第二象限内所围成的图形的面积.3、如图,二次函数y =a (x ﹣1)2﹣4a (a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C (0,.(1)求二次函数的表达式;(2)连接AC ,BC ,判定△ABC 的形状,并说明理由.4、计算:2(3)()()a b a b a b +-+-.5、如图,点B ,E ,F ,C 在同一直线上.已知A D ∠=∠,B C ∠=∠,BE CF =,请说明ABF △≌DCE .-参考答案-一、单选题1、A【分析】 由题意可求反比例函数解析式4y x =-,将点的坐标一一打入求出xy 的值,即可求函数的图象不经过的点. 【详解】 解:因为反比例函数k y x =的图象经过点(2,2)P -, 所以4k =-, 选项A 1444xy =⨯=≠-,该函数图象不经过的点(1,4),故选项A 符合题意; 选项B ()224xy =⨯-=-,该函数图象经过的点(2,-2),故选项B 不符合题意; 选项C ()414xy =⨯-=-,该函数图象经过的点(4,-1),故选项C 不符合题意; 选项B ()144xy =⨯-=-,该函数图象经过的点(1,-4),故选项D 不符合题意; 故选A. 【点睛】 考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键. ·线○封○密○外2、A【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【详解】解:A、三视图分别为正方形,三角形,圆,故A选项符合题意;B、三视图分别为三角形,三角形,圆及圆心,故B选项不符合题意;C、三视图分别为正方形,正方形,正方形,故C选项不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,故D选项不符合题意;故选:A.【点睛】本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.3、A【分析】根据题中利用方格点求出ABC的三边长,可确定ABC为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.【详解】解:ABC的三边长分别为:AB=AC BC=∵222+=,AB AC BC∴ABC为直角三角形,B,C选项不符合题意,排除;A选项中三边长度分别为:2,4,==A选项符合题意,D≠故选:A.【点睛】题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.4、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5、C·线○封○密○外【分析】由同底数幂的乘法可判断A ,由合并同类项可判断B ,C ,由同底数幂的除法可判断D ,从而可得答案.【详解】解:2,a a a ⋅=故A 不符合题意;2a +不能合并,故B 不符合题意;2,a a a +=故C 符合题意;23,a a a ÷=故D 不符合题意;故选C【点睛】本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键.6、B【分析】先判断1,m m 221,n n 再结合一次函数,二次函数的增减性逐一判断即可.【详解】解:22221110,n n n n221,n n同理:1,m m∴ 当0m >时,y 随x 的增大而减小,由2y x b =+可得y 随x 的增大而增大,故A 不符合题意;22y x x c =--+的对称轴为:21,21x 图象开口向下,当1x >-时,y 随x 的增大而减小,故B 符合题意; 由()20y ax a =+>可得y 随x 的增大而增大,故C 不符合题意; ()220y ax ax c a =++>的对称轴为:21,2a x a 图象开口向上, 1x ∴>-时,y 随x 的增大而增大,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.7、C【分析】根据算术平方根的意义逐项化简即可.【详解】解:B.-5,故不正确; 4,正确; 8,故不正确; 故选C . 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根. ·线○封○密○外8、B【分析】根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.【详解】A、平面内,垂直于同一条直线的两直线平行,故说法正确;B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.故选:B【点睛】本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.9、B【分析】根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.【详解】解:如图,根据题意得:BG∥AF,∴∠FAE =∠BED =50°,∵AG 为折痕, ∴()1180652FAE α=︒-∠=︒ . 故选:B 【点睛】 本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键. 10、C 【分析】 根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案. 【详解】 解:A 、是轴对称图形,不是中心对称图形,故错误; B 、是轴对称图形,不是中心对称图形,故错误; C 、既是轴对称图形,又是中心对称图形,故正确; D 、既不是轴对称图形,也不是中心对称图形,故错误. 故选:C . 【点睛】 本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合. 二、填空题 1、60.3 【分析】 ·线○封○密○外根据1′=(160)°先把18′化成0.3°即可.【详解】∵1'=(160)°∴18′=18×(160)°=0.3°∴60°18′=60.3°故:答案为60.3.【点睛】本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.2、103【分析】根据等腰三角形的等边对等角可得∠ABC=∠C=∠BDC,根据相似三角形的判定证明△ABC∽△BDC,根据相似三角形的性质求解即可.【详解】解:∵AB=AC,BD=BC,∴∠ABC=∠C,∠C=∠BDC,∴△ABC∽△BDC,∴AAAA=AAAA,∵AB=AC=6,BC=4,BD=BC,∴64=4AA,∴AA =83,∴AD =AC -CD =6-83=103, 故答案为:103. 【点睛】 本题考查等腰三角形的性质、相似三角形的判定与性质,熟练掌握等腰三角形的性质和相似三角形的判定与性质是解答的关键.3、17 【分析】 由“AAA ”可证ABC EFC ∆≅∆,可得AA =AA ,9BC CF ==,即可求解. 【详解】 解:∵AA ⊥AA ,90ACB ECF ∴∠=∠=︒,在AAAA 和AAAA 中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC EFC AAS ∴∆≅∆, ∴AA =AA ,AA =AA =8, ∴AA =AA =AA −AA =25−8=17, 故答案为:17. 【点睛】 本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等. 4、30·线○封○密·○外【分析】根据科学计算器的使用计算.【详解】解:依题意得:[3×(﹣2)3-1]÷(-56)=30,故答案为30.【点睛】利用科学计算器的使用规则把有理数混合运算,再计算.5、﹣3或1【分析】根据A 2+22这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.【详解】解:∵二次三项式A 2−2(A +1)A +4是完全平方式,∴A 2−2(A +1)A +4=22(2)44x x x -=-+或A 2−2(A +1)A +4=(A +2)2=A 2+4A +4, ∴−2(A +1)=4或−2(A +1)=−4,解得k =﹣3或k =1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.三、解答题1、(1)120︒(2)证明见解析【分析】(1)先根据平行线的性质可得65ABE A ∠=∠=︒,再根据三角形的外角性质即可得;(2)先根据三角形全等的判定定理证出B ADC DE ≅,再根据全等三角形的性质可得AC BE =,E ACD ∠=∠,从而可得BE BM =,然后根据等腰三角形的性质、对顶角相等可得E BME CMN ∠=∠=∠,从而可得ACD CMN ∠=∠,最后根据等腰三角形的判定即可得证. (1)解:∵AC BE ,65A ∠=︒, ∴65ABE A ∠=∠=︒, ∵55E ∠=︒, ∴5565120CDB E ABE ∠=∠+∠=︒+︒=︒. (2) 证明:∵AC BE , ∴A ABE ∠=∠, ∵D 是边AB 的中点, ∴AD BD =, 在ADC 和BDE 中,A DBE AD BD ADC BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()BD ADC E ASA ≅,∴AC BE =,ACD E ∠=∠,∵BM AC =,∴BE BM =,∴E BME CMN ∠=∠=∠,·线○封○密○外∴ACD CMN∠=∠,∴CN MN=.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,熟练掌握各判定定理与性质是解题关键.2、(1)①0;②±10;(2)见解析;①最大值,3;②9 2【分析】(1)①根据表中对应值和对称性即可求解;②将点A坐标代入函数解析式中求解即可;(2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.(1)解:①由表可知,该函数图象关于y轴对称,∵当x=-3时,y=0,∴当x=3时,a=0,故答案为:0;②将A(b,-7)代入y=﹣|x|+3中,得:-7=﹣|b|+3,即|b|=10,解得:b=±10,故答案为:±10;(2)解:函数y=﹣|x|+3的图象如图所示:①由图象可知,该函数有最大值,最大值是3,故答案为:最大值,3; ②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为193322⨯⨯=. 【点睛】本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键. 3、(1)21)y x =- (2)直角三角形,理由见解析. 【分析】 (1)将点C 的坐标代入函数解析式,即可求出a 的值,即得出二次函数表达式;(2)令0y =,求出x 的值,即得出A 、B 两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断ABC 的形状. ·线○封○密·○外(1)解:将点C (0,代入函数解析式得:2(01)4a a =--,解得:a =故该二次函数表达式为:21)y x =- (2)解:令0y =21)0x --=, 解得:11x =-,23x =.∴A 点坐标为(-1,0),B 点坐标为(3,0).∴OA =1,OC 3(1)4B A AB x x =-=--=,∴2AC ==,BC ===∵22224+=,即222BC AC AB +=,∴ABC 的形状为直角三角形.【点睛】本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C 的坐标求出函数解析式是解答本题的关键.4、22862a ab b ++【分析】根据完全平方公式及平方差公式,然后再合并同类项即可.【详解】 解:原式222296()=++--a ab b a b 222296+=++-a ab b a b 22862a ab b =++. 【点睛】 本题考查了完全平方公式及平方差公式,属于基础题,计算过程中细心即可. 5、见详解. 【分析】 用AAS 证明△ABF ≌△DCE 即可. 【详解】 解:∵BE CF = BE EF CF EF ∴+=+ ,BF CE ∴= 又∵∠A =∠D ,∠B =∠C , ∴△ABF ≌△DCE (AAS ). 【点睛】 本题考查了全等三角形的判定,证明BF =CE 是解决本题的关键. ·线○封○密○外。

2024年四川省成都市中考数学预测试卷(一)及答案解析

2024年四川省成都市中考数学预测试卷(一)及答案解析

2024年四川省成都市中考数学预测试卷(一)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,把序号涂在答题卡上)1.(4分)在﹣2,,0,﹣2.5四个数中,最小的数是()A.﹣2B.C.0D.﹣2.52.(4分)2023年上半年我国新能源汽车取得显著成绩,新能源汽车使用环境持续优化,截至6月底,全国累计建成各类充电桩超过660万台.将数据“660万”用科学记数法表示为()A.6.6×106B.6.6×105C.660×105D.66×105 3.(4分)下列计算正确的是()A.x+x=x2B.(x+y)2=x2+y2C.(﹣x+3)(x+3)=9﹣x2D.3(x﹣2y)=3x﹣2y4.(4分)2023年7月28日至8月8日,第31届世界大学生夏季运动会在四川省成都市举行,为此,成都市共建成49个场馆,其中新建场馆13处,改造场馆36处.大运村设在成都大学,依托现有校区和建设发展规划,新建生活服务中心、医疗中心、国际教育交流中心、实训楼等单体建筑22栋.数据49,13,36,22的中位数为()A.13B.24.5C.29D.365.(4分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O.若要使平行四边形ABCD成为矩形,需要添加的条件是()A.AC⊥BD B.OA=OB C.AB=BC D.∠ABD=∠DBC 6.(4分)川剧由昆腔、高腔、胡琴、弹戏、灯调五种声腔组成,其中,除灯调系源于本土外,其余均.由外地传入.如果小曦要选择其中一种声腔来学习,那么选中外地传入声腔的概率为()A.B.C.1D.7.(4分)小明仿照我国古算题编写了一道题:“今有九百元可得鸡兔共十又一只,一百八十元鸡两只,二百四十元兔四只.问鸡兔各几何?”设鸡有x只,兔有y只,则可列方程组为()A.B.C.D.8.(4分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,M是抛物线的顶点,则下列说法正确的是()A.abc<0B.b+3a>0C.当x>0时,y的值随x值的增大而增大D.若CM⊥AM,则二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)因式分解:3x2y﹣27y=.10.(4分)已知反比例函数图象上的两点(﹣2,y1),(3,y2),且y1>y2,则k 的取值范围是.11.(4分)如图,△ABC≌△DEF,AE=2,AD=3,则AB=.12.(4分)在平面直角坐标系xOy中,点M(﹣2,5)关于x轴对称的点的坐标是.13.(4分)如图,△ABC为锐角三角形,点D在边BC上,∠B=∠BAD=∠CAD.分别以点A,C为圆心、大于的长为半径作弧,两弧相交于点E,F,作直线EF交AD于点P.若,△ABC的面积为8,则△CDP的面积为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解不等式组:15.(8分)成都市某中学为2024年“尤伯杯”预热,组织全校学生参加了“尤伯杯羽毛球比赛”知识竞赛,为了解全校学生竞赛成绩x(单位:分)的情况,随机抽取了一部分学生的成绩,分成四组:A.70分以下(不包括70);B.70≤x<80;C.80≤x<90;D.90≤x≤100,并绘制了如下两幅不完整的统计图.根据上述信息,解答下列问题.(1)被抽取的学生成绩在C组的有人,请补全条形统计图;(2)被抽取的学生成绩在B组的对应扇形圆心角的度数是,若该中学全校共有3600人,则成绩在A组的大约有人;(3)现从D组前四名(2名男生和2名女生)中任选2名代表发表感言,请用列表或画树状图的方法,求选中1名男生和1名女生的概率.16.(8分)屏风是一种古老的家具,它作为一种灵活的空间元素、装饰元素和设计元素,具有实用和艺术欣赏两方面的功能,能通过自身形状、色彩、质地、图案等特质融于丰富多元的现代空间环境,传达着新中式的意味,演绎出中国传统文化韵味,因此至今仍然被广泛地运用.小曦在房间墙角摆放了一架双面屏风,俯视图如图所示,两面屏风AC,BC与墙角AOB围成了一个独立空间用来堆放杂物,经测量AC=BC=1m,∠CAO=∠CBO=60°,请算出这个独立空间的面积.(结果精确到0.01m2.参考数据:,)17.(10分)如图,在Rt△ABC中,∠ACB=90°,AB与⊙O相切于点F,点C为⊙O上一点,CF平分∠ACB,AC和BC分别与⊙O相交于点E,D,DG⊥AB于点G.(1)求证:DG是⊙O的切线;(2)若,⊙O的半径为,求AF的长.18.(10分)如图,在平面直角坐标系中,一次函数y=3x+b的图象与坐标轴交于点A,B,与反比例函数的图象交于点C(1,a),D是反比例函数图象上的一个动点,过点D向y轴作垂线与一次函数图象交于点E,其中点A的坐标为(﹣3,0).(1)求反比例函数的表达式;(2)连接DB,DC,当△DCE的面积等于△DBC面积的2倍时,求点E的坐标;(3)若P是x轴上的一个动点,连接EP,DP,当△DPE与△AOB相似时,求点D的纵坐标.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知非零实数a,b满足a+3b+2ab=0,则=.20.(4分)已知一元二次方程x2﹣6x+m=0的一个根为,则m的值为.21.(4分)“不倒翁”玩具的主视图如图所示,PA,PB分别与不倒翁底部所在的⊙O相切于点A,B,若⊙O的半径为5cm,∠P=50°,则劣弧AB的长为.(结果保留π)22.(4分)一个直角三角形的边长都是整数,则称这种直角三角形为“完美勾股三角形”,k为其面积和周长的比值.当k=2时,满足条件的“完美勾股三角形”的周长为;当0<k≤1时,若存在“完美勾股三角形”,则k =.23.(4分)如图,在正方形ABCD中,O是BC的中点,P是边CD上一动点,将△OCP 沿OP翻折得△OC′P,连接C′D,在C′D左侧有一点E,使得△C′DE为等腰直角三角形,且∠DC′E=90°,连接CE.若正方形ABCD的边长为6,则CE的最小值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2024年世界园艺博览会将在成都举行,某社区决定采购甲、乙两种盆栽美化环境,若购买20盆甲种盆栽和10盆乙种盆栽,则需要130元;若购买30盆甲种盆栽和20盆乙种盆栽,则需要220元.(1)甲、乙两种盆栽的单价各是多少元?(2)若该社区联合附近社区购买甲、乙两种盆栽共1000盆,设购买m盆(500≤m≤700)乙种盆栽,总费用为W元,请你帮社区设计一种购买方案,使总花费最少,并求出最少费用.25.(10分)如图,在平面直角坐标系中,已知一抛物线经过原点,与x轴交于另一点A,顶点坐标为(2,﹣1),过点G(2,0)的直线y=kx+b(k≠0)与抛物线交于点B,C,且点B在点C的左侧.(1)求抛物线的函数表达式;(2)连接AB,AC,当△ABG的面积与△ACG的面积之比为1:2时,求直线的函数表达式;(3)若有直线l:y=﹣2,点B到直线l的距离为BD,点C到直线l的距离为CE,求证:.26.(12分)如图,已知△ABC为等边三角形,D,E分别是边BC,AC上一点,AD与BE 相交于点F,点G是射线AD上一点,且BD=BG=CE,CF与EG相交于点H.(1)求∠AFE的度数;(2)求证:H是EG的中点;(3)若BD=4,AF=6,求△ABC的边长.2024年四川省成都市中考数学预测试卷(一)参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,把序号涂在答题卡上)1.【分析】根据负数小于零小于正数得到答案即可.【解答】解:,故选:D.【点评】本题主要考查有理数比较大小,熟练掌握有理数大小比较是解题的关键.2.【分析】确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值小于1时,n 是负整数.据此求解即可.【解答】解:660万=6600000=6.6×106,故选:A.【点评】本题考查科学记数法,关键是熟记科学记数法的一般形式为a×10n,其中1≤|a|<10,n为整数.3.【分析】根据运算法则和完全平方公式、平方差公式逐项判断即可.【解答】解:A、x+x=2x,原计算错误,不符合题意;B、(x+y)2=x2+2xy+y2,原计算错误,不符合题意;C、(﹣x+3)(x+3)=9﹣x2,原计算正确,符合题意;D、3(x﹣2y)=3x﹣6y,原计算错误,不符合题意;故选:C.【点评】本题考查整式的混合运算,关键是完全平方公式的应用.4.【分析】根据中位数的定义,先将数据从小到大排序,中间两数的平均数就是这组数据的中位数.【解答】解:将数据49,13,36,22从小到大排序为13,22,36,49,所以这组数据的中位数为.故选:C.【点评】本题考查了求中位数,正确理解中位数的定义是解题的关键.5.【分析】根据矩形的判定方法逐项判断即可.【解答】解:A、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,即AC=BD,∴平行四边形ABCD是矩形,符合题意;C、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意;D、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABD=∠BDC,∵∠ABD=∠DBC,∴∠BDC=∠DBC,∴BC=CD,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意,故选:B.【点评】本题考查矩形的判定,涉及到平行四边形的性质、菱形的判定、等腰三角形的判定等知识,熟知矩形的判定是解答的关键.6.【分析】根据概率公式直接求解即可.【解答】解:五种声腔中,外地传入的声腔有四种,故中外地传入声腔的概率,故选:D.【点评】本题主要考查了概率的求法,熟练掌握概率公式是解题的关键.7.【分析】根据题目中的等量关系列出方程即可.【解答】解:根据题意可得:,故选:A.【点评】本题主要考查由实际问题抽象出二元一次方程组,读懂题意是解题的关键.8.【分析】根据抛物线的位置判断即可;利用对称轴公式,可得b=﹣4a,可得结论;应该是x>2时,y随x的增大而增大;设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,可得M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x 轴于点K.利用相似三角形的性质,构建方程求出a即可.【解答】解:A.∵抛物线开口向上,∴a>0,∵对称轴是直线x=2,∴,∴b=﹣4a<0∵抛物线交y轴的负半轴,∴c<0,∴abc>0,故不正确,不符合题意,B.∵b=﹣4a,a>0,∴b+3a=﹣a<0,故不正确,不符合题意,C.观察图象可知,当0<x≤2时,y随x的增大而减小,不正确,不符合题意,D.∵抛物线经过(﹣1,0),(5,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,∴M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x轴于点K.∵AM⊥CM,∴∠AMC=∠KMH=90°,∴∠CMH=∠KMA,∵∠MHC=∠MKA=90°,∴△MHC∽△MKA,∴,∴,∴,∵a>0,∴,故正确,符合题意;故选:D.【点评】本题考查二次函数的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】首先提取公因式3y,再利用平方差进行二次分解即可.【解答】解:原式=3y(x2﹣9)=3y(x+3)(x﹣3),故答案为:3y(x+3)(x﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.【分析】利用反比例函数的增减性求参数,分类讨论即可求解.【解答】解;若2k+1>0,∵﹣2<0<3,∴y1<0<y2,与y1>y2矛盾,∴2k+1<0,解得:.故答案为:.【点评】本题考查了已知反比例函数的增减性求参数,分类讨论即可求解.11.【分析】根据全等三角形的性质求解即可.【解答】解:∵AE=2,AD=3,∴DE=AD+AE=5,∵△ABC≌△DEF,∴AB=DE=5,故答案为:5.【点评】此题考查了全等三角形的性质,熟记“全等三角形的对应边相等”是解题的关键.12.【分析】根据平面直角坐标系中对称点的规律解答.【解答】解:根据平面直角坐标系中对称点的规律可知,点M(﹣2,5)关于x轴的对称点为(﹣2,﹣5).故答案为:(﹣2,﹣5).【点评】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.【分析】根据角平分线的性质得到S△ABD:S△ADC=5:3,进而,,设BD=5x,CD=3x,根据等腰三角形的判定与性质,结合三角形的外角性质得到BD=AD=5x,CD=CP=AP=3x,则DP=2x,进而得到S△CDP:S△CAP=DP:AP=2:3即可求解.【解答】解:设点D到AB、AC的距离为a,b,∵∠BAD=∠CAD,∴a=b,∵,:S△ADC=5:3,又△ABC的面积为8,∴S△ABD∴,,设BD=5x,CD=3x,∵∠B=∠BAD,∴BD=AD=5x,∠PDC=2∠B,由作图痕迹得PE垂直平分AC,则PA=PC,∴∠CAP=∠ACP,则∠CPD=2∠CAD=2∠B,∴∠CPD=∠CDP,∴CD=CP=AP=3x,则DP=2x,:S△CAP=DP:AP=2:3,∴S△CDP∴,故答案为:.【点评】本题考查等腰三角形的判定与性质、线段垂直平分线的画法及其性质、三角形的外角性质、角平分线的性质等知识,解题的关键是掌握相关知识的灵活运用.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.【分析】(1)先根据二次根式的性质、特殊角的三角函数值、负整数指数幂以及绝对值的性质计算,再加减运算即可求解;(2)先求得每个不等式的解集,再求它们的公共部分即为该不等式组的解集.【解答】解:(1)﹣2tan60°﹣=﹣2×﹣4+4﹣2=;(2)不等式组,解不等式①,得x≥2,解不等式②,得x<4,∴该不等式组的解集为2≤x<4.【点评】本题考查实数的混合运算、解一元一次不等式组,涉及二次根式的化简、绝对值的化简、特殊角的三角函数值、负整数指数幂的运算,正确求解是解答的关键.15.【分析】(1)先由D组人数除以其所占的百分比求出抽取总人数,进而可求得C组人数,进而补全条形统计图即可;(2)用360°乘以B组人数所占的百分比即可求得其对应的圆心角的度数,用全校总人数乘以样本中A组人数所占的比例求解即可;(3)画树状图得到所有等可能的结果数,选出满足条件的结果数,然后利用概率公式求解即可.【解答】解:(1)抽查总人数为18÷30%=60(人),C组人数为60﹣6﹣12﹣18=24(人),故答案为:24,补全条形统计图如图:(2)被抽取的学生成绩在B组的对应扇形圆心角的度数是,成绩在A组的大约有(人),故答案为:72°,360;(3)画树状图:共有12种等可能的结果,其中选中1名男生和1名女生的有8种结果,故选中1名男生和1名女生的概率为.【点评】本题考查扇形统计图和条形统计图的关联、用样本估计总体、用列表或画树状图法求概率,理解题意,能从统计图中获取信息是解答的关键.16.【分析】过C作CE⊥OA于E,CF⊥OB于F,利用锐角三角函数分别求得AE,CE,CF,BF,利用三角形的面积和矩形的面积公式求解即可.【解答】解:过C作CE⊥OA于E,CF⊥OB于F,则四边形CEOF是矩形,在Rt△AEC中,,,在Rt△CFB中,,,+S△CFB+S矩形CEOF∴这个独立空间的面积为S△AEC==≈1.18m2.【点评】本题考查解直角三角形的应用,解题的关键是掌握其知识的灵活运用.17.【分析】(1)连接OF,OD,分别根据圆周角定理、切线的性质及垂直定义得到∠DGF=∠OFG=∠DOF=90°,证得四边形OFGD是矩形,则∠ODG=90°,根据切线的判定可得结论;(2)连接OE,过E作EH⊥AB于H,证明四边形EHFO是正方形得到,利用正切定义求得,进而可求解.【解答】(1)证明:连接OF,OD,∵CF平分∠ACB,∠ACB=90°,∴,则∠DOF=2∠BCF=90°,∵AB与⊙O相切于点F,∴∠OFG=∠OFA=90°,∵DG⊥AB,∴∠DGF=90°,则∠DGF=∠OFG=∠DOF=90°,∴四边形OFGD是矩形,∴∠ODG=90°,即OF⊥AB,∵OF是⊙O的半径,∴DG是⊙O的切线;(2)解:连接OE,过E作EH⊥AB于H,则∠EHF=∠EHA=90°,∵∠EOF=2∠ACF=90°,∴∠EOF=∠EHF=∠OFH=90°,∴四边形EHFO是矩形,∵OE=OF,∴四边形EHFO是正方形,∴,∵,∴,∴.【点评】本题考查切线的判定与性质、矩形的判定与性质、正方形的判定与性质、圆周角定理、角平分线的定义、锐角三角函数等知识,综合性强,熟练掌握相关知识的联系与运用是解答的关键.18.【分析】(1)先把(﹣3,0)代入y=3x+b求出一次函数解析式,再求出交点C(1,a),最后代入反比例函数解析式即可.=2S△BDE,表示出D、E (2)当△DCE的面积等于△DBC面积的2倍时即可得到S△CDE坐标,再计算即可;(3)表示出D、E、P坐标,根据△DPE与△AOB相似计算即可,注意分情况讨论:△AOB∽△PED;△AOB∽△DEP;△AOB∽△PDE;△AOB∽△EDP;△AOB∽△EPD;△AOB∽△DPE等情况分别解答即可.【解答】解:(1)一次函数y=3x+b的图象与坐标轴交于点A,B,其中点A的坐标为(﹣3,0).代入得:0=3×(﹣3)+b,解得b=9,∴y=3x+9,∴B(0,9);一次函数y=3x+9的图象与反比例函数的图象交于点C(1,a),代入得:a=3+9=12,∴C(1,12),把C(1,12)代入y=(x>0)得:12=,解得:k=12,∴y=(x>0),∴反比例函数的表达式为y=(x>0);(2)如图1,D是反比例函数图象上的一个动点,过点D向y轴作垂线与一次函数图象交于点E,连接CD、BD,∴DE∥x轴,∴设D(m,),把纵坐标代入一次函数y=3x+9得:∴y=3x+9=,解得x=﹣3,∴点E的坐标为(﹣3,),=2S△BDE,∵S△CDE∴(12﹣)•DE=2×(9﹣)•DE,解得m=2,∴点E的坐标为(﹣1,6);(3)设P(n,0),由(2)可得,,其中m>0,P是x轴上的一个动点,连接EP,DP,当△DPE与△AOB相似时,分以下几种情况:当△AOB∽△PED时,当PE⊥x轴时,如图2,点E、P的横坐标相等,故点P的坐标为,∴PE=,DE=m﹣(﹣3),∴==,当==时,△AOB∽△PED,∴=,解得m1=﹣8,m2=5,∴m=5,∴,当==3时,△AOB∽△DEP,∴=3,解得m=,∴m=,∴,同理,当PD⊥x轴时,如图3,点P的横坐标与点D的横坐标相等,故点P的坐标为P (m,0),∴,,∴==,当==时,△AOB∽△PDE,∴点D的坐标为,当==3时,△AOB∽△EDP,∴点D的坐标为,当PD⊥PE时,作EM⊥x于M,DN⊥x于N,则△EPM∽△PDN,∴==,此时EM=DN=,DE=MN=PM+PN=m﹣+3,当△AOB∽△EPD时,==,∴===,∴PN=3EM=,PM=DN=,∴=,解得或(不合题意,舍去),∴=,∴点D的坐标为(,),同理当△AOB∽△DPE时,==3,∴====3,∴,,∴,解得或(不合题意,舍去),∴=,∴点D的坐标为(,),综上所述,当△DPE与△AOB相似时,求点D的纵坐标为,,.【点评】本题考查反比例函数与一次函数综合,相似三角形的判定与性质,解答本题的关键是分类讨论思想的运用.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】先根据分式的混合计算法则化简所求式子,再根据已知条件式得到a+3b=﹣2ab,据此代值计算即可.【解答】解:===,∵a+3b+2ab=0,∴a+3b=﹣2ab,∴原式=,故答案为:﹣2.【点评】本题主要考查了分式的化简求值,掌握约分是关键.20.【分析】将根为代入方程即可得到答案.【解答】解:将代入一元二次方程x2﹣6x+m=0,得,解得m=6,故答案为:6.【点评】本题主要考查一元二次方程的解,明确方程的解一定适合方程是解题的关键.21.【分析】连接OB,由切线的性质得∠PAO=∠PBO=90°,求出∠AOB=130°,然后利用弧长公式求解即可.【解答】解:连接OB.∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∴∠AOB=180°﹣∠P=130°,劣弧AB的长为:;故答案为:.【点评】本题考查由三视图,切线的性质,弧长公式,解题的关键是掌握切线的性质,属于中考常考题型.22.【分析】利用a=3,b=4,c=5的直角三角形来研究,对三边同时扩大1,2,3,⋯倍数来计算,看是否满足题意即可求解.【解答】解:设直角三角形的边长分别为a,b,c,其中a,b为直角边,且a<b,由题意知:,利用特殊的勾三股四直角三角形来研究,当a=3,b=4,c=5,周长=12,面积=6,k=,上式不成立,依次将a=3,b=4,c=5扩大相同的倍数,当都扩大2倍时:a=6,b=8,c=10,周长=24,面积=24,k=1,等式不成立,当都扩大3倍时:a=9,b=12,c=15,周长=36,面积=54,k=1.5,等式不成立,当都扩大4倍时:a=12,b=16,c=20,周长=48,面积=96,k=2,等式成立,故此时满足条件的“完美勾股三角形”的周长为:48;当a=10,b=24,c=26,周长=60,面积=120,k=2,等式成立,当0<k≤1时,当a=3,b=4,c=5时,,当a=6,b=8,c=10时,,故答案为:48;或1.【点评】本题考查了勾股定理,关键是注意都是各边长都是整数.23.【分析】构造等腰直角△DOM,即可证明△MDE∽△ODC′,得到,,再证明△MON≌△ODC,得到MN=OC=3,ON=CD=6,求出,最后根据CE≥CM﹣AE得到CE的最小值.【解答】解:连接OD,过O作OD⊥OM,取OD=OM,连接MD,ME,过M作MN ⊥CN,∵OD⊥OM,OD=OM,∴,∠MDO=45°,∵△C′DE为等腰直角三角形,∴,∠EDC′=45°,∴,∠ODC′=∠MDE=45°﹣∠ODE,∴△MDE∽△ODC′,∴,∵正方形ABCD中,O是BC的中点,正方形ABCD的边长为6,∴OC=3,CD=BC=6,∵将△OCP沿OP翻折得△OC′P,∴OC=OC′=3,∴,∵MN⊥CN,∴∠MNO=∠DCO=90°,∵∠MON=∠ODC=90°﹣∠COD,OD=OM,∴△MON≌△ODC,∴MN=OC=3,ON=CD=6,∴CN=9,∴,∴,∴当C、M、E三点共线时CE有最小值,最小值为,故答案为:.【点评】本题考查相似三角形的判定与性质,全等三角形的判定与性质,正确记忆相关知识点是任解题关键.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.【分析】(1)设甲种盆栽的单价为x元,乙种盆栽的单价为y元,直接根据题意列方程组求解即可;(2)根据(1)中单价,由费用=单价×数量列函数关系式,利用一次函数性质求解即可.【解答】解:(1)设甲种盆栽的单价为x元,乙种盆栽的单价为y元,根据题意,得,解得,答:甲种盆栽的单价为4元,乙种盆栽的单价为5元;(2)根据题意,得W=4(1000﹣m)+5m=m+4000,∵1>0,500≤m≤700,∴W随m的增大而增大,∴当m=500时,W有最小值,最小值为W=500+4000=4500,1000﹣m=1000﹣500=500(盆),答:当购买甲种盆栽和乙种盆栽各500盆时,总花费最少,最少费用为4500元.【点评】本题考查二元一次方程组的应用、一次函数的应用,理解题意,正确列出方程以及函数关系式是解答的关键.25.【分析】(1)利用待定系数法求解即可;(2)首先将G(2,0)代入直线解析式得到y=kx﹣2k,然后与抛物线联立得到x2﹣(4k+4)x+8k=0,求出x B和x C,然后根据题意得到,代入x B和x C得到,进而求解即可;(3)由(2)求出,,然后根据题意得到BD,CE,然后代入整理求解即可.【解答】解:(1)∵抛物线顶点坐标为(2,﹣1),∴设抛物线解析式为y=a(x﹣2)2﹣1,∵抛物线经过原点,∴将(0,0)代入得,0=a(0﹣2)2﹣1,解得,∴;(2)∵直线y=kx+b(k≠0)过点G(2,0),∴0=2k+b,∴b=﹣2k,∴直线y=kx﹣2k,联立,整理得,x2﹣(4k+4)x+8k=0,解得,,∴x B+x C=4k+4,∵△ABG的面积与△ACG的面积之比为1:2,∴,∴,∴,整理得x C+2x B=6,将,代入x C+2x B=6,整理得,∴9k2=k2+1,∴8k2=1,∴或(舍去),∴直线的函数表达式为;(3)由(2)得,,,∴,,∵有直线l:y=﹣2,点B到直线l的距离为BD,点C到直线l的距离为CE,∴,,∴=======1.【点评】此题考查了二次函数和一次函数综合题,待定系数法求解析式,面积综合题,解一元二次方程等知识,解题的关键是正确表示出点B和点C的坐标.26.【分析】(1)证明△ABD≌△BCE(SAS)得出∠BAD=∠EBC,根据三角形的外角的性质,即可求解;(2)如图所示,将△ABF绕点A逆时针旋转60°得到△ACN,则△ABF≌△ACN,进而证明△BFG≌△CNE(SAS)得出B,E,N三点共线,△AFN是等边三角形,过点E作EM∥NC,根据平行线分线段成比例和相似三角形的性质得出,可得EM=GF,进而证明△EHM≌△GHF,根据全等三角形的性质,即可得证;(3)过点E作ET⊥AG于点T,设TF=x,则,,证明△ENC∽△EFA,得出,解,进而即可求解.【解答】(1)解:∵△ABC为等边三角形,∴AB=BC,∠ABD=∠BCE=60°,又∵BD=EC,∴△ABD≌△BCE(SAS),∴∠BAD=∠EBC,∴∠AFE=∠BAD+∠ABF=∠EBC+∠ABF=∠ABC=60°;(2)证明:如图所示,将△ABF绕点A逆时针旋转60°得到△ACN,连接EN,∴△ABF≌△ACN,∴BF=CN,AF=AN,∠AFB=∠ANC,设∠BAG=α,则∠EBC=∠BAG=α,∵BD=BG,∴∠BDG=∠BGD=∠ABD+∠BAD=60°+α,∵∠AFE=60°,∴∠BFG=60°,∴∠FBG=180°﹣60°﹣(60°+α)=60°﹣α=∠ABF=∠ACN,在△BFG和△CNE中,,∴△BFG≌△CNE(SAS),∴∠BFG=∠CNE=60°,∠BGF=∠CEN=60°+α,∵∠AEB=∠CBE+∠ACB=60°+α,∴∠AEB=∠CEN,∴B,E,N三点共线,∵AF=AN,∠AFE=60°,∴△AFN是等边三角形,∴∠ANF=60°,∵∠AFB=∠ANC=120°,∴∠ENC=60°=∠AFE,∴FG∥CN,过点E作EM∥NC,交CF于点M,∴AG∥EM∥NC,∴△CEM∽△CAF,∴,∴EM=GF,∵EM∥FG,∴∠HEM=∠HGF,在△EHM和△GHF中,,∴△EHM≌△GHF(AAS),∴GH=HE,即H是GE的中点;(3)解:如图所示,过点E作ET⊥AG于点T,∵∠AFE=60°,∴EF=2TF,设TF=x,则,∴AT=AF﹣TF=6﹣x,∴,∵NC∥AG,∴△ENC∽△EFA,∴,∵EC=BG=BD=4,FN=AF=6,EN=6﹣2x,即,∴,,∴,整理得:(x2+9)2﹣9(x2+9)x+14x2=0,即(x2+9﹣7x)(x2+9﹣2x)=0,解得:(舍去)或,∴,∴.【点评】本题是三角形综合题,考查了旋转的性质,相似三角形的性质与判定,等边三角形的性质与判定,勾股定理,平行线分线段成比例,含30度角的直角三角形的性质,熟练掌握旋转的性质是解题的关键。

2024年中考数学第一次模拟考试(四川成都卷)(全解全析)

2024年中考数学第一次模拟考试(四川成都卷)(全解全析)

2024年中考第一次模拟考试(成都卷)数学·全解全析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

A卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).【答案】B【分析】本题考查了相反数的定义,根据只有符号不同的两个数互为相反数进行解答即可得.−,故选:B.【详解】解:2024的相反数是20242.杭州亚运会已闭幕,中国代表团共收获201金、111银、71铜,总计383枚奖牌,创历史.图①是2023年10月2日乒乓球男单颁奖现场.图②是领奖台的示意图,则此领奖台主视图是()A.B.C.D.【答案】B【分析】本题考查了组合体的主视图.熟练掌握从正面看到的是主视图是解题的关键.根据从正面看到的是主视图进行判断作答即可.【详解】解:由题意知,是主视图,故选:B .3.俄罗斯和乌克兰的战争从去年2月24日开始到现在还在持续,战争持续的主要原因是:以美国为首的北约在不断拱火,据不完全统计仅美国就先后向乌克兰提供军火价值275.8亿美元,275.8亿用科学记数法如何表示( ) A .82.75810⨯ B .92.75810⨯ C .102.75810⨯ D .11275810.⨯【答案】C【分析】根据科学记数法的表示方法求解即可.【详解】解:275.8亿用科学记数法表示为102.75810⨯.故选:C .【点睛】此题考查了科学记数法的表示方法,解题的关键是熟练掌握科学记数法的表示方法.科学记数法的表示形式为10na ⨯的形式,其中1<10a ≤,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.4.若关于x 的方程230x mx −+=的一个根是11x =,则另一个根2x 及m 的值分别是( ) A .234x m ==−, B .214x m ==, C .224x m ==−, D .234x m ==,【答案】D【分析】本题考查了一元二次方程的解,把11x =代入方程先求出m 的值,从而确定出方程,再解方程即可求出2x ,理解方程的解并准确计算是解题的关键.【详解】解:∵11x =是方程230x mx −+=的一个根,∴130m −+=,∴4m =,∴方程为2430x x −+=,解得11x =,23x =,∴另一个根2x 为3,m 的值为4,故选:D .【答案】D【分析】分式方程两边乘以最简公分母,去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.【详解】解:A 、方程两边同乘以()2x −,得:()1122x x −=−−−,故本选项不符合题意;B 、解方程得2x =,当2x =时分母20x −=,2x =是方程的增根,故本选项不符合题意;C 、方程两边同乘以()2x −,得:()1122x x −=−−,故本选项不符合题意;D 、解方程得2x =,当2x =时分母20x −=,2x =是方程的增根,故本选项符合题意;故选:D . 【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.C . 302⎛⎫− ⎪⎝⎭, 【答案】A【分析】本题考查的是位似图形的概念、相似三角形的性质,根据位似图形的概念得出EF OC ∥,DE OP ∥是解题的关键.根据位似图形的概念得到EF OC ∥,DE OP ∥,进而证明CED CPO POD PAB ∽,∽,根据相似三角形的性质求出OP ,得到答案. 【详解】解:∵四边形OABC 为矩形,()23B ,,∴32AB OC OA ===,,∵矩形OABC 与矩形ODEF 是位似图形,∴EF OC ∥,DE OP ∥,∴CED CPO POD PAB ∽,∽∴CD DE CO OP =,PO ODPA AB = ∴31323OD OP OD OP OP −==+,,解得:2OP =,32OD =∴点P 的坐标为()20−,,故选:A .根据数据分析,可以判断本次监测数学最后一道单选题的正确答案应为()A.A B.B C.C D.D【答案】B【分析】先计算出最后一道单选题参考人数得分的平均分,再分别测算,进行比较即可.【详解】解:题目难度系数=该题参考人数得分的平均分÷该题的满分,∴最后一道单选题参考人数得分的平均分=题目难度系数⨯该题的满分0.345 1.7=⨯=,如果正确答案应为A,则参考人数得分的平均分为:36.21%5 1.8⨯≈,如果正确答案应为B,则参考人数得分的平均分为:33.85%5 1.7⨯≈,如果正确答案应为C,则参考人数得分的平均分为:17.7%50.9⨯≈,如果正确答案应为D,则参考人数得分的平均分为:11.96%50.6⨯≈,故选:B.【点睛】本题考查了统计表、新概念“题目难度系数”等知识,熟练掌握新概念“题目难度系数”,由统计表的数据计算出参考人数得分的平均分是解题的关键.下列说法中正确的是()A.开口向下B.当0x>时,y随x的增大而增大C.对称轴为直线1x=D.函数的最小值是5−【答案】C【分析】本题主要考查了求二次函数解析式以及二次函数的性质,把二次函数化简成顶点式即可解题.【详解】解:把()1,2−−,()0,5−,()3,2−代入2y ax bx c=++,得:25932a b cca b c−+=−⎧⎪=−⎨⎪++=−⎩,解得∶125abc=⎧⎪=−⎨⎪=−⎩,∴()222516y x x x=−−=−−,∴10a =>抛物线开口向上,对称轴为直线1x =,顶点坐标为()1,6−,即当1x =时,函数取最小值6−,当1x >时,y 随x 的增大而增大, 故A ,B ,D 错误,C 正确,故选:C .第Ⅱ卷(共68分)二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)9.《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的 倍.【答案】1.2【分析】设被称物的重量为a ,砝码的重量为1,根据图中可图列出方程即可求解. 【详解】解:设被称物的重量为a ,砝码的重量为1,依题意得,2.531a =⨯,解得 1.2a =,故答案为:1.2.【点睛】本题考查了比例的性质,掌握杠杆的原理是解题的关键.【答案】1−(答案不唯一)【分析】本题考查了一元二次方程根的情况求参数.根据题意得()2=24110k ∆−⨯⨯−+<,进行计算即可得.【详解】解:∵一元二次方程2210x x k +−+=没有实数根,∴()2=24110k ∆−⨯⨯−+<,∴0k <,∴k 的值可能是1−(答案不唯一),故答案为:1−(答案不唯一).11.如图所示是地球截面图,其中AB ,EF 分别表示南回归线和北回归线,CD 表示赤道,点P 表示太原市的位置.现已知地球南回归线的纬度是南纬()23262326BOD ''︒∠=︒,太原市的纬度是北纬()37323732POD ''︒∠=︒,而冬至正午时,太阳光直射南回归线(光线MB 的延长线经过地心O ),则太原市冬至正午时,太阳光线与地面水平线PQ 的夹角α的度数是 .【答案】292'︒【分析】设PQ 与OM 交于点K ,先由三角形内角和定理求出.292OKP '∠=︒,再根据平行线的性质求解即可.【详解】如图,设PQ 与OM 交于点K ,∵2326BOD '∠=︒,3732POD '∠=︒,∴6058POM POD BOD '∠=∠+∠=︒, 在OPK 中,180POK OPK OKP ∠+∠+∠=︒,90OPK ∠=︒,∴292OKP '∠=︒, ∵PN OM ∥,∴292OKP α'∠=∠=︒,故答案为:292'︒.【点睛】本题考查了三角形内角和定理,平行线的性质,读懂题意并熟练掌握知识点是解题的关键.【答案】<【分析】直接利用反比例函数的增减性分析得出答案. 【详解】∵11(,)M x y ,22(,)N x y 两点都在反比例函数5y x −=的图象上,50k =−<,且120x x >>,∴该图象在第二、四象限上,且每个分支上y 随x 的增大而增大,12,00y y <>,∴12y y <.故答案为:<.【点睛】本题主要考查了反比例函数的增减性,正确记忆反比例函数的性质是解题的关键.GB【答案】5【分析】本题考查了基本作图,掌握相似三角形的判定定理和性质定理是解题的关键.先根据作图得出AE 平分ABC∠,MN垂直平分AE,再根据平行四边形的性质和相似三角形的性质求解.【详解】解:四边形ABCD是平行四边形,4AB CD DE∴==,AD BC∥,AD BC=,AEB CBE∴∠=∠,由作图得:AE平分ABC∠,MN垂直平分AE,ABE CBE∴∠=∠,AF EF=,AEB ABE∴∠=∠,4AB AE CD ED∴===,2EF DE∴=,5BC AD DE∴==,AD BC,EFG BCG∴∽,∴25EG EFGB BC==,故答案为:25.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤.)【答案】(1)1+;(2)1x≤−【分析】(1)先代入三角函数值、计算负整数指数幂、化简二次根式,再去绝对值符号、计算乘法,最后计算加减即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找大大小小找不到确定不等式组的解集;【详解】(1)112cos301sin453−⎛⎫︒−︒⎪⎝⎭)2133=+−(4分)133=+−+(5分)1=+;(6分)(2)将()332x x+>−去括号得:336x x+>−(7分)解得:92x<;(8分)将15126x x+−≤−去分母得:()()3165x x+≤−−(9分)去括号得:3365x x+≤−+(10分)解得:1x≤−;(11分)故方程组的解集为:1x≤−.(12分)【点睛】本题主要考查解一元一次不等式组、实数的运算,特殊角三角函数,解题的关键是掌握实数的混合运算顺序和运算法则.15.(满分8分)中国城市基础设施的现代化程度显著提高,新技术、新手段得到广泛应用,基础设施的功能日益增加,承载能力、系统性和效率都有了显著的提升.城市经济发展了,居民生活条件改善了,如5G基础进设、新能源汽车充电桩、人工智能等,其中,随着人们对新能源汽车的认可,公共充电桩的需求量逐渐增大.根据巾商情报网信息:某月“特来电”“星星充电”“国家电网”“云快充”等企业投放公共充电桩的数量及市场份额的统计图如图所示请根据图中信息,解答下列问题:(1)①将统计图中“国家电网”的公共充电桩数量和市场份额补充完整;②统计图中所涉及的十一种企业投放公共充电桩数量的中位数是万台.(2)小辉收集到下列四个企业的图标,并将其制成编号分别为A,B,C,D的四张卡片(除编号和内容外,其余部分完全相同),将四张卡片背面朝上洗匀,放在桌面上,从中任意抽取一张,不放回,再抽取一张.请你用列表或画树状图的方法,求抽取到的两张卡片恰好是“A”和“D“的概率.【答案】(1)①见解析;②2 (2)1【分析】本题考查的是从统计图中获取信息,求解中位数,利用画树状图求解随机事件的概率,掌握以上基础的统计知识是解本题的关键;(1)①由星星充电10万台充电桩占比20%求解总的充电桩的数量,再求解国家电网的充电桩的数量与占比即可;②根据11家企业的充电桩是数量按照从大到小顺序排列后,排在第6的数据是中位数,从而可得答案;(2)先画树状图得到所有的等可能的结果数,再得到符合条件的结果数,结合概率公式可得答案.【详解】(1)解:①公共充电桩的总数为1020%50÷=(万台),∴“国家电网”的公共充电桩数量为5015105222 1.510.538−−−−−−−−−−=(万台),“国家电网”的公共充电桩的市场份额为8100%=16% 50⨯;如图,(2分)②统计图中所涉及的十一种企业投放公共充电桩数量的中位数是2万台.(4分) (2)画树状图为:(6分)共有12种等可能的结果,其中抽取到的两张卡片恰好是“A”和“D“的结果数为2,(7分) 所以抽取到的两张卡片恰好是“A”和“D“的概率21126==.(8分)【答案】要使该楼的日照间距系数不低于1.25,底部C 距F 处至少30m 远【分析】本题考查了解直角三角形的应用-坡度坡角问题,过点E 作EH CF ⊥,垂足为点H ,根据EF 的坡度为1:0.75,设4m EH x =,则3m FH x =,求得3x =,进而求得1,,L H H 的长,根据该楼的日照间距系数不低于1.25,列出不等式141.2536.3 1.1CF +≥−,解不等式即可.【详解】解:过点E 作EH CF ⊥,垂足为点H (1分)90H ∴∠=︒,在Rt EFH △中,EF 的坡度为1:0.75,43EH FH ∴=,(2分)设4m EH x =,则3m FH x =,5mEF x ∴===,(3分)15m EF =Q ,515m x ∴=,3x =,39m FH x ∴==,412m EH x ==.(4分) 9514L CF FH EA CF CF ∴=++=++=+,(5分) 24.31236.3H AB EH =+=+=,1 1.1H =,(6分)由题意得:141.2536.3 1.1CF +≥− 解得:30CF ≥(7分)答:要使该楼的日照间距系数不低于1.25,底部C 距F 处至少30m 远 (8分)是O 的一条弦,是O 的切线.是O 的直径.【答案】(1)见解析(2)3AG =【分析】(1)本题考查等腰三角形的性质和判定和切线的性质,连接OB ,利用切线性质和等角的余角相等,再结合题干的条件证明HBE HEB ∠=∠,即可解题.(2)本题考查等腰三角形性质、勾股定理和相似三角形的性质和判定,作HM BE ⊥于点M ,利用等腰三角形性质、勾股定理和题干的条件,求得HM 、BM 、EM 、AE ,再证明AGE HME ∽△△,利用相似比,即可解题. 【详解】(1)解:连接OB ,如图所示:BC 是O 的切线.90OBH ∴∠=︒,90HBE OBA ∴∠+∠=︒,(1分)直线EF AD ⊥于点G ,有90A GEA ∠+∠=︒,(2分)GEA HED ∠=∠,90A HEB ∴∠+∠=︒,(3分)OA OB =,A OBA ∴∠=∠,HBEHEB ∴∠=∠,BH EH ∴=.(4分)(2)解:作HM BE ⊥于点M ,如图所示:90HMB HME ∴∠=∠=︒,(5分)BH EH =,BM EM ∴=,(6分)E 是AB 的中点,8AB =,4AE BE ∴==,2BM EM ∴==,(7分)103BH =,83HM ∴==,(8分)90AGE HME ∠=∠=︒,则AEG HEM ∠=∠,AGE HME ∴∽△△,(9分)AE AG ME HM ∴=,有4823AG=,解得163AG =.(10分):2:1OBCOBQSS=则当ODE【答案】(1)8y x =;(2)存在,点Q 的横坐标为3732+或3732−+,理由见解析;(3)5412−+或10.【分析】(1)过F 作FH x ⊥轴于H ,由矩形的性质得90BCO FHO ∠=∠=︒,根据相似三角形的判定和性质得4OH =2FH =,求得()4,2F ,代入即可;(2)分情况①当Q 在OB 下方时,②当Q 在OB 上方时讨论即可得解;(3)分45DOE ∠=︒和45OED ∠=︒两种情况讨论,构造全等三角形,然后根据交点坐标及直线解析式求出k 的值即可. 【详解】(1)如图,过F 作FH x ⊥轴于H ,∵四边形OABC 是矩形,∴90BCO FHO ∠=∠=︒,∴FH BC ∥, ∴OHF OCB ∽,∴OF OHOB OC =,(1分)∵2OF BF =,点()6,E m ,∴6OC =,∴263OH =,∴4OH =,∵1tan 2FH BOC OH ∠==,∴2FH =,∴()4,2F ,∴428k =⨯=,∴反比例函数解析式为8y x =;(2分)(2)存在,理由:①当Q 在OB 下方时,满足:2:1OBCOBQSS=,则需平行OB 且过OC 中点的直线,找OC 中点P ,过1PQ OB 交反比例函数图象于点1Q ,由(1)得:()4,2F ,∴直线OB 解析式为:12y x =,∵()6,B m ,∴()6,0C ,则点()3,0P ,∴设直线1PQ 为12y x a =+,∴1032a =⨯+,解得:32a =−,∴直线1PQ 为1322y x =−,(3分)联立13228y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)∴点1Q的横坐标为;(4分)②当Q 在OB 上方时,满足:2:1OBCOBQSS=,则需平行OB 且过OA 中点的直线,找OA 中点M ,过2MQ OB∥交反比例函数图象于点2Q ,同(1)理:直线OB 解析式为:12y x =,∵()6,B m ,∴3m =,∴点()0,3A ,∴30,2M ⎛⎫ ⎪⎝⎭,则直线2MQ 为1322y x =+,(5分)联立13228y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)∴点2Q的横坐标为,综上可知:点Q的横坐标为或;(6分)(3)∵()2,1B ,(),1D k ,2,2k E ⎛⎫⎪⎝⎭,①如图,当45DOE ∠=︒时,作EM OE ⊥,交OD 延长线于点M ,作MN BC ⊥,交CB 延长线于N∴OEM △是等腰直角三角形,∴=OE EM ,∵90OEC EOC ∠+∠=︒,90OEC ∠+=︒,∴EOC MEN ∠=∠,又∵90OCE ENM ∠=∠=︒∴()AAS OCE ENM ≌,∴EN OC =,MN EC =,(7分)∴2,222k k M ⎛⎫−+ ⎪⎝⎭,设直线OD 的解析式为y gx =,∴1kg =,解得:1g k =, ∴直线OD 的解析式为xy k =,∴12222k k k ⎛⎫−=+⎪⎝⎭,解得:k =或k =(负值舍去),(8分)②当45OED ∠=︒,作OG OE ⊥,交ED 延长线于点G ,过点G 作GH x ⊥轴于点H ,同理①可证:GHO OCE ≌,∴OH EC =,GH OC =,∴,22k G ⎛⎫− ⎪⎝⎭,(9分)设直线DE 的解析式为y sx t =+,∴62122k s t ks t k s t ⎧−+=⎪⎪+=⎨⎪⎪+=⎩,解得:10124k s t =⎧⎪⎪=⎨⎪=⎪⎩或43734k s t ⎧=−⎪⎪⎪=−⎨⎪=⎪⎪⎩(不合题意,舍去) 综上,符合条件的k的值为52−或10.(10分)【点睛】本题主要考查了反比例函数,熟练掌握反比例函数的图象和性质,一次函数的性质,等腰直角三角形的性质,相似三角形的判定与性质,全等三角形的判定和性质等知识是解题的关键.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)【答案】2/0.5【分析】先算括号里,再算括号外,然后把2a 3a +的值代入化简后的式子进行计算即可解答.【详解】解:22313()93a a a a−+⋅−+2333(3)(3)a a a a a +−−=⋅+−23(3)(3)a a a a a −=⋅+−1(3)a a=+213a a =+, 2320a a +−=,232a a ∴+=,∴原式12=,故答案为:12.【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.【答案】()()()2111a a a a a −+−+− ()()211a a a −++【分析】把图2可有两种计算方法:①三个长方体相加;②大正方体减去小正方体,按要求列出式子,即可解答.【详解】解:将图2看作三个长方体相加时,可得式子:()()()()()()2111111111a a a a a a a a a a a ⨯⨯−+⨯⨯⨯−−−+⨯=+−+−;原式两边提取1a −,可得原式()()211a a a =−++. 故答案为:()()()2111a a a a a −+−+−;()()211a a a −++.【点睛】本题考查了整式的乘法,因式分解,观察图形的体积如何计算是解题的关键.【答案】1【分析】本题考查了几何概率及频率估计概率,根据落在三个区域的豆子数比等于各部分面积比,用各个区域面积比估计概率计算即可.【详解】解:A 区域面积为22π24πcm ´=,B 区域面积为()22π224π=12πcm ´+-,C 区域面积为()()()2222π22π22=8ππcm a a a ´++-´++,又落在这三个区域中的豆子数依次为m ,n ,34n m−, 4π112π3m n \==,即3n m =,238ππ44πn m a a m -+\=,解得:121,9a a ==-(不合题意,舍去),故答案为:1. 为平面内任意一点,将ACD 绕点【答案】533,28⎛⎫−− ⎪⎝⎭或()2,3−【分析】根据题意,分别求出点,A C 的坐标,设(,)M m n ,根据旋转的性质,可用含,m n 的式子表示出对应点,,A C D '''的坐标,分类讨论,①当点,A C ''在抛物线213222y x x =−−上时;②当点,A D ''在抛物线213222y x x =−−上时;③当点,C D ''在抛物线213222y x x =−−上时;列二元一次方程组并求解即可.【详解】解:抛物线213222y x x =−−与x 轴交于,A B 两点,令0y =,∴2132022x x −−=,解得,11x =−,24x =,∴(1,0)A −,(4,0)B , ∵点C 的横坐标为5,∴213552322y =⨯−⨯−=,即(5,3)C ,∵将ACD 绕点M 旋转180︒得到对应的A C D '''△(点,,A C D 的对应点分别为A ',C ',D ¢),且(1,0)A −,(5,3)C ,()3,0D ,∴设(,)M m n ,根据旋转的性质,则点A 与点A '关于点M 中心对称,点C 与点C '关于点M 中心对称,点D 与点D ¢关于点M 中心对称, ∴()21,2A m n '+,()25,23C m n '−−,(23,2)D m n '−,①当点,A C ''在抛物线213222y x x =−−上时,如图所示,()()()()22132121222213252522322m m n m m n ⎧+−+−=⎪⎪⎨⎪−−−−=−⎪⎩,解方程组得,232m n =⎧⎪⎨=⎪⎩, ∴点32,2M ⎛⎫⎪⎝⎭,则C '的坐标为(1,0)−,与点A 重合,不符合题意;②当点,A D ''在抛物线213222y x x =−−上时,如图所示,()()()()2213212122221323232222m m n m m n ⎧+−+−=⎪⎪⎨⎪−−−−=⎪⎩,解方程组得,54916m n ⎧=⎪⎪⎨⎪=−⎪⎩, ∴点59,416M ⎛⎫− ⎪⎝⎭,则C '的坐标为533,28⎛⎫−− ⎪⎝⎭,符合题意;③当点,C D ''在抛物线213222y x x =−−上时,如图所示,()()()()22132525223221323232222m m n m m n⎧−−−−=−⎪⎪⎨⎪−−−−=⎪⎩,解方程组得,720m n ⎧=⎪⎨⎪=⎩, ∴点7,02M ⎛⎫⎪⎝⎭,则C '的坐标为()2,3−,符合题意;综上所示,点C '的坐标为533,28⎛⎫−− ⎪⎝⎭或()2,3−, 故答案为:533,28⎛⎫−− ⎪⎝⎭或()2,3−.【点睛】本题主要考查二次函数图形与几何图形的综合,掌握二次函数图像的性质,旋转的性质求点坐标,解二元方程组是解题的关键.,将ABE 沿BE【答案】①②④⑤【分析】①正确.由正方形ABCD 的性质可证明SAS BCP DCP ≌(),可得结论;②正确.证明CFB EFB ∠=∠,推出90CBF CFB ∠∠=︒+,推出22180CBF CFB ∠∠=︒+,由2180EFD CFB ∠∠=︒+,可得结论;③错误.可以证明PQ PA CQ <+;④正确.利用相似三角形的性质证明90BPF ∠=︒,可得结论;⑤正确.求出BD ,BH ,根据DH BD BH ≥−,可得结论.【详解】解:∵四边形ABCD 是正方形,∴CB CD =,190452BCP DCP ∠=∠=⨯︒=︒,在BCP 和DCP 中CB CD BCP DCPCP CP =⎧⎪∠=∠⎨⎪=⎩∴()SAS BCP DCP ≌△△,∴PB PD =,故①正确;∵ABE 沿BE 翻折,点A 落在点H 处,直线EH 交CD 于点F ,∴ABE BHE ≌,则BH AB BC ==,90BHF BCF ∠=∠=︒,∵BF BF =,∴()HL BHF BCF ≌,则HBF CBF ∠=∠,∵ABE HBE ∠=∠,∴190452EBF HBE HBF ∠=∠+∠=⨯︒=︒,∵45QCF EBF ∠=∠=︒,PQB FQC ∠=∠,∴PQB FQC ∽,则BQ PQ CQ FQ =,BPQ CFQ ∠=∠,∴BQ CQ PQ FQ =, ∵PQF BQC ∠=∠,∴PQF BQC ∽,则QPF QBC ∠=∠,∵90QBC CFQ ∠+∠=︒,∴90BPF BPQ QPF ∠=∠+∠=︒,∴45PBF PFB ∠=∠=︒,∴PB PF =,则BPF △为等腰直角三角形,故④正确;∵90BPF BPQ QPF ∠=∠+∠=︒,∴90EPF ∠=︒,∵90EDF ∠=︒,∴P ,E ,D ,F 四点共圆,∴PEF PDF ∠=∠,∵PB PD PF ==,∴PDF PFD ∠=∠, ∵180AEB DEP ∠∠=︒+,180DEP DFP ∠∠=︒+,∴AEB DFP ∠=∠,∴AEB BEH ∠=∠,∵BH EF ⊥,∴90BAE BHE ∠=∠=︒,∵BE BE =,∴()AAS BEA BEH ≌,∴AB BH BC ==,∵90BHF BCF ∠∠=︒,BF BF =,∴()Rt Rt HL BFH BFC ≌,∴BFC BFH ∠=∠,∵90CBF BFC ∠∠=︒+,∴22180CBF CFB ∠∠=︒+,∵2180EFD CFH EFD CFB ∠∠=∠∠=︒++,∴2EFD CBF ∠=∠,故②正确,将ABP 绕点B 顺时针旋转90︒得到BCT ,连接QT ,∴ABP CBT ∠=∠,∴90PBT ABC ∠=∠=︒,∴45PBQ TBQ ∠=∠=︒,∵BQ BQ =,BP BT =,∴()SAS BQP BQT ≌,∴PQ QT =,∵QT CQ CT CQ AP <=++,∴PQ AP CQ <+,故③错误,连接BD ,DH ,∵BD ==,4BH AB ==,∴4DH BD BH ≥−=,∴DH 的最小值为4,故⑤正确.故答案为:①②④⑤.【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题关键是学会添加常用辅助线吗,构造全等三角形解决问题,属于中考填空题中的压轴题.二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.) 24.(满分8分)(1)【阅读理解】倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司采购一批包含A 、B 两款不同型号的垃圾分拣机器人.已知1台A 型机器人和1台B 型机器人同时工作10小时,可处理垃圾5吨;若1台B 型机器人先工作5小时后,再加入1台A 型机器人同时工作,则还需工作8小时才能处理完5吨垃圾.问1台A 型机器人和1台B 型机器若垃圾处理厂采购的这批机器人(A、B两款机器人的总台数不超过80台)每小时共能处理垃圾20吨,请利用(2)中的数据回答:如何采购才能使总费用最省?最少费用是多少万元?【答案】(1)1台A型81台B型13小时的垃圾处理量(2)1台A型机器人和1台B型机器人每小时分别处理垃圾0.3吨和0.2吨(3)当采购A型机器人66台,B型机器人1台时,采购费用最低,为1334万元【分析】(1)根据第二个线段图可以得到解答;(2)设1台A型机器人和1台B型机器人每小时分别处理垃圾x吨和y吨,由题意得到关于x、y的二元一次方程组并解方程组即可;(3)设采购A型机器人t台,由题意可以用t表示B型机器人的台数,并求得t的取值范围.然后用t表示出采购费用,根据一次函数的增减性即可得解.【详解】解:(1)根据第二个线段图可得:1台A型8小时的垃圾处理量1+台B型13小时的垃圾处理量5=吨;故答案为:1台A型8小时的垃圾处理量,1台B型13小时的垃圾处理量;(2分)(2)设1台A型机器人和1台B型机器人每小时分别处理垃圾x吨和y吨,则:101058135x y x y +=⎧⎨+=⎩,解之可得:0.30.2x y =⎧⎨=⎩,(3分)经检验,0.30.2x y =⎧⎨=⎩是原方程组的解,且符合题意,答:1台A 型机器人和1台B 型机器人每小时分别处理垃圾0.3吨和0.2吨;(4分)(3)设采购A 型机器人t 台,则采购B 型机器人200.3100 1.50.2t t −=−(台),则:()100 1.5800.3200.2100 1.520t t t t ⎧−+≤⎪≤⎨⎪−≤⎩,解之可得:4066t ≤≤(t 为整数),(5分)由题意可知,采购费用为:()2014100 1.51400w t t t =+−=−+,(6分)∵10−<,∴w 随t 的增大而减小,∴当66t =时,采购费用最低,为1400661334−=(万元),(7分)此时100 1.51t −=台,即采购A 型机器人66台,B 型机器人1台,答:当采购A 型机器人66台,B 型机器人1台时,采购费用最低,为1334万元.(8分)【点睛】本题考查一次函数的综合应用,熟练掌握二元一次方程组的应用、一元一次不等式组的应用及一次函数的增减性是解题关键.(1)求抛物线的解析式;(2)若点D 在抛物线上,E 在抛物线的对称轴上,以A B D E ,,,为顶点的四边形是平行四边形,且平行四边形的一条边,求点D 的坐标;(3)抛物线的对称轴交x 轴于点G F ,在对称轴上,且在第二象限,2FG BC =,不平行于y 轴的直线l 分别交线段BF CF ,(不含端点)于M N ,两点,直线l 与抛物线只有一个公共点,求证:MF NF +的值是个定值.【答案】(1)223y x x =−−+(2)D 的坐标为()4,5−−或()2,5−;(3)证明见解析 【分析】(1)先求解A 的坐标,再求解B ,C 的坐标,再利用待定系数法求解解析式即可;(2)设()1,E t −,()2,23D n n n −−+,而AB DE ∥,分两种情况讨论: 当平行四边形为平行四边形ABDE ,当平行四边形为平行四边形ABED ,再结合平行四边形的性质可得答案;(3)先求解()1,8F −,直线FB 为412y x =+,直线FC 为44y x =−+,设直线MN 为y kx e =+,由()2230x k x e +++−=有两个相等的实数根,可得()21234e k =++,求解直线MN 为()21234y kx k =+++,再求解M ,N 的坐标,结合勾股定理进行计算即可.【详解】(1)解:∵抛物线23y ax bx =++,当0x =时,3y =,即3OA =,()0,3A ,∵3OA OB OC ==,∴1OC =,3OB =,∴()3,0B −,()1,0C ,(1分)∴933030a b a b −+=⎧⎨++=⎩,解得:12a b =−⎧⎨=−⎩,∴抛物线为:223y x x =−−+;(2分)(2)∵抛物线223y x x =−−+,∴对称轴为直线()2121x −=−=−⨯−,设()1,E t −,()2,23D n n n −−+,而AB DE ∥,()0,3A ,()3,0B −,(3分)由平行四边形ABDE 的性质可得:2013233n t n n +=−−⎧⎨=−−++⎩,解得:42n t =−⎧⎨=−⎩,∴()4,5D −−,(4分)由平行四边形ABED 的性质可得:231323n t n n −=−⎧⎨+=−−+⎩,解得:28n t =⎧⎨=−⎩,∴()2,5D −;综上:D 的坐标为()4,5−−或()2,5−;(5分)(3)∵抛物线223y x x =−−+,∴对称轴为直线()2121x −=−=−⨯−,∵4BC =,2FG BC =,∴8FG =,即()1,8F −,设直线FB 为y mx n =+,∴308m n m n −+=⎧⎨−+=⎩,解得:412m n =⎧⎨=⎩,∴直线FB 为412y x =+,(6分)同理可得:直线FC 为44y x =−+,设直线MN 为y kx e =+,∴223y kx e y x x =+⎧⎨=−−+⎩,∴结合题意可得:223x x kx e −−+=+即()2230x k x e +++−=有两个相等的实数根, ∴()21234e k =++,∴直线MN 为()21234y kx k =+++,(7分) ∴()24121234y x y kx k =+⎧⎪⎨=+++⎪⎩,解得:844k x y k +⎧=−⎪⎨⎪=−+⎩,即8,44k M k +⎛⎫−−+ ⎪⎝⎭,同理可得:,44k N k ⎛⎫−+ ⎪⎝⎭, ∴()()22228171484416k MF k k +⎛⎫=−++−+−=+ ⎪⎝⎭,()()2222171484416k NF k k ⎛⎫=−+++−=− ⎪⎝⎭,(8分) 当直线MN 从左往右上升时,04k <<,∴)4MF k +,)4NF k =−,∴MF NF +=(9分) 当直线MN 从左往右下降时,40k −<<,)4MF k +,)4NF k =−,∴MF NF +=∴MF NF +为定值.(10分) 【点睛】本题考查的是利用待定系数法求解一次函数与二次函数的解析式,二次函数与一次函数的交点坐标问题,一次函数的交点坐标,勾股定理的应用,平行四边形的性质,本题难度大,计算量大,属于中考压轴题. 26.(满分12分)已知Rt ABC △,90ACB ∠=︒,30ABC ∠=︒,CD AB ⊥于点D ,AD AE =.(1)如图1,若60EAD ∠=︒,取BD 的中点F ,连接EF ,2AD =,求EF 的长度;(2)如图2,连接BE ,点G 在线段BE 上,且GE CD =,连接CG 、AG ,若90AGC GCB ∠+∠=︒,H 为BG 中点,证明:CH BH CD =+;(3)如图3,在(2)的条件下,将AEG △绕点A 逆时针旋转得APQ △,连接BQ ,点R 是BQ 中点,连接CR ,若5AC =,在APQ △旋转过程中,当2CR BR −最大时,直线CR 与直线AB 交于点T ,请直接写出BQT △的面积.【答案】(1)EF =见详解(3)【分析】(1)解2,5,AEF AE AF EAF ==∠V ,60=︒,进而求得结果;(2)连接CE ,作AT CE ⊥于T ,不妨设AD AE =2=,可证得AEG ADC V V ≌,从而AEG A ∠=∠90DC =︒,进而得出点A 、C 、B 、E 共圆,从而30,60AEC ABC CEB CAB ∠=∠=︒∠=∠=︒,从而求得,AT ET 的值,进而得出EH CE ==,从而得出CEH △是等边三角形,进一步得出结论;(3)取AB 的中点O ,连接OR ,在AB 上截取OT 54=,可推出点R 在以O 为圆心,52为半径的圆上运动,可证得ROT BOR V V ∽,从而得出12RT =BR ,进而推出22CR BR CT −≤,从而当C 、T 、R 共线时,2CR BR −最大;作OS CR ⊥于S ,作RV AB ⊥于V ,解Rt CRT 求得4CT =,根据TOS TCD V V ∽求得OS ST ==,解Rt ROS 求得SR =,从而得出RT =,根据RTV CTD V V ∽求得RV =【详解】(1)解:如图1,作EG AB ⊥于G ,90,AGE EGF ∴∠=∠=︒30,90,ABC ACB ∠=︒∠=︒Q 60,BAC ∴∠=︒(1分)90,ADC ∠=︒Q 24,AC AD ∴==28,AB AC ∴==6,BD AB AD ∴=−=∵F 是BD 的中点,13,2DF BD ∴==5,AF AD DF ∴=+=(2分)在Rt AEG 中,2,60AE AD EAD ==∠=︒,2cos 601,2sin 60AG EG ∴=︒==︒=4,FG AF AG ∴=−=EF ∴=(3分)(2)证明:如图2,连接CE ,作AT CE ⊥于T ,不妨设2AD AE ==,90,ACB ∠=︒90,ACG GCB ∴∠+∠=︒90,AGC GCB ∠+∠=︒Q ,AGC ACG ∴∠=∠,AG AC ∴=,,AE AD GE CD ==Q (),AEG ADC SSS ∴≌(4分)90,AEG ADC ∴∠=∠=︒180,AEG ACB ∴∠+∠=︒A C B E ∴、、、四点共圆,30,60,AEC ABC CEB CAB ∴∠=∠=︒∠=∠=︒11,2AT AE ET AE ∴====(5分)CT ==Q CE ET CT ∴=+=2,90,60,AD ADC CAD =∠=︒∠=︒2tan 60EG CD ∴==︒=2,8,AE AD AB ===Q EB ∴=BG BE EG ∴=−=(6分)H 是BG 中点,12BH GH GB ∴===EH EB BH ∴=−= ,EH CE ∴=CEH ∴是等边三角形,;CH EH EG GH CD BH ∴==+=+(7分)(3)解:如图3,取AB 的中点O ,连接OR ,在AB 上截取54OT =, ∵R 是BQ 的中点,115,222OR AQ AC ∴=== ∴点R 在以O 为圆心,52为半径的圆上运动,1,,2OT OR ROT BOR OR OB ==∠=∠Q ∴ROT BOR V V ∽,(8分)1,2RT OT BR OR ∴==1,2RT BR ∴=,CR RT CT ∴−≤ 222,CR RT CT ∴−≤22,CR BR CT ∴−≤∴当C 、T 、R 共线时,2CR BR −最大,(9分)作OS CR ⊥于S ,作RV AB ⊥于V ,在Rt CRT 中,5524CD DT OD OT ==+=+15,4=CT ∴== 由TOS TCD V V ∽得,,OS ST OT CD DT CT ==5154ST =(10分)OS ST ∴===在Rt ROS中,14SR =RT SR ST ∴=−=(11分) 由RTV CTD V V ∽得,,RV RT CD CT=RV ∴=154BQT S BT RV ∴=⋅==V (12分)【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,确定圆的条件,解直角三角形,等边三角形的判定和性质等知识,解决问题的关键是较强的计算能力.。

【3套试卷】成都市中考模拟考试数学试题含答案

【3套试卷】成都市中考模拟考试数学试题含答案

中考一模数学试卷及答案1.以下代数式中, x 1的一个有理化因式是()【A】x 1【B】x 1【C】x 1【D】x 12. 为了认识学生双休日造作业的时间,老师随机抽查了10 位学生双休日造作业时间,结果以下表所示:作业时间(分90100120150200钟)人数22231那么这 10 位学生双休日造作业时间的中位数与众数分别是()【A】150,150【B】 120,150【C】135,150【D】 150,1203. 已知 P是ABC 内一点,联接PA、PB、PC,把ABC 的面积三均分,则P 点必定是()【A】ABC 的三边中垂线的交点【B】ABC 的三条角均分线的交点【C】ABC 的三条高的叫点【D】ABC 的三条中线的交点4. 以下运算正确的选项是个数是①x2x3x6;② x2 x3x5;③ (3x 2 )39 x6;④(2 x2 )24x4()【A】1 个【B】2 个【C】3 个【D】4 个5.在平面直角坐标系内,点 A 的坐标为( 1,0),点 B 的坐标为( a,0),圆 A 的半径为 2,以下说法中不正确的选项是()【A】当 a=-1 时,点 B 在圆 A 上【B】当 a C a 【D】当 -11时,点 B在圆 A内-1B Aa3时,点 B在圆 A内6.以下命题中,属于假命题的是()【A】对角线相等的梯形是等腰梯形【B】两腰相等的梯形是等腰梯形【C】底角相等的梯形是等腰梯形【D】等腰三角形被平行于底边的直线截成两部分,所截得的四边形的等腰梯形一、填空题(本大题共12 题,每题 4 分,满分48 分)7.科学家发现一种病毒的直径为0.000104米,用科学计数法表示为 _______米8.方程的 2 x 3x 根是_______9.已知对于 x 的一元二次方程x2bx 10 有两个不相等的实数根,则 b 的值为_________10. 将抛物线y x2 2 x向左平移两个单位长度,再向下平移 3 个长度单位,获取的抛物线的表达式为_________11.已知反比率函数的图像经过点p ( 2,1) ,则这个函数的图像分别在第_________ 象限。

精选成都市初三中考数学第一次模拟试卷【含答案】

精选成都市初三中考数学第一次模拟试卷【含答案】

精选成都市初三中考数学第一次模拟试卷【含答案】一、选择题(本大题共8小题,共24分)1.2的算术平方根是()A. B. C. D. 22.下列运算正确的是()A. B. C. D.3.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. B. C. D.4.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是26.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. B. C. D.7.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A.B.C.D.8.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.二、填空题(本大题共8小题,共24分)9.-5的相反数是______.10.分解因式:4a2-4a+1=______.11.若在实数范围内有意义,则x的取值范围为______.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.13.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.15.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)17.计算|-6|+(-2)3+()018.化简:19.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)20.解不等式组21.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?24.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:=1.41,=1.73)25.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.27.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=S△OBG,连接GP,则当BO 为何值时,四边形PKBG的面积最大?最大面积为多少?答案和解析1.【答案】B【解析】解:2的算术平方根是,故选:B.根据算术平方根的定义直接解答即可.本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.【答案】C【解析】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.【答案】D【解析】解:将180000用科学记数法表示为1.8×105,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:从左边看得到的是两个叠在一起的正方形.故选:A.左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.5.【答案】A【解析】解:观察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选:A.先根据表格提示的数据得出50名学生读书的册数,然后除以50即可求出平均数;在这组样本数据中,3出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2,根据方差公式即可得出答案.本题考查的知识点有:用样本估计总体、众数、方差以及中位数的知识,解题的关键是牢记概念及公式.6.【答案】C【解析】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=-2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.7.【答案】D【解析】解:过点P作PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO=6∴S矩形ABDO=S▱ABCD∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=-3故选:D.由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.【答案】D【解析】解:连接AC、BD、OE,∵四边形ABCD是菱形,∴AC⊥BD,AM=CM,BM=DM,∵⊙O与边AB、AD都相切,∴点O在AC上,设AM=x,BM=y,∵∠BAD<90°,∴x>y,由勾股定理得,x2+y2=25,∵菱形ABCD的面积为20,∴xy=5,,解得,x=2,y=,∵⊙O与边AB相切,∴∠OEA=90°,∵∠OEA=∠BMA,∠OAE=∠BAM,∴△AOE∽△ABM,∴=,即=,解得,OE=,故选:D.连接AC、BD、OE,根据菱形的性质、勾股定理分别求出AM、BM,根据切线的性质得到∠OEA=90°,证明△AOE∽△ABM,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、菱形的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.9.【答案】5【解析】解:-5的相反数是5.故答案为:5.根据相反数的定义直接求得结果.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.【答案】(2a-1)2【解析】解:4a2-4a+1=(2a-1)2.故答案为:(2a-1)2.根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.11.【答案】x≥2【解析】解:由题意得:x-2≥0,解得:x≥2,故答案为:x≥2.根据二次根式有意义的条件可得x-2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【答案】30【解析】解:∵△AOB绕点O按逆时针方向旋转45°后得到△COD,∴∠BOD=45°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为:30.根据旋转的性质可得∠BOD,再根据∠AOD=∠BOD-∠AOB计算即可得解.本题考查了旋转的性质,主要利用了旋转角的概念,需熟记.13.【答案】【解析】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】-40【解析】解:根据题意得x+32=x,解得x=-40.故答案是:-40.根据题意得x+32=x,解方程即可求得x的值.本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.【答案】(2+2)【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC-BP=(4+4)cm,∵∠EPC=180°-90°-60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.本题考查了翻折变换-折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.16.【答案】【解析】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助线是解题的关键.17.【答案】解:原式=6-8+1=-1.【解析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:==a.【解析】根据分式的减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.【答案】【解析】解:(1)画树状图为:共有4种等可能的结果数,其中小明和小刚都在本周日上午去游玩的结果数为1,所以小明和小刚都在本周日上午去游玩的概率=;故答案为(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,所以他们三人在同一个半天去游玩的概率=.(1)画树状图展示所有4种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.【答案】解:解不等式2x>1-x,得:x>,解不等式4x+2<x+4,得:x<,则不等式组的解集为<x<.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】200 12 36 108【解析】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DCA.由翻折的性质可知:∠EAB=∠BAC,∠DCF=∠DCA.∴∠EAB=∠DCF.∠∠在△ABE和△CDF中,∠∠∴△ABE≌△CDF(ASA),∴DF=BE.∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°-30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.【解析】(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等四边形是平行四边形可证明AECF是平行四边形;(2)由折叠性质得到∠BAE=∠CAE=30°,求得∠ACE=90°-30°=60°,即∠CAE=∠ACE,得到EA=EC,于是得到结论.本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.23.【答案】240【解析】解:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=-6x+300,由题意(-6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.本题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.24.【答案】150° 5【解析】解:(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.∵∠DCG=60°,∴∠CDN=30°.又∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠MAD=∠CDN=30°(同角的余角相等),∴箱盖绕点A转过的角度为:360°-90°-30°-90°=150°.在直角△BCH中,∠BCH=30°,BC=10cm,则BH=BC=5cm.故答案是:150°;5;(2)在直角△AMD中,AD=BC=10cm,∠MAD=30°,则MD=AD•sin30°=×10=5(cm).∵∠DCN=30°,∴cos∠DCN=cos30°==,即=,解得EF=32.4.即箱子的宽EF是32.4cm.(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.利用矩形的性质、直角三角形的性质以及等角的余角相等得到∠MAD=30°,根据周角的定义易求箱盖绕点A转过的角度;通过解直角△BHC来求BH的长度;(2)通过解直角△AMD得到线段MD的长度,则DN=65-EF-DM,利用解直角△DCN来求CD的长度,即EF的长度即可.本题考查了解直角三角形的应用.主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算.25.【答案】解:(1)∵点A(,0)与点B(0,-),∴OA=,OB=,∴AB==2,∵∠AOB=90°,∴AB是直径,∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°-∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB•tan30°=×=,∴AC=OA-OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA-AF=,∴点E的坐标为:(,).【解析】(1)由点A(,0)与点B(0,-),可求得线段AB的长,然后由∠AOB=90°,可得AB是直径,继而求得⊙M的半径;(2)由圆周角定理可得:∠COD=∠ABC,又由∠COD=∠CBO,即可得BD平分∠ABO;(3)首先过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,易得△AEC是等边三角形,继而求得EF与AF的长,则可求得点E的坐标.此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.26.【答案】解:(1)∵二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),∴,得,∴y=x2-x-=,∴二次函数的表达式是y=x2-x-,顶点坐标是(,);(2)①点M的坐标为(,),(,-)或(,-),理由:当AM1⊥AB时,如右图1所示,∵点A(-1,0),点B(0,-),∴OA=1,OB=,∴tan∠BAO==,∴∠BAO=60°,∴∠OAM1=30°,∴tan∠OAM1=,解得,DM1=,∴M1的坐标为(,);当BM3⊥AB时,同理可得,,解得,DM3=,∴M3的坐标为(,-);当点M2到线段AB的中点的距离等于线段AB的一半时,∵点A(-1,0),点B(0,-),∴线段AB中点的坐标为(-,),线段AB的长度是2,设点M2的坐标为(,m),则=1,解得,m=,即点M2的坐标为(,-);由上可得,点M的坐标为(,),(,-)或(,-);②如图2所示,作AB的垂直平分线,于y轴交于点F,由题意知,AB=2,∠BAF=∠ABO=30°,∠AFB=120°,∴以F为圆心,AF长为半径作圆交对称轴于点M和M′点,则∠AMB=∠AM′B=∠AFB=60°,∵∠BAF=∠ABO=30°,OA=1,∴∠FAO=30°,AF==FM=FM′,OF=,过点F作FG⊥MM′于点G,∵FG=,∴MG=M′G=,又∵G(,-),∴M(,),M′(,),∴≤t≤.【解析】(1)根据二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),可以求得该函数的解析式,然后将函数解析式化为顶点式,即可得到该函数的顶点坐标;(2)①根据题意,画出相应的图形,然后利用分类讨论的方法即可求得点M的坐标;②根据题意,构造一个圆,然后根据圆周角与圆心角的关系和∠AMB不小于60°,即可求得t的取值范围.本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用分类讨论和数形结合的思想解答.27.【答案】不可能【解析】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②如图2中,∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°-∠AOB,在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中,,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;③结论:OA=OE.理由:如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.∵AB=BC,BQ=BO,∴AQ=QC,∵∠QAO=∠EOC,∠AQO=∠ECO=135°,∴△AQO≌△OCE(ASA),∴AO=OE.(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=S△OBG,∴=()2=,∴OP=1,∴S△POG=OG•OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=4,∴b=,∴S△OBG=ab=a==,∴当a2=2时,△OBG有最大值1,此时S△PKO=S△OBG=,∴四边形PKBG的最大面积为1+1+=.∴当BO为时,四边形PKBG的面积最大,最大面积为.(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;③结论:OA=OE.如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.证明△AQO ≌△OCE(ASA)即可.(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△OBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.。

初中数学四川省成都市中考模拟数学模拟考试卷一含答案解析.docx

初中数学四川省成都市中考模拟数学模拟考试卷一含答案解析.docx

xx学校xx 学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:(2019·山东中考模拟)在实数1、0、﹣1、﹣2中,最小的实数是()A.-2 B.-1 C.1 D.0 试题2:(2019·浙江中考模拟)据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为A. B. C. D.试题3:(2019·北京中考模拟)某个几何体的三视图如图所示,该几何体是A. B. C. D.试题4:(2019·广东中考模拟)下列运算正确的是()评卷人得分A.3a﹣a=3 B.a6÷a2=a3C.﹣a(1﹣a)=﹣a+a2 D.试题5:(2019·上海中考模拟)关于反比例函数,下列说法正确的是()A.函数图像经过点(2,2); B.函数图像位于第一、三象限;C.当时,函数值随着的增大而增大; D.当时,.试题6:(2019·甘肃中考模拟)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9试题7:(2019·山东中考模拟)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为( )A.1.70,1.75 B.1.70,1.70C.1.65,1.75 D.1.65,1.70试题8:(2019·云南中考模拟)某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x件,则下列方程正确的是()A.=4 B.=4C.=4 D.试题9:(2019·江苏中考模拟)如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100° B.120° C.130° D.150°试题10:(2019·广州大学附属中学中考模拟)如图,抛物线过点和点,且顶点在第四象限,设,则的取值范围是().A. B. C. D.试题11:(2019·广东中考模拟)如果多边形的每个外角都是45°,那么这个多边形的边数是_____.试题12:(2019·云南初三)函数y=中自变量x的取值范围是___________.试题13:(2019·安徽中考模拟)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD=2,BC=4,则EF=________.试题14:(2019·湖北中考模拟)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.试题15:(2019·北京中考模拟)计算:.试题16:(2019·湖南中考模拟)解不等式组:,并把解集在数轴上表示出来.试题17:(2019·河南中考模拟)先化简,再求值:,其中.试题18:(2019·哈尔滨市第四十七中学中考模拟)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生?(2)将图1补充完整;(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.试题19:(2019·上海中考模拟)如图,一座古塔AH的高为33米,AH⊥直线l,某校九年级数学兴趣小组为了测得该古塔塔刹AB 的高,在直线l上选取了点D,在D处测得点A的仰角为26.6°,测得点B的仰角为22.8°,求该古塔塔刹AB的高.(精确到0.1米)(参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42)试题20:(2019·江西中考模拟)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k≠0)的图象经过点B.(1)求反比例函数的解析式;(2)若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积.试题21:(2019·江苏中考模拟)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若sinG=0.6,CF=4,求GA的长.试题22:(2019·重庆中考模拟)在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是______.试题23:(2019·山东中考模拟)关于 x 的一元二次方程(a﹣1)x2﹣2x+3=0 有实数根,则整数 a 的最大值是_____________.试题24:(2019·四川中考模拟)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则=_____.试题25:(2019·江苏中考模拟)如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.试题26:(2019·福建中考模拟)如图,直线y=-x+b与双曲线分别相交于点A,B,C,D,已知点A的坐标为(-1,4),且AB:CD=5:2,则m=_________.试题27:(2019·辽宁中考模拟)某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量万件与销售单价元之间符合一次函数关系,其图象如图所示.求y与x的函数关系式;物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x定为每件多少元时,厂家每月获得的利润最大?最大利润是多少?试题28:(2019·广东中考模拟)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)若点F为AB的中点,连接FN、FM(如图②),求证:∠MFN=∠BDC.试题29:(2019·湖南中考模拟)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“衍生直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.试题1答案:A【解析】1>0>-1>-2最小的实数是-2.故选A.【点睛】本题考查了实数的大小比较,熟练掌握比较法则是解题的关键.试题2答案:D【解析】4 600 000 000用科学记数法表示为:4.6×109.故选D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题3答案:A【解析】由该几何体的主视图可以判断C项错误,由该几何体的俯视图可以判断B和D错误,所以选择A项.【点睛】本题考查由三视图判断几何体,解题的关键是掌握根据三视图判断几何体.试题4答案:C【解析】A.3a=a=2a,故A错误;B.a6÷a2=a4,故B错误;C.﹣a(1﹣a)=﹣a+a2,故C正确;D.=4,故D错误.故选:C.【点睛】本题考查了合并同类项,同底数幂的除法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握.试题5答案:C【解析】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.试题6答案:A【解析】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.试题7答案:A【解析】15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人,所以,众数是1.75.因此,中位数与众数分别是1.70,1.75,故选A.【点睛】本题考查了中位数与众数,熟练掌握中位数及众数的定义以及求解方法是解题的关键.试题8答案:A【解析】设每月原计划生产的医疗器械有x件,根据题意,得:故选A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.试题9答案:C【解析】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,试题10答案:B【解析】∵抛物线()过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,=a+b+c,∴P==a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a <3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选B.试题11答案:8【解析】∵一个多边形的每个外角都等于45°,∴多边形的边数为360°÷45°=8.则这个多边形是八边形.试题12答案:x≥﹣且x≠1【解析】根据题意得:解得:x≥﹣且x≠1.试题13答案:【解析】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2- =,故答案为:.【点睛】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.试题14答案:20【解析】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.试题15答案:7.【解析】【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.试题16答案:则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.【解析】解不等式①得:x>﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.试题17答案:,.【解析】原式=,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.试题18答案:200名;见解析;;(4)375.【解析】,答:此次抽样调查中,共调查了200名学生;反对的人数为:,补全的条形统计图如右图所示;扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;(4),答:该校1500名学生中有375名学生持“无所谓”意见.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.试题19答案:该古塔塔刹AB的高为5.3m.【解析】∵AH⊥直线l,∴∠AHD=90°,在Rt△ADH中,tan∠ADH=,∴DH=,在Rt△BDH中,tan∠BDH=,∴DH=∴,解得:AB≈5.3m,答:该古塔塔刹AB的高为5.3m.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,正确的解直角三角形是解题的关键.试题20答案:(1)y=;(2)36;【解析】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=36.【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.试题21答案:(1)见解析;(2)见解析;(3)AG=5.【解析】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=5.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键. 试题22答案:.【解析】画树状图得:∵共有6种等可能的结果,能让灯泡L1发光的有2种情况,∴能让灯泡L1发光的概率为:=.故答案为.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比试题23答案:【解析】根据题意得:a+1≠0且△=(-2)2-4×(a+1)×3≥0,解得a≤且a≠-1,所以整数a的最大值为-2.故答案为-2.试题24答案:【解析】a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴+++…+=++++…+=(1–+–+–+–+…+–)=(1+––)=.故答案为.试题25答案:4或4.【解析】①当AF<AD时,如图1,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,设MN是BC的垂直平分线,则AM=AD=3,过E作EH⊥MN于H,则四边形AEHM是矩形,∴MH=AE=2,∵A′H=,∴A′M=,∵MF2+A′M2=A′F2,∴(3-AF)2+()2=AF2,∴AF=2,∴EF==4;②当AF>AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,设MN是BC的垂直平分线,过A′作HG∥BC交AB于G,交CD于H,则四边形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=HG=3,∴EG==,∴DH=AG=AE+EG=3,∴A′F==6,∴EF==4,综上所述,折痕EF的长为4或4,故答案为:4或4.【点睛】本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键.试题26答案:【解析】如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.∵反比例函数y和直线AB组成的图形关于直线y=x对称,A(﹣1,4),∴B(4,﹣1),∴直线AB的解析式为y =﹣x+3,∴E(0,3),F(3,0),∴AB=5,EF=3.∵AB:CD=5:2,∴CD=2,∴CE=DF.设C(x,-x+3),∴CE=,解得:x=(负数舍去),∴x=,-x+3=,∴C(),∴m==.故答案为:.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用轴对称的性质解决问题,属于中考常考题型.试题27答案:(1);(2)当销售单价x定为每件80元时,厂家每月获得的利润最大,最大利润是4800元.【解析】解:设y与x的函数关系式为,函数图象经过点和点,,解得:,与x的函数关系式为.由题意得:.试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,自变量x的取值范围是.,当时,w随x的增大而增大,时,w有最大值,当时,,答:当销售单价x定为每件80元时,厂家每月获得的利润最大,最大利润是4800元.【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.试题28答案:(1)详见解析;(2);(3)详见解析. 【解析】(1)如下图所示:∵AB=AC,∴∠ABC=∠ACB,∵M为BC的中点,∴AM⊥BC在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN为等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)如下图所示:设BM=CM=MN=a,∵四边形DNBC是平行四边形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由可得,解得:(负值舍去),∴;(3)∵F是AB的中点,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.∴∠MFN=∠BDC.【点睛】本题是四边形的综合题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.试题29答案:(1);(-2,);(1,0);(2)N点的坐标为(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【解析】(1)∵,a=,则抛物线的“衍生直线”的解析式为;联立两解析式求交点,解得或,∴A(-2,),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在中,令y=0可求得x= -3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性质可知AN=AC=,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N点的坐标为(0,),(0,);(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ ACK=∠ EFH,在△ ACK和△ EFH中∴△ ACK≌△ EFH,∴FH=CK=1,HE=AK=,∵抛物线的对称轴为x=-1,∴ F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=-=,即E的纵坐标为-,∴ E(-1,-);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,),∴线段AC的中点坐标为(-2.5,),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=,∴x= -4,y=-t,-t=-×(-4)+,解得t=,∴E(-1,),F(-4,);综上可知存在满足条件的点F ,此时E(-1,-)、(0,)或E(-1,),F(-4,)本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试题二A 卷(共100分)一、选择题(每小题3分,共30分)1.下列一元二次方程中,没有实数根的是( )A .2210x x +-= B .22220x x ++= C .2210x x ++= D .220x x -++=2.如图,将三角尺(ABC 其中60,90)ABC C ∠=∠=绕B 点按顺时针方向转动一个角度到11A BC ∆的位置,使得点1,,A B C 在同一条直线上,那么这个角度等于( ) A .120 B .90 C .60 D .303.在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为( ) A .430.610⨯辆 B .33.0610⨯辆 C .43.0610⨯辆 D .53.0610⨯辆 4.顺次连接等腰梯形四边中点所得的四边形一定是( ) A .矩形 B .正方形 C .菱形D .直角梯形5.下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+ ②3(0)y x x=-< ③21y x =+ ④23y x =- A .①② B .②③ C .②④ D .①③6.在△ABC 中,90C ∠=,若4BC =,2sin 3A =,则AC 的长是( )A .6B .25C .35D .2137.若点123(2,),(1,),(1,)A y B y C y --在反比例函数1y x=-的图像上,则( )A . 123y y y >>B .321y y y >>C .213y y y >>D .132y y y >>8.如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =,则E ,F 两点到直线MN 距离的和等于( )A .12cmB .6cmC .8cmD .3cm9.反比例函数k y x=的图象如左图所示,则二次函数221y kx k x =--的图象大致为 ( ) y y y y10.如图,在ABC ∆中2,90,18,cos ,3ACB AB B ∠===把ABC ∆绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E 处,则线段AE 的长为 ( ) A .6 5 B .7 5 C .8 5 D .95 二、填空题(每小题4分,共16分)11.2008年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 . 12.方程2(34)34x x -=-的根是.13.如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两OOAOB . OC OyxD_ C _1_ A _1_ A_ B_ C(第2题图)FOK M G EHN (第8题图)10题(第13题图)条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 . 14.在Rt ABC ∆中,90,C D ∠=为BC 上一点,30,2,DAC BD AB ∠===则AC 的长是 . 三.解答题(共6小题,满分54分) 15.解答下列各题(每小题6分,共12分) (1)0(2)2cos30|32|-+-(2)解方程:2430x x +-=.16.(6分)求不等式组的整数解:3(21)4213212x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩,①. ②≤17.(8分)把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。

(1)如果从中抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字。

当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢。

现请你利用数状图或列表法分析游戏规则对双方是否公平?并说明理由。

18.(8分)城市规划期间,欲拆除一电线杆AB (如图所示),已知距电线杆AB 水平距离14米的D 处有一大坝,背水坡CD 的坡度2:1i =,坝高CF 为2米,在坝顶C 处测得杆顶A的仰角为30.,D E 之间是宽为2米的人行道.试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域). 1.732≈ 1.414≈)19.(10分)如图,在直角坐标系中,O 为原点.点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数12y x=的图象经过点A . (1)求点A 的坐标;(2)如果经过点A 的一次函数图象与y 轴的正半轴交于点B ,且OB AB =,求这个一次函数的解析式.30人行道BE D A( 第14题图)20.(10分)如图,已知//,ED BC EAB BCF ∠=∠. (1)四边形ABCD 为平行四边形;(2)求证:2OB OE OF =⋅;(3)连接,BD 若,OBC ODC ∠=∠求证,四边形ABCD 为菱形.B 卷(共50分)一、填空题(每小题4分,共20分)21.已知22222()()60a b a b +-+-=, 则=+22b a ______.22.如图:正方形ABCD 中,过点D 作DP 交AC 于点,M 交AB 于点,N 交CB 的延长线于点,P 若1,MN =3,PN =则DM 的长为 .23.如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么关于x 的一元二次方程2220x mx n -+=有实数根的概率为 . 24.如图O 的直径EF 为10,cm 弦,AB CD 分别为6,8,cm cm 且////AB EF CD .则图中阴影部分面积之和为 .25.如图,PT 是O 的切线,T 为切点,PA 是割线,交O 于,A B 两点,与直径CT 交于点D .已知2,3,4,CD AD BD ===则PB =_______.26.(8分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案? (3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?27.(10分)已知,如图,AB 是O 的直径,AD 是弦,C 是弧AB 的中点,连结BC 并延长与AD 的延长线相交E DCBFAO24题图第19题图PN MDCBA22题图 25题图于点,,P BE DC ⊥垂足为,//,E DF EB 交AB 于点,,F FH BD ⊥垂足为,4,3H BC CP ==. 求(1)BD 和DH 的长;(2)BE BF ⋅的值.28.(12分) 如图所示,在平面直角坐标系中,以点(2,3)M 为圆心,5为半径的圆交x 轴于,A B 两点,过点M 作x 轴的垂线,垂足为D ;过点B 作M 的切线,与直线MD 交于N 点。

(1)求点,B N 的坐标以及直线BN 的解析式;(2)求过,,A N B 三点(对称轴与y 轴平行)的抛物线的解析式;(3)设(2)中的抛物线与y 轴交于点,P 以点,,D B P 三点为顶点作平行四边形,请你求出第四个顶点Q 的坐标,并判断Q 是否在(2)中的抛物线上PCEBOHFDAADO BMN xy2010级中考数学模拟试题答案一.选择题1.C2.A3.D4.C5.C6.B7.C8.B9.C 10.B 二、填空题:(每小题4分,共16分) 11、75 12、34,3521==x x13、16 14、3 三、15、(1)3-3 (2)-1,4317、(1)31(2)P (小李)=32,P (小王)=31, 3231≠不公平 18、AB ≈10.66m,BE=12m,BE>AB,无危险,不需封人行道。

五、19、(1)设A (m,3m ) (2)设一次函数:y=kx+b ∴B (0,b )(b>0) ∵A 在y=x 12上 ∵OB=AB ∴b=310,B(0,310) ∴3mm=12,m=±2 y=31034+x ∵A 在第一象限 ∴m=2,A(2,6)20、 (1) ∵DE ∥BC ∴∠D=∠BCF ∵∠EAB=∠BCF ∴∠EAB=∠D ∴AB ∥CD ∵DE ∥BCEDC BA∴四边形ABCD 为平行四边形 (2)∵DE ∥BC ∴OAOCOE OB =∵AB ∥CD∴OBOF OA OC = ∴OBOFOA OB =∴OF OE OB •=2(3)连结BD,交AC 于点H,连结OD ∵DE ∥BCE OBC ∠=∠∴ ODC OBC ∠=∠DOEDOF EODC ∠=∠∠=∠∴ODF ∆∴∽OED ∆ODOB OE OF OB OF OE OD ODOFOE OD =∴•=•=∴=∴22 DH BH ABCD =中平行四边形B D OH ⊥∴∴四边形ABCD 为菱形B 卷(共50分)一、填空题:(每小题4分,共20分) 21. 3 22. 2 23.4324.π225 25、20 二、(共8分)EDC BFAOH26.(1)解:设今年三月份甲种电脑每台售价x 元100000800001000x x =+ 解得:4000x =经检验:4000x =是原方程的根,所以甲种电脑今年每台售价4000元. (2)设购进甲种电脑x 台,4800035003000(15)50000x x +-≤≤ 解得610x ≤≤因为x 的正整数解为6,7,8,9,10,所以共有5种进货方案 (3)设总获利为W 元,(40003500)(38003000)(15)(300)1200015W x a x a x a =-+---=-+-当300a =时,(2)中所有方案获利相同.此时,购买甲种电脑6台,乙种电脑9台时对公司更有利(利润相同,成本最低).三、(共10分)27. 已知,如图,AB 是⊙O 的直径,AD 是弦,C 是弧AB 的中点,连结BC 并延长与AD 的延长线相交与点P ,BE ⊥DC ,垂足为E ,DF ∥EB ,交AB 与点F ,FH ⊥BD ,垂足为H ,BC=4,CP=3. 求(1)BD 和DH 的长,(2)BE ·BF 的值(1) 107,528==DH BD (2) BE ·BF 598=PCEBOH FDA四、(共12分)28.1、B (-2,0);N (2,)316- 直线BN :3834--=x y 2、434312--=x x y 3、)4,0();4,4();4,4(321Q Q Q --- 2Q 在抛物线上。

相关文档
最新文档