最新高考物理速度选择器和回旋加速器解题技巧及练习题

最新高考物理速度选择器和回旋加速器解题技巧及练习题
最新高考物理速度选择器和回旋加速器解题技巧及练习题

最新高考物理速度选择器和回旋加速器解题技巧及练习题

一、速度选择器和回旋加速器

1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向

(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。

【答案】(1)2112U m

B d

U e

=

2)()()11112222m U U m U U D B e e +?-?=,()11min 1

U U U U U -?=()

11max 1

U U U U U +?=【解析】 【分析】 【详解】

(1)在加速电场中

2112

U e mv =

12U e

v m

=

在速度选择器B 中

2

1U eB v e d

=

1B =

根据左手定则可知方向垂直纸面向里;

(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为

1v =

1

12

mv R eB =

最大值为

2v =

2

22

mv R eB =

打在D 上的宽度为

2122D R R =-

22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有

1U

eB v e d

=

U=B 1vd

代入B 1

2U U = 再代入v 的值可得电压的最小值

min U U =最大值

max U U =

2.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60,不计重力,求

(1)离子到达M 点时速度的大小; (2)离子的电性及比荷

q m

. 【答案】(1)00U dB (2)0

0133U dB B R

【解析】

(1)离子在平行金属板之间做匀速直线运动,

由平衡条件得:qvB 0=qE 0 已知电场强度:0

0U E d

= 联立解得:0

U v dB =

(2)根据左手定则,离子束带负电

离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:

由牛顿第二定律得:2

1mv qvB r

= 由几何关系得:3r R =

0013U q m = 点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复

合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.

3.如图,在整个直角坐标系xoy 区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在x>0区域还存在方向垂直于xoy 平面向内的匀强磁场。一质量为m 、电荷量为q 的带正电粒子从x 轴上x=-L 的A 点射出,速度方向与x 轴正方向成45°,粒子刚好能垂直经过y 轴,并且在第一象限恰能做直线运动,不计粒子重力

(1)求粒子经过y 轴的位置 (2)求磁感应强度B 的大小

(3)若将磁场的磁感应强度减小为原来的一半,求粒子在x>0区域运动过程中的最大速度和最低点的y 坐标。 【答案】(1)y=12L (2)mE B qL = (3)3m qEL v m

= 72y L =-

【解析】 【分析】

(1)粒子在第二象限做类平抛运动,根据平抛运动的规律求解粒子经过y 轴的位置;(2)粒子在第一象限恰能做直线运动,则电场力等于洛伦兹力,可求解B ;(3)将x>0区域的曲线运动看做以2v 1的匀速直线运动和以v 1的匀速圆周运动的合成,结合直线运动和圆周运动求解最大速度和最低点坐标。 【详解】

(1)粒子在第二象限做类平抛运动,设初速度为v ,

122

2

v v ==

L=v 1t

2

2

v y t =

联立解得2L y =

,则经过y 轴上2

L

y =的位置;

(2)qE a m

= v 2=at 可得1qEL

v m

= qv 1B=qE 解得mE

B qL

=

(3)将x>0区域的曲线运动看做以2v 1的匀速直线运动和以v 1的匀速圆周运动的合成,如图;

2112v B

qv m r

?=

解得2

122mv r L qE == 24y r L ?==

最低点y 坐标为1722

y L y L =-?=- 此时速度最大为v m =2v 1+v 1

解得3

m qEL

v m

=

4.(1)获得阴极射线,一般采用的办法是加热灯丝,使其达到一定温度后溅射出电子,然后通过一定的电压加速.已知电子质量为m ,带电量为e ,加速电压为U ,若溅射出的电子初速度为0,试求加速之后的阴极射线流的速度大小v .

(2)实际问题中灯丝溅射出的电子初速度不为0,且速度大小满足某种分布,所以经过同一电压加速后的电子速度大小就不完全相同.但可以利用电场和磁场对电子的共同作用来筛选出科学研究所需要的特定速度的电子.设计如图所示的装置,上下极板接电源的正负极,虚线为中轴线,在装置右侧设置一个挡板,并在与中轴线相交处开设一个小孔,允许电子通过.调节极板区域内电场和磁场的强弱和方向,使特定速度的电子沿轴线穿过.请在图中画出满足条件的匀强磁场和匀强电场的方向.

(3)为了确定从上述速度选择装置射出的阴极射线的速度,可采用如图所示的电偏转装置(截面图).右侧放置一块绝缘荧光板,电子打在荧光板上发光,从而知道阴极射线所打的位置.现使荧光板紧靠平行极板右侧,并将其处于两板间的长度六等分,端点和等分点分别用a、b、c、……表示.

偏转电极连接一个闭合电路,将滑线变阻器也六等分,端点和等分点分别用A、B、C、……表示.已知电子所带电量e = 1.6×10-19C,取电子质量m = 9.0×10-31kg,板间距和板长均为L,电源电动势E = 120V.实验中发现,当滑线变阻器的滑片滑到A点时,阴极射线恰好沿中轴线垂直打到d点;当滑片滑到D点时,观察到荧光屏上f点发光.忽略电源内阻、所有导线电阻、电子重力以及电子间的相互作用.请通过以上信息计算从速度选择装置射出的阴极射线的速度大小v0.

【答案】(1)2eU m

(2)如图所示:

(3)6

410m/s

【解析】

(1)根据动能定理可以得到:2

12Ue

mv =

,则:2eU

v m

=; (2)当电子受到洛伦兹力和电场力相等时,即qvB Eq =,即E

v B

=,满足这个条件的电子才能通过,如图所示:

(3)设当滑片滑到D 点时两极板间电压为U ,E

U 602

V == 由电子在电场中的偏转运动得:

20

11()32eU L L mL v = 则:603E

410/4e v m s m

=

=?. 点睛:本题主要考查带电粒子在电场中的加速、速度选择器以及带电粒子在电场中的偏转问题,但是本题以信息题的形式出现,令人耳目一新的感觉,但是难度不大,是一道好题,对学生分析问题能起到良好的作用.

5.如图所示为回旋加速器的结构示意图,匀强磁场的方向垂直于半圆型且中空的金属盒D 1和D 2,磁感应强度为B ,金属盒的半径为R ,两盒之间有一狭缝,其间距为d ,且R ?d ,两盒间电压为U 。A 处的粒子源可释放初速度不计的带电粒子,粒子在两盒之间被加速后进入D 1盒中,经半个圆周之后再次到达两盒间的狭缝。通过电源正负极的交替变化,可使带电粒子经两盒间电场多次加速后获得足够高的能量。已知带电粒子的质量为m 、电荷量为+q 。

(1)不考虑加速过程中的相对论效应和重力的影响。 ①求粒子可获得的最大动能E k m ;

②若粒子第1次进入D 1盒在其中的轨道半径为r 1,粒子第2次进入D 1盒在其中的轨道半径为r 2,求r 1与r 2之比;

③求粒子在电场中加速的总时间t 1与粒子在D 形盒中回旋的总时间t 2的比值,并由此分析:计算粒子在回旋加速器中运动的时间时,t 1与t 2哪个可以忽略?(假设粒子在电场中的加速次数等于在磁场中回旋半周的次数);

(2)实验发现:通过该回旋加速器加速的带电粒子能量达到25~30MeV 后,就很难再加速了。这是由于速度足够大时,相对论效应开始显现,粒子的质量随着速度的增加而增大。结合这一现象,分析在粒子获得较高能量后,为何加速器不能继续使粒子加速了。

【答案】(1)①222

2q B R m

3;③2d R π, t 1可以忽略;(2)见解析

【解析】 【分析】 【详解】

(1)①粒子离开回旋加速器前,做的还是圆周运动,由洛仑兹力提供向心力,根据牛顿第二定律可得

2

m v qv B m R =

212

km m E mv =

解得

222

2km

B R E q m

=

②设带电粒子在两盒间加速的次数为N ,在磁场中有

2

v qvB m r

=

在电场中有

212

NqU mv =

第一次进入D 1盒中N=1,第二次进入D 1盒中N=3,可得

123

r r = ③带电粒子在电场中的加速度为

qE qU

a m md =

= 所以带电粒子在电场中的加速总时间为

1m v BdR t a U

=

= 设粒子在磁场中回旋的圈数为n ,由动能定理得

2

122

m nqU mv =

带电粒子回旋一圈的时间为

2πm

T qB

=

所以带电粒子在磁场中回旋的总时间为

2

2π2BR t nT U

== 122πt d t R

= 已知R d >>可知12t t <<,所以1t 可以忽略。 (2)带电粒子在磁场中做匀速圆周运动周期为

2πm

T qB

=

对一定的带电粒子和一定的磁场来说,这个周期是不变的。如果在两盒间加一个同样周期的交变电场,就可以保证粒子每次经过电场时都能被加速,当粒子的速度足够大时,由于相对论效应,粒子的质量随速度的增加而增大,质量的增加会导致粒子在磁场中的回旋周期变大,从而破坏了与电场变化周期的同步,导致无法继续加速。

6.我们熟知经典回旋加速器如图(甲)所示,带电粒子从M 处经狭缝中的高频交流电压加速,进入与盒面垂直的匀强磁场的两个D 形盒中做圆周运动,循环往复不断被加速,最终离开加速器。另一种同步加速器,基本原理可以简化为如图(乙)所示模型,带电粒子从M 板进入高压缝隙被加速,离开N 板时,两板的电荷量均立即变为零,离开N 板后,在匀强磁场的导引控制下回旋反复通过加速电场区不断加速,但带电粒子的旋转半径始终保持不变。已知带电粒子A 的电荷量为+q ,质量为m ,带电粒子第一次进入磁场区时,两种加速器的磁场均为B 0,加速时狭缝间电压大小都恒为U ,设带电粒子最初进入狭缝时的初速度为零,不计粒子受到的重力,不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应。

(1)求带电粒子A 每次经过两种加速器加速场时,动能的增量;

(2)经典回旋加速器与同步加速器在装置上的类似性,源于它们在原理上的类似性。 a.经典回旋加速器,带电粒子在不断被加速后,其在磁场中的旋转半径也会不断增加,求加速n 次后r n 的大小;

b.同步加速器因其旋转半径R 始终保持不变,因此磁场必须周期性递增,请推导B n 的表达式;

(3)请你猜想一下,若带电粒子A 与另一种带电粒子B (质量也为m ,电荷量为+kq ,k 为大于1的整数)一起进入两种加速器,请分别说明两种粒子能否同时被加速,如果不能请说明原因,如果能,请推导说明理由。

【答案】(1)k E qU =△;(2)a.0

12n nUq

R B m

=0n B nB =;(3)见解析 【解析】 【分析】 【详解】

(1)粒子仅在狭缝间由电场加速,绕行过程中仅受洛伦兹力作用,洛伦兹力不会对粒子做功,根据动能定理: 每次动能的增量为:

K E qU =

(2)a .在D 形盒中洛伦兹力作向心力,磁感应强度不需要改变,当第n 次穿过MN 两板间开始作第n 圈绕行时

20n

n n

v qv B m R =

第n 圈的半径

12n nUq

R B m

=

b.同步加速器因其旋转半径始终保持不变,因此磁场必须周期性递增,洛伦兹力作向心力

212nqU mv = , 2000v qv B m R = , 2

n

n n v qv B m R

=

所以第n 圈绕行的磁感应强度为:

0n B nB =

(3)经典回旋加速器不能做到回旋加速,同步加速器仍然能做到回旋加速。经典回旋加速器,交变电压的周期与带电粒子回旋周期相同,加速A 粒子的交变电压的周期为

02m

T B q π=

而若要加速回旋加速粒子B ,交变电压周期应为

02m

T kB q

π=

' 因此当B 粒子到达加速电场缝隙时,电压方向并没有反向,因此无法同时加速。同步加速器A 粒子的磁场变化周期

2n n

m

T qB π=

B 粒子的旋转周期

2

n

n T m T kqB k

π=

=' n T 是T ' 的k 倍,所以A 每绕行1周,B 就绕行k 周。由于电场只在A 通过时存在,故

B 仅在与A 同时进入电场时才被加速。

7.在高能物理研究中,粒子加速器起着重要作用,而早期的加速器只能使带电粒子在高压电场中加速一次,因而粒子所能达到的能量受到高压技术的限制。1930年,

·EamestO Lawrence 提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。图17甲为·EamestO Lawrence 设计的回旋加速器的示意图。它由两个铝制D 型金属扁盒组成,两个D 形盒正中间开有一条狭缝;两个D 型盒处在匀强磁场中并接有高频交变电压。图17乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。在磁

场力的作用下运动半周,再经狭缝电压加速;为保证粒子每次经过狭缝都被加速,应设法使变电压的周期与粒子在狭缝及磁场中运动的周期一致。如此周而复始,最后到达D 型盒的边缘,获得最大速度后被束流提取装置提取出。已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小恒为U ,磁场的磁感应强度为B ,D 型盒的半径为R ,狭缝之间的距离为d 。设正离子从离子源出发时的初速度为零。

(1)试计算上述正离子从离子源出发被第一次加速后进入下半盒中运动的轨道半径; (2)尽管粒子在狭缝中每次加速的时间很短但也不可忽略。试计算上述正离子在某次加速过程当中从离开离子源到被第n 次加速结束时所经历的时间;

(3)不考虑相对论效应,试分析要提高某一离子被半径为R 的回旋加速器加速后的最大动能可采用的措施。

【答案】(1)12

2mU r qB =2)2(1)nm n m

t qU qB

π-=(3)增大加速器中的磁感应强度B 【解析】 【详解】

(1)设正离子经过窄缝被第一次加速加速后的速度为v 1,由动能定理得:

2

112

qU mv =

正离子在磁场中做匀速圆周运动,半径为r 1,由牛顿第二定律得:

2

111

v qv B m r =

由以上两式解得:

1r =

(2)设正离子经过窄缝被第n 次加速加速后的速度为v n ,由动能定理得:

212

n nqU mv =

把电场中的多次加速凑成连续的加速过程,可得粒子在狭缝中经n 次加速的总时间为:

1n

v t a

=

由牛顿第二定律有:

U

q

ma d

= 由以上三式解得电场对粒子加速的时间为:

1t = 正离子在磁场中做匀速圆周运动,由牛顿第二定律有:

2

v qvB m r

=

又因有:

2r

T v

π=

每加速一次后都要做半个周期的圆周,则粒子在磁场中做圆周运动的时间为:

2(1)

2

T t n =- 由以上三式解得:

2(1)n m

t qB

π-=

所以粒子从离开离子源到被第n 次加速结束时所经历的时间为:

12(1)n m

t t t qB

π-=+= 故正离子在某次加速过程当中从离开离子源到被第n

次加速结束时所经历的时间为

(1)n m

qB

π-

(3)设离子从D 盒边缘离开时做圆周运动的轨迹半径为r m ,速度为v m

m r R =

2m

m m

v qv B m r =

离子获得的最大动能为:

222

2122km

m q B R E mv m

==

所以,要提高某一离子被半径为R 的回旋加速器加速后的最大动能可以增大加速器中的磁感应强度B .

8.某回旋加速器的两个半圆金属盒处于与盒面垂直的匀强磁场中,两金属盒间存在交变电场,用其加速质子。已知金属盒的半径为R ,磁场的磁感应强度为B ,金属盒间缝隙的加速电压为U ,质子的质量为m ,电荷量为q 。求 (1)交变电场的频率f ;

(2)质子加速完毕出射时的动能E k ; (3)质子在回旋加速器中运动的圈数n 。

【答案】(1)

2Bq

m

π (2)2222B q R m

(3)224B qR mU

【解析】 【详解】

质子在磁场中做匀速圆周运动,洛伦兹力提供向心力

2

v Bqv m r

=

2r

T v π=

1f T

=

联立可得

2Bq

f m

π=

(2) 洛伦兹力提供向心力,当半径最大时,对应的速度最大,动能最大,最大半径为R

2

v Bqv m R

=

2k 12

E mv =

联立可得

222

k 2B q R E m

=

质子在磁场中每转一圈加速两次,获得能量为2Uq ,设质子在回旋加速器中运动的圈数n ,则有

k 2E nUq =

将222

k 2B q R E m

=代入可得

22

4B qR n mU

=

9.劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示。置于真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略。磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U 。若A 处粒子源产生的质子的质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响。则下列说法正确的是( )

A .质子被加速后的最大速度不可能超过2πRf

B .质子离开回旋加速器时的最大动能与加速电压U 成正比

C .质子第2次和第1次经过两

D 2∶1 D .不改变磁感应强度B 和交流电频率f ,该回旋加速器也能用于a 粒子加速 【答案】AC 【解析】 【详解】

A .质子出回旋加速器的速度最大,此时的半径为R ,则:

22R

v R Rf T

πωπ==

= 所以最大速度不超过2πfR 。故A 正确。

B .根据洛伦兹力提供向心力:2

v qvB m R

=,解得:

mv R qB

=

最大动能:222

2122Km

q B R E mv m

==

,与加速的电压无关。故B 错误。 C .粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据2v ax =,可得质

子第2次和第1次经过D 形盒狭缝的速度比为2:1,根据mv

R qB

=

,可得半径比为2:1。故C 正确。

D .回旋加速器交流电的频率与粒子转动频率相等,即为2qB

f m

π=,可知比荷不同的粒子频率不同,不改变磁感应强度B 和交流电频率f ,有可能起不到加速作用。故D 错误。

故选AC 。

10.当今医学成像诊断设备PET/CT 堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射电子的同位素碳11作为示踪原子,碳11是由小型回旋加速器输出的高速质子轰击氮14获得的.加速质子的回旋加速器如图甲所示,D 形盒装在真空容器中,两D 形盒内匀强磁场的磁感应强度为B ,两D 形盒间的交变电压的大小为U .若在左侧D 1盒圆心处放有粒子源S 不断产生质子,质子质量为m ,电荷量为q .质子从粒子源S 进入加速电场时的初速度不计,不计质子所受重力,忽略相对论效应.

(1)质子第一次被加速后的速度大小v 1是多大?

(2)若质子在D 形盒中做圆周运动的最大半径为R ,且D 形盒间的狭缝很窄,质子在加速电场中的运动时间可忽略不计.那么,质子在回旋加速器中运动的总时间t 总是多少? (3)要把质子从加速器中引出,可以采用静电偏转法.引出器原理如图乙所示,一对圆弧形金属板组成弧形引出通道,内、外侧圆弧形金属板分别为两同心圆的一部分,圆心位于O ′点.内侧圆弧的半径为r 0,外侧圆弧的半径为r 0+d .在内、外金属板间加直流电压,忽略边缘效应,两板间产生径向电场,该电场可以等效为放置在O ′处的点电荷Q 在两圆弧之间区域产生的电场,该区域内某点的电势可表示为φ=k (r 为该点到圆心O ′点的距离).质

子从M点进入圆弧通道,质子在D形盒中运动的最大半径R对应的圆周与圆弧通道正中央的圆弧相切于M点.若质子从圆弧通道外侧边缘的N点射出,则质子射出时的动能E k是多少?要改变质子从圆弧通道中射出时的位置,可以采取哪些办法?

【答案】2qU

m

(2)

2

2

BR

U

π

(3)kQq

00

21

2r d r d

??

-

?

++

??

222

2

q B R

m

【解析】

【详解】

(1)质子第一次被加速,由动能定理:

qU=1

2

mv12

解得:

v12qU m

(2)质子在磁场中做圆周运动时,洛伦兹力提供向心力:

qvB=m

2 v R

质子做圆周运动的周期为:

T=2πR

v

2πm

Bq

设质子从D形盒射出前被电场加速了n次,由动能定理:

nqU=1

2

mv2

质子在磁场中做圆周运动的周期恒定,在回旋加速器中运动的总时间为:

t总=1 2 T

解得:

t总=

2 BR U

(3)设M、N两点的电势分别为φ1、φ2,则

φ1=k 012

Q

r d

+,φ2=k Q

n d

+

由能量守恒定律得

qφ1+

12

mv 2

=qφ2+E k 解得:

E k =kQq 00212r d r d ??- ?++??

222

2q B R m 改变圆弧通道内、外金属板间所加直流电压的大小(改变圆弧通道内电场的强弱),或者改变圆弧通道内磁场的强弱,可以改变质子从圆弧通道中射出的位置.

11.诺贝尔物理学奖得主劳伦斯发明了回旋加速器,其原理可简化如下.如图所示,两个中空的半径R =0.125m 的半圆金属盒,接在电压U =5000V 、频率恒定的交流电源上;两盒狭缝之间距离d =0.01m ,金属盒面与匀强磁场垂直,磁感应强度B =0.8T .位于圆心处的质子源能不断产生质子(初速度可以忽略,重力不计,不计质子间的相互作用),质子在狭缝之间能不断被电场加速,最后通过特殊装置引出.已知质子的比荷

198271.6101101.6710q C

m kg

--?=≈??C/kg ,求: (1)质子能获得的最大速度;

(2)质子在电场加速过程中获得的平均功率;

(3)随轨道半径r 的增大,同一盒中相邻轨道的半径之差Δr 如何变化?简述理由. (4)设输出时质子束形成的等效电流为100mA ,回旋加速器输出功率是多大?

【答案】(1)7max 110v =?m/s (2) 7

410P -≈?W 电 (3) Δr 逐渐减小 (4)P =5000W

【解析】 【详解】

(1)粒子在磁场中回旋,有

2

mv qvB r

= 引出时有r=R , 得

7max 110gBR

v m

=

=?m/s (2)引出前质子(在电场中)加速的次数

100km E

n qU

==

质子在电场中多次加速,可等效为一次性做匀加速直线运动 该过程中的平均速度为v /2,则

7210/2

nd

t s v -=

=?电 平均功率

()227777

1 1.6710102

410210

W P t ---???==≈??W W 电电 (3)粒子回旋半径mv

r qB

=

,设加速一次后的速度为v 1,加速三次后的速度为v 3,则有

31v =

,51v =……,

由此

31r =

,5r

因为1111)r r r >>>

,故Δr 逐渐减小

(4)研究出口处截面Δt →0时间内的质子,设有N 个,则

N·q =I ·Δt

在该时间内,回旋加速器做的功等效于把N 个质子从静止加速到km E 即

21

(0)2

W N mv =-

W P t

=

?, 代入得

P =5000W

12.回旋加速器是利用磁场和电场共同作用对带电粒子进行加速的仪器。现在有一个研究小组对回旋加速器进行研究。研究小组成员分工合作,测量了真空中的D 形盒的半径为R ,磁感应强度方向垂直加速器向里,大小为B 1,要加速粒子的电荷量为q ,质量为m ,电场的电压大小为U 。帮助小组成员完成下列计算: (1)本回旋加速器能将电荷加速到的最大速度是? (2)求要达到最大速度,粒子要经过多少次电场加速?

(3)研究小组成员根据磁场中电荷偏转的规律设计了如图乙的引出装置。在原有回旋加速器外面加装一个圆环,在这个圆环区内加垂直加速器向里的磁场B 2,让带电粒子在加速器

边缘恰好能偏转至圆环区域外边缘加以引导。求圆环区域所加磁场的磁感应强度B 2?

【答案】(1) 1m qB R v m =;(2)22

12qB R n Um

=;(3) 1222B R B R d =+

【解析】 【详解】

(1)粒子在磁场中运动时满足:

2

1v qvB m r

=

当被加速的速度达到最大时满足:

r=R

则解得

1m qB R

v m

=

(2)粒子在电场中被加速,每次经过电场时得到的能量为Uq ,则:

2

12

m nUq mv =

解得

22

12qB R n Um

=

(3)由左手定则可知,粒子带负电;要想使得带电粒子在加速器边缘恰好能偏转至圆环区域外边缘,则粒子运动的轨道半径

11

22

r R d =+() ;

2

21

m m v qv B m r =

解得

1222B R

B R d

=

+

13.高能粒子是现代粒子散射实验中的炮弹,加速器是加速粒子的重要工具,是核科学研究的重要平台.质子回旋加速器是利用电场和磁场共同作用,使质子作回旋运动,在运动

中通过高频电场反复加速、获得能量的装置.质子回旋加速器的工作原理如图(a )所示,置于真空中的D 形金属盒半径为R ,两盒间狭缝的间距为d ,磁感应强度为B 的匀强磁场与盒面垂直,被加速质子(1

1H )的质量为m ,电荷量为q +.加在狭缝间的交变电压如

图(b )所示,电压值的大小为0U 、周期0

2m

T qB

π=

.为了简化研究,假设有一束质子从M 板上A 处小孔均匀地飘入狭缝,其初速度视为零.不考虑质子间的相互作用.

(1)质子在磁场中的轨迹半径为r (已知)时的动能k E ;

(2)请你计算质子从飘入狭缝至动能达到k E (问题(1)中的动能)所需要的时间.(不考虑质子间的相互作用,假设质子每次经过狭缝均做加速运动.)

(3)若用该装置加速氦核(4

2He ),需要对偏转磁场或交变电压作出哪些调整?

【答案】(1)222

2q B r m

(2)2022BR BRd m U qB ππ+-

(3)方案一:增大磁感应强度B ,使得氦核的圆周运动周期等于上述电场的周期即可. 方案二:增大交变电场的周期,使得电场的周期等于氦核圆周运动的周期. 【解析】 【分析】

回旋加速器的工作条件是电场的变化周期与粒子在磁场中运动的周期相等,回旋加速器运用电场加速磁场偏转来加速粒子,根据洛伦兹力提供向心力进行求解即可; 【详解】

(1)洛伦兹力提供向心カ,根据牛顿第二定律有:2

v qvB m r =

粒子的动能为212E mv =,解得222

2k q B r E m

=;

(2)设粒子被加速n 次后达到最大动能,则有0k E nqU =,解得:220

2B r q

n mU =

粒子在狭缝间做匀加速运动,加速度为0

qU a md

=

设n 次经过狭缝的总时间为1t ,根据运动学公式有:()2112

nd a t =

设在磁场中做圆周运动的周期为T ,某时刻质子的速度为v ',半径为r '

高中物理回旋加速器

高中物理回旋加速器 一.选择题(共4小题) 1.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来加速带电粒子 D.带电粒子在D形盒中运动时,磁场力使带电粒子速度增大 2.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来使带电粒子做圆周运动 D.带电粒子在D形盒中运动时,磁场力使带电粒子加速 3.关于回旋加速器的说法正确的是() A.回旋加速器是利用磁场对运动电荷的作用使带电粒子的速度增大的 B.回旋加速器是通过多次电场加速使带电粒子获得高能量的 C.粒子在回旋加速器中不断被加速,故在磁场中做圆周运动一周所用时间越来越小D.若加速电压提高到4倍,其它条件不变,则粒子获得的最大速度就提高到2倍4.回旋加速器由下列哪一位物理学家发明() A.洛伦兹B.奥斯特C.劳伦斯D.安培 二.填空题(共1小题) 5.回旋加速器的D型金属盒半径为R,两D型盒间电压为U,电场视为匀强电场,用来加速质量为m,电荷量为q的质子,使质子由静止加速到能量为E后,由小孔射出.(设质子每次经过电场加速后增加相同的能量)求: (1)加速器中匀强磁场B的大小. (2)加速到上述能量所需的回旋次数. (3)加速到上述能量所需时间.(不计经过电场的时间)

三.解答题(共1小题) 6.如图回旋加速器D形盒的半径为r,匀强磁场的磁感应强度为B.一个质量了m、电荷量为q的粒子在加速器的中央从速度为零开始加速. (1)求该回旋加速器所加交变电场的频率; (2)求粒子离开回旋加速器时获得的动能; (3)有同学想自利用该回旋加速器直接对质量为m、电量为2q的粒子加速.能行吗?行,说明理由;不行,提出改进方案.

高考数学选择题的解题技巧精选.

高考数学选择题解题技巧 数学选择题在当今高考试卷中,不但题目多,而且占分比例高。数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。 解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。 高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。 1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。 例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( ) 125 27 . 12536.12554.12581.D C B A 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 125 27)106(104)106(33 3223= ?+??C C 故选A 。 例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。其中正确命题的个数为( ) A .0 B .1 C .2 D .3 解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D 。 例3、已知F 1、F 2是椭圆162x +9 2 y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于 ( ) A .11 B .10 C .9 D .16 解析:由椭圆的定义可得|AF 1|+|AF 2|=2a=8,|BF 1|+|BF 2|=2a=8,两式相加后将|AB|=5=|AF 2|+|BF 2|代入,得|AF 1|+|BF 1|=11,故选A 。 例4、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。 ∴a>1,且2-a>0,∴1tan α>cot α(2 4 π απ < <-),则α∈( ) A .(2π- ,4π-) B .(4π-,0) C .(0,4π) D .(4π,2 π) 解析:因24παπ<<-,取α=-6 π 代入sin α>tan α>cot α,满足条件式,则排除A 、C 、D ,故选B 。 例6、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( ) A .-24 B .84 C .72 D .36 解析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。 (2)特殊函数 例7、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5

高中物理速度选择器和回旋加速器专题训练答案及解析

高中物理速度选择器和回旋加速器专题训练答案及解析 一、速度选择器和回旋加速器 1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B = 3 3 T ,方向垂直于纸面向里。一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π 3 ,不计离子重力。求: (1)离子速度v 的大小; (2)离子的比荷 q m ; (3)离子在圆形磁场区域中运动时间t 。(结果可含有根号和分式) 【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6 π -? 【解析】 【详解】 (1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即: B 0qv =qE 解得: 2000m/s E v B = = (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示

由洛仑兹力公式和牛顿第二定律有: 2 v Bqv m r = 由几何关系有: 2 R tan r θ = 离子的比荷为: 4 210C/kg q m =? (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t , 2t T θπ= 2m T qB π= 解得: 43106 t s π -= 2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置; (2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?

高考物理解题技巧集锦

高中物理解题方法之隔离法和整体法 江苏省特级教师戴儒京 隔离法和整体法是解决物理问题特别是力学问题的基本而又重要的方法。 隔离法是把一个物体从物体系中隔离出来,只研究他的受力情况和运动情况,不研究他的施力情况。 整体法是把物体系看做一个整体,分析物体系的受力情况和运动情况,而不分析物体系内的物体的相互作用力。 整体法一般是在物体系内各物体的加速度相同的情况下应用。并且不求物体系内各物体的相互作用力。 下面的例题中的物体系只包含2个物体,3个以上的物体,方法与此类似。一、一个外力 例1.光滑水平面上的两个物体 在光滑水平面上有两个彼此接触的物体A和B,它们的质量分别为m1、m2。若用水平推力F作用于A物体,使A、B一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F作用于B物体,则A、B间的相互作用力为多大? 图1

【解析】对A 、B 两个物体组成的系统用整体法,根据牛顿第二定律,有 a m m F )(21+=,所以2 1m m F a += ① 对B 物体用隔离法,根据牛顿第二定律,有 a m F AB 2= ② 将①代入②得 2 12 m m m F F AB +? = ③ 若将F 作用于B 物体,则对A 物体用隔离法,根据牛顿第二定律,有 a m F BA 1= ④ 所以A 、B 间的相互作用力为2 11 m m m F F BA +? = ⑤ 实际上,在同一个时刻,根据牛顿第三定律,A 、B 之间的作用力和反作用力大小是相等的。此处,③式和⑤式所表示的AB F 和BA F 不是作用力和反作用力,而是两种情况下的A 、B 之间的作用力,这样表示,以示区别,不要误会。 ③式和⑤式,可以看做“力的分配规律”,正如串联电路中电压的分配规律一样。因为大家知道,电阻R 1、R 2串联,总电压为U ,则R 1和R 2上的电压分别为 2111R R R U U +=,2 12 2R R R U U +=。这两个式子与③式和⑤式何其相似乃尔。 例2.粗糙水平面上的两个物体 在水平面上有两个彼此接触的物体A 和B ,它们的质量分别为m 1、m 2,与水平面间的动摩擦因数皆为为μ。若用水平推力F 作用于A 物体,使A 、B 一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F 作用于B 物体,则A 、

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U ;

(2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R= tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】 (1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E= U d ,解得两平行板间的电势差:U=Bv0d (2)在圆形磁场区域中,由洛伦兹力提供向心力可知: Bv0q=m 2 v r 同时有T= 2r v π 粒子在圆形磁场区域中运动的时间t= 2 θ π T 解得t= m Bq θ (3)由几何关系可知:r tan 2 θ =R 解得圆形磁场区域的半径R=0 tan 2 mv qB θ 3.如图为质谱仪的原理图。电容器两极板的距离为d,两板间电压为U,极板间的匀强磁场的磁感应强度为B1,方向垂直纸面向里。一束带电量均为q但质量不同的正粒子从图示方

专项训练磁场测试卷.docx

专题训练:磁场单元 1. 关于电场强度E与磁感应强度仪下列说法中错误的是() A.电场强度E是矢量,方向与正电荷受到的电场力方向相同 B.磁感应强度B是欠量,方向与小磁针N极的受力方向相同 C.电场强度定义式为E =匚,但电场中某点的电场强度E与尸、9无关 q D.磁感应强度定义式R -匚,同样的电流元〃在磁场中同一点受到的力一定相同 H 2.如图所示,均匀绕制的螺线管水平放置,在具正屮心的上方附近用绝缘绳水平吊起通电直导 线/并处于平衡状态,/与螺线管垂肓,M导线中的电流方向垂玄纸面向里,开关S闭仑后,绝缘绳 对/拉力变化情况是() A.增人 B.减小 C.不变 D.无法判断 3.如图所示,在兀轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为3。在xOy内, 从原点O处沿与x轴疋方向成0角(0<〃<兀)以速率v发射一个带正电的粒子(重力不计)。则下列说法正确的 A.若卩一定,&越大,则粒子在磁场中运动的时间越短 B.若u—定,0越人,则粒子在离开磁场的位置距O点越远 C.若0—定,v越人,则粒子在磁场屮运动的时间越短 D.若&一定,v越大,则粒了在磁场中运动的角速度越大 4.如图所示为电视机显像管偏转线圈的示意图,当 线圈通以图示的直流电吋,形成的磁场如图所示,一束沿着管颈轴线射向纸内的电子将() A.向上偏转 B.向下偏转 C.向左偏转 D.向右偏转 5.如图所示,光滑的平行导轨与电源连接后,与水平方向成&角倾斜放置,导轨上另放一个质量为加的金属导体棒。通电后,在棒所在区域内加-个合适的匀强磁场,可以使导体棒静止平衡,图中分别加了不同方向的磁场,其中一定不能平衡的是() 6.关于回旋加速器加速带电粒了所获得的能量,下列结论中正确的是() A.只与加速器的半径有关,半径越大,能量越大 B.与加速器的磁场和半径均有关,磁场越强、半径越人,能量越人 C.只与加速器的电场有关,电场越强,能量越大 D.与带电粒子的质量和电荷量均有关,质量和电荷量越大,能量越大 7.如图所示,冇一四面体OABC处在Ox方向的匀强磁场中,下列关于穿过各个面的 磁通量的说法错误的 是() XXX /XXX A.13.

高考物理 解题的策略与方法

2012高考物理解题的策略与方法 在高三的最后复习阶段,学生常会遇到这样的场景:高考物理也就是“12道选择题、l道选作题、2道实验题和4道计算题”,总分150分.学生对于一般的物理基础题基本上没有问题,其错误大多是在不定项选择题上发生;另外,做计算题的能力还有些差,有时候没有一点解题的思路和程序,有时候理解题意有些偏差,有时候把问题搞得很复杂,有时候又把问题想得过于简单;而对于实验题,简直是摸不着头脑,常考常新,基本上得不到分数.“老师?我该怎么办呢?” 上述“物理场景”具有广泛性与普遍性,是高三学生学习过程中常会出现的一种现象.同学们要正视问题,调整心态,充满信心,更要注重解题方法与应试技巧的积累,把自己头脑中储存的物理知识有效地转化成分数.高考——分数是硬道理,学物理不能“一看就懂,一听就会,一作就错”,而要把自己的知识与能力转化成分数.在这里我想从“物理场景”的角度谈谈物理解题的策略与方法,望能对同学们有所帮助. 一、关于12道物理选择题 1.选择题失分的原因剖析 物理考试中,选择题有12题共48分,分数非常可观,故考试成败的关键在于选择题,这个问题应该引起同学们的高度重视.选择题失分较多的关键是处理题目时过于草率,这和平时的练习有直接联系.无论单选多选,处理选择题时建议把它当做稍大些的题处理.在处理大题的时候,同学们会自觉地画图、审题、弄清物理情境中出现的系统、状态与过程,挖出隐含条件,同学们格外重视这些因素,也做得比较到位.但在处理选择题的过程中,画图、审题程序往往被忽略,这样就埋下了隐患,导致丢分.所以,选择题失分不要总是归结为马虎、粗心!一定要注重审题及其他程序,不能凭一种单纯的物理感觉去解题. 2.选择题的求解技巧

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理速度选择器和回旋加速器专项练习及解析

高中物理速度选择器和回旋加速器专项练习及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+

选择题答题技巧

选择题答题技巧 作为客观性试题,从全国各地考试来看主要是单项选择,它由题干和题肢两部分组成,有三个选项或四个选项。分为简单选择题和组合选择题。在占分比例上达到30%,对于开卷考试下的政治学科来说,是比较好拿分的题项,因此,答好选择题极其重要。那么如何解好选择题呢?(1)认真审题,三思而后行 选择题的题干与选项中常常出现容易忽略或与考生习惯定势相反的内容,让考生因审题失误而痛失分数。 (2)因题而异,选择正确的解法 不同的选择题常常需要不同的解法,应因题而异,这样不但可以提高解答选择题的准确性,也可以有较高的解题速度。常用的解题方法有: 1.排谬法:当题干要求正确选项时,排除错误的选肢。 2.排异法:排除与题干无关的选项。 3.排倒法:题干与题肢因果关系颠倒的不选。 4.排乱法:题干与题肢外延不符,以部分代整体或以整体代部分。 5.排重法:与题干同语反复的选肢无意义不选。 6.排正法:当题干要求是反向时,正向的不选。 7.排组合不符法:组合选择题中,先找出因各种理由而不符的一个或两个选项,然后把含有这些不符的选项排除。 8.最佳法:当几个题肢都符合题干时,选与题干最密切最符合题意的选项。 9.排二级延伸法:凡题干与题肢要经一个以上中间媒介才能联系上的选项不选。 10.逆向隐性的题目:题中观点错,设问要求选择与题中观点相符的选项,而不是要求指出它错在哪里,这时,正确观点的选项不选。(3)审时度势,择其优而选之 要合理分配选择题的时间,遇到一两题不会做的也不要花大量时间去翻书查找,可做个记号,过一会儿再来收拾它,先朝下面继续做。注意解选择题是不要空题、漏题。即使实在不会也应该猜测一下答案。这猜之中也有方法,一般采取相关、相容和相斥法。看答案之间的相互关系,从中分析得到正确的结论。看答案之间的相容合理的成分,再找出不相容不合理的成分,从而择其优而选之。 2012德阳中考政治试卷试题及答案 德阳市2012年中考政治试题 第一卷单项选择题 1~3为时政题,省略①②③④

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin θ (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D. 【方法链接】对于超、失重现象大致可分为以下几种情况: θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。求: (1)射出粒子的速率; (2)射出粒子的比荷; (3)MN 与挡板之间的最小距离。 【答案】(1)1U B d (2)22cos v B L α(3)(1sin )2cos L αα - 【解析】 【详解】 (1)粒子在速度选择器中做匀速直线运动, 由平衡条件得: qυB 1=q U d 解得υ=1U B d ; (2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:

数学选择题答题技巧方法

数学选择题答题技巧方法 数学选择题答题技巧 一、保持高度自信和旺盛斗志。 在保证充足休息的同时,重点背记认为可能会考的内容,也可以模拟中考考卷进行训练,以增强应考自信心。一定要回归考试说明,回归课本要求,回归近几年的中考试题。考试说明是命题专家编的,通过它找到中等、难题的感觉。近期要特别注意数学基础知识和基本技能;注意近几年中考的主干知识,在最后阶段还要特别注意数学知识网络的梳理和完善,不要做难题、偏题,要把握正确的初中数学学业要求。同时可以再一次检查还有什么公式、定理、概念没有复习或遗忘了。对中考数学“考什么”、“怎样考”有一个全面了解。 二、有选择地做题,从数学思想上进行总结。 现在,已没有必要拿到题就做,可选择三类题认真做。第一类是初看还没有解题思路的;第二类是最近做错的;最 后一类是以前做得比较慢的。做完后,还要从数学思想方法上进行总结,比如它的解法中用到了初中数学中的哪些数学思想?一道题的解法中蕴含的数学思想,往往为这道题的解题思路指明了方向。通过挖掘数学思想,我们就会形成一类问题的解题理念,收到举一反三的效果。 三、充分利用平时坚持使用的“病例卡”。

相当一部分学生存在会做的题做错的现象,特别是基础题。究其原因,有属于知识方面的,也有属于方法方面的。因此,要加强对以往错题的研究,找错误的原因,对易错的知识点进行列举、易误用的方法进行归纳。同学们可几个人一起互提互问,在争论和研讨中矫正,使犯过的错误不再发生,会做的题目不再做错。比如哪些是会做但做错了,哪些是会做做不到底的,要非常清晰地把原因整理出来。曾经犯错误的地方往往是薄弱的地方,仅有当时的订正是不够的,还要适当地进行强化训练。 四、要训练各种考试能力。 有的学生平时成绩很好,但考试时发挥不出来,这个问题可通过加强训练来解决。用与中考试卷结构相同的试卷进行模拟训练,并对每次训练结果进行分析比较,既可发现问题、查漏补缺,又可提高适应考试的能力。要有一个良好的心态,要有正确的战略战术。上了考场后,在接到考卷和允许答题之间,一般会有几分钟的空档,考生应该很快地把题目浏览一遍,找题目最薄弱的环节下手,寻找突破口。首先是认真审题,要一字一句地“读题”,而不是“看题”,读懂题意后再着手解。其次在解题时思想要高度集中。运算时不妨一边计算一边默读,从草稿纸上抄到试卷时也这样做。 慎做容易题,保证全部对;稳做中档题,一分不浪费;巧做较难题,力争得满分。也就是把该拿下的分数全部拿下来。

高考物理解题技巧与时间分配

高考物理解题技巧与时间分配 (一)选择题 1、分时间以课标卷高考为例,高考物理一共8个选择题,按照高考选择题总时间在35--45 分钟的安排,物理选择题时间安排在15一25 分钟为宜,大约占所有选择题的一半时间(由于生物选择题和化学选择题的计算量不大,很多题目可以直接进行判断,所以物理选择题所占的时间比例应稍大些).在物理的8个选择题中,时间也不能平均分配,一般情况下,选择题的难度会逐渐增加,物理选择题也不会例外,难度大的题目大约需要 3 分钟甚至更长一点的时间,而难度较小的选择题一般 1 分钟就能够解决了, 7、8个选择题中,按照 2 : 5 : 1 的关系,一般有 2 个简单题目, 4、5个中档题目和 1 个难度较大的题目(开始时难题较少)。 2 .析本质 选择题一般考查的是考生对基本知识和基本规律的理解及应用这些知识进行一些定性推理,很少有较复杂的计算.解题时一定要注意一些关键词,例如“不正确的”“可能”与“一定”的区别,要讨论多种可能性.不要挑题做,应按题号顺序做,而且开始应适当慢一点,这样刚上场的紧张心情会逐渐平静下来,做题思维会逐渐活跃,不知不觉中能全身心进入状态.一般地

讲,如遇熟题,题图似曾相识,应陈题新解;如遇陌生题,题图陌生、物理情景陌生,应新题常规解,如较长时间分析仍无思路,则应暂时跳过去,先做下边的试题,待全部能做的题目做好后,再来慢慢解决(此时解题的心情已经会相对放松,状态更易发挥).确实做不出来时,千万不要放弃猜答案的机会,先用排除法排除能确认的干扰项,如果能排除两个,其余两项肯定有一个是正确答案,再随意选其中一项,即使一个干扰项也不能排除仍不要放弃,四个选项中随便选一个.尤其要注意的是,选择题做完后一定要立即涂卡. 3 .巧应对 高考物理选择题是所有学科中选择题难度最大的,主要难点有以下几种情况:一是物理木身在各个学科中就属于比较难的学科;二是物理选择题是不定项选择,题目答案个数不确定,造成在选择的时候瞻前顾后,不得要领;三是大部分选择题综合性很高,涉及的知识点比计算题和填空题还要多,稍有不慎,就会顾此失彼;四是有些选择题本身就是小型的计算题,计算量并不比简单的计算题小. 虽然说高考物理选择题在解决的时候有这样那样的困难,但是如果方法选择好,解决起来还是有章可循的,为了能够在处理高考选择题时游刃有余,我们首先要了解选择题一般的特点,把高考选择题进行分类,然后根据各自的类型研究对策.

高考理综答题时间分配及考试技巧

高考理综答题时间分配及考试技巧 导读:我根据大家的需要整理了一份关于《高考理综答题时间分配及考试技巧》的内容,具体内容:理综考试的试卷结构是按学科排布的;因此,考生们要掌握答题技巧,做好答题时间的分配安排。下面我为大家分享的是的详细内容,希望对大家有帮助!高考理综答题时间分配技巧如果... 理综考试的试卷结构是按学科排布的;因此,考生们要掌握答题技巧,做好答题时间的分配安排。下面我为大家分享的是的详细内容,希望对大家有帮助! 高考理综答题时间分配技巧 如果要在150分钟内处理300分的题目,则每分钟平均要处理2分的难度中等的题目,练习中要注意时间与节奏把控。 具体时间分配课参考下述说明: 一卷上有21道选择题,不同地区选择题会有单项选择题和不定向选择题两类,每一小题都是6分,那么120分的第一卷答题时间应该大体控制在50分钟,每一分钟的时间应该至少拿下两分,选择题应该在2分或者不超过3分钟的时间里面解决,到了后面计算题中也要大致按照这样的策略,每一分钟大概完成两分,对大题原则上要8、9分钟,不能超过10分钟。 物理、化学、生物三个学科从考试时间上最好依次控制在1、1、0.5小时左右(可以有正负十分钟的浮动,根据学生科目的强弱调节),也就是说生物应该保持在半个小时尽可能拿到自己会做的分数为宜。 先做哪个学科可按自己习惯,也可先答自己的优势学科及基础试题,不要

在某一道难题上停留时间过久,使本来会的题目由于时间分配不好或者答题技巧掌握不好影响到理综成绩。事实证明,做得过慢直接丢掉整道大题的话,得分往往都比做得快但是正确率略微下降要低,而我们在练习中,需要有意识的提升自己在紧张状态下的"一次正确率"。 一、科学分配考试时间 理科综合三科合一,按分值分配,生物需30-35分钟完成,化学需50—55分钟完成,物理需要1小时完成,剩下的分钟为机动时间,这是最合理的安排。 二、做题顺序 自信,就从头到尾做;不自信,就可以有选择的先做。一般情况下,各科都不太难。只是因为有的学生在前面用的时间很多,后边相对简单一点的题没有时间做。而后面多是大分值的题。这属于时间安排上的失误。而有的题时间再充裕,也不一定做出来,这就应该主动地放弃,给可做出的题腾出一点时间。 做题顺序有几种,如,先做各科简单题,再做难一点的,但是尽量不要分科做。因为读完一个题后,才能知道是哪一科的题,如果不想做,放过去,做下面的题,但是回过头来再看刚才这一题的时候,还得从新熟悉,那么读题就浪费了时间。所以只要挨着做题就行。 三、选择题怎么做虽然是"选择题",但重要的不是在"选",不是看着选项去挑。在练习中,应该明白选项对,为什么不对,改成什么样子就对了。养成推导的习惯,掌握过程,要知道是"因为是怎样的,所以才怎样的"。做选择时,不要轻易地把生活经验往物理题上套。应该用物理规律往物理题上做。选择题是做出来的,不是选出来的。

高中物理速度选择器和回旋加速器技巧(很有用)及练习题

高中物理速度选择器和回旋加速器技巧(很有用)及练习题 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A为粒子加速器,加速电压为U1;B为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U2,距离为d;C为偏转分离器,磁感应强度为B2,方向垂直纸面向里。今有一质量为m、电荷量为e的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D上。求: (1)磁场B1的大小和方向 (2)现有大量的上述粒子进入加速器A,但加速电压不稳定,在11 U U -?到 11 U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C,则打在照相底片D上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2 1 1 2 U m B d U e =2) ()() 1111 2 22 2m U U m U U D B e e +?-? =, () 11 min 1 U U U U U -? = () 11 max 1 U U U U U +? = ] 【解析】 【分析】 【详解】 (1)在加速电场中 2 1 1 2 U e mv = 1 2U e v m = 在速度选择器B中

2 1U eB v e d = \ 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = \ 222 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 【 代入B 1得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

物理选择题十大答题技巧

物理选择题十大答题技巧。 方法1:直接判断法 根据所学的概念、规律等直接判断,得出正确的答案。这种方法一般适用于基本不需要推理的常识性试题,这些题目主要考查考生对识记内容的记忆和理解程度。 方法2:特殊赋值法 试题选项有不同的计算结果,需要考生对结果的正确性进行判断。有些试题如果考生采用全程计算的方法会发现计算过程烦琐,甚至有些试题超出运算能力所及的范围,这时可采用特殊值代入的方法进行判断。 方法3:特例反驳法 特例反驳法是在解选择题时,当碰到一些似是而非并且迷惑性极强的选项时,直接运用教材中有关概念往往难以辨清是非,而借助已掌握的一些特例或列举反面特例进行反驳,逐一消除干扰项,从而快速获取正确答案的一种方法。 方法4:选项分组法 有一类选择题,可以通过合理想象,巧妙分组进行解答。这类选择题的题干中有“分别”“依次”等强调顺序的词语出现。先找出最有把握判断的叙述项,并把它们的位置固定,再与供选项进行比较,最后得出答案。这种解法既可避免多选、漏选,又能提高答题速度。 方法5:巧用推论法 在平时的学习中,积累了大量的推论,这些推论在计算题中一般不可直接应用,但运用其解答选择题时优势就显而易见了,可大大提高解题的速度和准确率。 方法6:筛选法 筛选法是根据已经掌握的概念、原理、规律,在正确理解题意的基础上,通过寻找不合理因素(不正确的选项),将其逐一排除,从而获得正确答案的一种方法。 方法7:比较分析法 如果涉及一个图像,可以对图像从上到下、从外到内仔细观察。如果涉及几个图像,可以分别比较不同条件下的相似处和相同条件下的不同处。比较分析法是确定事物之间同异关系的一种思维过程和方法。 方法8:等效思维法 等效思维法就是要在保持效果或关系不变的前提下,对复杂的研究对象、背景条件、过程进行有目的的分解、重组、变换或替代,使它们转换为我们所熟知的、更简单的理想化模型,从而达到简化问题的目的。 方法9:信息特征法 信息特征法是根据试题提供的各种信息特征(如结构特征、位置特征、性质特征、组成特征、现象特征、数值特征等),进行大跨度、粗线条的分析,推理或联想的一种方法,可以做到去表象、抓实质,融会贯通,快速求解。 方法10:计算推理法

高考物理数学物理法常见题型及答题技巧及练习题

高考物理数学物理法常见题型及答题技巧及练习题 一、数学物理法 1.如图所示,ABCD是柱体玻璃棱镜的横截面,其中AE⊥BD,DB⊥CB,∠DAE=30°, ∠BAE=45°,∠DCB=60°,一束单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示) (1)这束入射光线的入射角多大? (2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】 试题分析:(1)设光在AD面的入射角、折射角分别为i、r,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示: ab光线在AB面的入射角为45°,设玻璃的临界角为C,则: sinC===0.67 sin45°>0.67,因此光线ab在AB面会发生全反射 光线在CD面的入射角r′=r=30° 根据n=,光线在CD面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6° 2.质量为M的木楔倾角为θ,在水平面上保持静止,质量为m的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F拉着木块匀速上滑,如图所示,求:

(1)当α=θ时,拉力F 有最小值,求此最小值; (2)拉力F 最小时,木楔对水平面的摩擦力. 【答案】(1)mg sin 2θ (2)1 2 mg sin 4θ 【解析】 【分析】 对物块进行受力分析,根据共点力平衡,利用正交分解,在沿斜面方向和垂直于斜面方向都平衡,进行求解采用整体法,对m 、M 构成的整体列平衡方程求解. 【详解】 (1)木块刚好可以沿木楔上表面匀速下滑时,mg sin θ=μmg cos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,则有:F cos α=mg sin θ+F f ,F N +F sin α=mg cos θ, F f =μF N 联立以上各式解得:() sin 2cos mg F θ θα= -. 当α=θ时,F 有最小值,F min =mg sin 2θ. (2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=F cos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=1 2 mg sin 4θ. 【点睛】 木块放在斜面上时正好匀速下滑隐含摩擦系数的数值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,结合数学知识即可解题. 3.图示为直角三角形棱镜的截面,90?∠=C ,30A ?∠=,AB 边长为20cm ,D 点到A 点的距离为7cm ,一束细单色光平行AC 边从D 点射入棱镜中,经AC 边反射后从BC 边上的F 点射出,出射光线与BC 边的夹角为30?,求: (1)棱镜的折射率; (2)F 点到C 点的距离。

相关文档
最新文档