函数与方程PPT教学课件

合集下载

2025届高中数学一轮复习课件:第三章 第8讲函数与方程(共84张PPT)

2025届高中数学一轮复习课件:第三章 第8讲函数与方程(共84张PPT)

高考一轮总复习•数学
第25页
对点练 1(1)(2024·山西临汾模拟)函数 f(x)=log8x-31x的零点所在的区间是(
)
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
(2)已知函数 f(x)=logax+x-b(a>0,且 a≠1).当 2<a<3<b<4 时,函数 f(x)的零点 x0
A.(0,1)
B.(1,2)
C.(2,3)(2)设函数 f(x)=13x-ln x,则函数 y=f(x)( ) A.在区间1e,1,(1,e)内均有零点 B.在区间1e,1(1,e)内均无零点 C.在区间1e,1内有零点,在区间(1,e)内无零点 D.在区间1e,1内无零点,在区间(1,e)内有零点
Δ<0
__无__交__点____ ____无______
第10页
高考一轮总复习•数学
第11页
常/用/结/论 1.有关函数零点的结论 (1)若连续不断的函数 f(x)在定义域上是单调函数,则 f(x)至多有一个零点; (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号; (3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.对于函数来说, 零点有与 x 轴相切的零点. 2.f(a)f(b)<0 是 y=f(x)在闭区间[a,b]上有零点的充分不必要条件.
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 函数零点 1.定义:对于函数 y=f(x)(x∈D),把满足___f(_x_)=__0___的实数 x 叫做函数 y=f(x)(x∈D) 的零点.

函数与方程_PPT课件

函数与方程_PPT课件
对于在[a,b]上连续不断,且 f(a)·f(b)<0 的函数 y=f(x),通 过不断地把函数 f(x)的 零点 所在的区间 一分为二 ,使区间的两 端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
课前自助餐
授人以渔
自助餐
5.用二分法求函数 f(x)零点近似值 (1)确定区间[a,b],验证 f(a)·f(b)<0 ,给定精确度 ε; (2)求区间(a,b)的中点 x1; (3)计算 f(x1); ①若 f(x1)=0 ,则 x1 就是函数的零点; ②若 f(a)·f(x1)<0 ,则令 b=x1,(此时零点 x0∈(a,x1)); ③若 f(x1)·f(b)<0 ,则令 a=x1,(此时零点 x0∈(x1,b)). (4)判断是否达到精确度 ε:即若|a-b|<ε,则得到零点近似值 a(或 b);否则重复(2)-(4).
答案 C
课前自助餐
授人以渔
自助餐
课前自助餐
授人以渔
自助餐
3.函数 f(x)=ex+3x 的零点个数是( )
A.0
B.1
C.2
D.3
答案 B
解析 由已知得 f′(x)=ex+3>0,所以 f(x)在 R 上单调递增, 又 f(-1)=e-1-3<0,f(1)=e+3>0,因此 f(x)的零点个数是 1, 故选 B.
课前自助餐
授人以渔
自助餐
4.二次函数 f(x)=ax2+bx+c 中,a·c<0,则函数的零点个数 是________.
答案 2 解析 ∵c=f(0),∴a·c=af(0)<0,即 a 和 f(0)异号. ∴a>0, f0<0 或a<0, f0>0.

一次函数与方程、不等式(共15张PPT)

一次函数与方程、不等式(共15张PPT)

04 综合练习与提高
综合练习题一
总结词
理解一次函数与方程、不等式之间的 关系
详细描述
通过解决一系列的练习题,理解一次 函数与方程、不等式之间的关系,掌 握将实际问题转化为数学模型的方法 。
综合练习题二
总结词
掌握一次函数的图像和性质
详细描述
通过绘制一次函数的图像,理解函数的增减性、截距等性质,掌握利用图像解决实际问题的技巧。
一次函数与不等式的实际应用
一次函数与不等式在实际生活中有着 广泛的应用。例如,在购物时,我们 可以通过比较商品的价格和折扣率来 选择最划算的购买方案,这需要用到 一元一次不等式的知识。
另外,在生产活动中,我们可以通过 控制生产成本和产量之间的关系来制 定最优的生产计划,这也需要用到一 元一次不等式R。
02 一次函数与方程
一次函数与一元一次方程的关系
一次函数是形如$y = kx + b$的函数,其中$k$和$b$是常数, 且$k neq 0$。一元一次方程是只含有一个变量的方程,其形式 为$ax + b = 0$,其中$a$和$b$是常数,且$a neq 0$。
一次函数与方程、不等式(共15张 ppt)
目录
• 一次函数的基本概念 • 一次函数与方程 • 一次函数与不等式 • 综合练习与提高 • 总结与回顾
01 一次函数的基本概念
一次函数的定义
一次函数
一般形式为y=kx+b(k≠0),其 中x为自变量,y为因变量,b为截 距,k为斜率。
线性函数
特殊的一次函数,形式为y=kx+b (k≠0,b=0)。
一次函数在实际问题中的应用
一次函数可以用于解决实际问题,如路程、速度和时间问题、价格和销售问题等。

《二次函数与一元二次方程》二次函数PPT教学课件

《二次函数与一元二次方程》二次函数PPT教学课件

情境引入
下列二次函数的图象与x轴有公共点吗?如果有,公共的
横坐标是多少?当x轴取公共点的横坐标,函数值是多少?
由此,你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2
(2)y=x2-6x+9
(3)y=x2-x+1

(1)抛物线y=x2+x-2与x轴有___个公共点,
-2,1
它们的横坐标是_____。当x取公共点的横坐
第二十二章 二次函数
二次函数与一元二次方程
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
关系h=20t-5t2.考虑以下问题:
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
解:(2)解方程20=20t-5t2。t2-4t+4=0。
t1=t2=2。当球飞行2s时,它的高度为20m。
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(4)球从飞出到落地要用多少时间?
解:(1)解方程0=20t-5t2。t2-4t=0。t1=0,
t2=4。当球飞行0s和4s时,它的高度为0m,

一次函数与方程、不等式、方程组关系PPT课件

一次函数与方程、不等式、方程组关系PPT课件

05
CHAPTER
总结与展望
总结一次函数与方程、不等式、方程组的关系
一次函数与方程的关系
一次函数与方程组的关系
一次函数是线性方程的几何表示,通 过将方程中的x替换为函数表达式,可 以得到相应的方程。
一次函数可以用于解决线性方程组问 题,通过消元法或代入法将方程组转 化为一次函数的交点问题。
一次函数与不等式的关系
斜率
一次函数图像的倾斜程度 由斜率k决定,k>0时,图 像为增函数;k<0时,图 像为减函数。
截距
b为y轴上的截距,表示函 数与y轴交点的纵坐标。
一次函数的图像
绘制方法
通过代入一组x值计算对应的y值 ,得到一系列点,将这些点连接 成线即可得到一次函数的图像。
图像特点
一次函数图像是一条直线,斜率为 k,截距为b。
一次函数与方程、不等式、方 程组关系ppt课件
目录
CONTENTS
• 一次函数的基本概念 • 一次函数与方程的关系 • 一次函数与不等式的关系 • 一次函数的应用 • 总结与展望
01
CHAPTER
一次函数的基本概念
一次函数的定义
01
02
03
一次函数
形如y=kx+b(k≠0)的 函数,其中x是自变量,y 是因变量。
一次函数与一元一次不等式组
一元一次不等式组
由两个或两个以上一元一次不等式组成的集合。
关系
对于一元一次不等式组,可以通过将其转化为一次函数的形式,利用函数的交点来求解。例如,解不等式组 $begin{cases} x + 2 > 0 x - 1 < 0 end{cases}$,可以将其转化为两个一次函数的形式,然后找到两个函数的 交点,即解集。

《二元一次方程与一次函数》PPT课件讲义

《二元一次方程与一次函数》PPT课件讲义
y 5 y=2x-2
4 3
进而作出 y 1 x 1的图象
2
2
1 P(2,2)
由(2)得 y=2x-2 由此可得 x=0 x=1
y=-2 y=0
进而作出Y=2X-2的图象
-4 -3 -2 -1 O 1 2 3 4 -1
x
y 1 x 1 2
-2 -3
-4
-5
x=2 所以方程组的解为:
y=2
(1)对应关系
二元一次方程与一次函数
(Suitable for teaching courseware and reports)
十七世纪法国
数学家笛卡尔有一次 生病卧床,看见屋顶 上的一只蜘蛛顺着左 右爬行,笛卡尔看到 蜘蛛的“表演”猛的 灵机一动。他想,可 以把蜘蛛看成一个点, 它可以上、下、左、 右运动,能不能知道 蜘蛛的位置用一组数 确定下来呢?
师生互动
在一次函数Y=5-X的图象上任取一个点 (0,5),它的坐标适合方程X+Y=5. (4)以方程X+Y=5的解为坐标的所有的点所组 成的图象与一次函数Y=5-X的图象相同吗 ?
过(0,5) 、(5,0) 两点的直线图象与一次函 数Y=5-X的图象相同.
知识源于悟 益智的“机会”
师:通过以上结论,你能分析研究出二元一次方程与一次 函数图象的关系吗?
生:二元一次方程的解就是一次函数图象的点的 坐标;一次函数图象上的点的坐标就是二元一次 方程的解.
二元一次方程与一次 函数的基本关系
做一做
x+y=5 x=0 y=5
2x-y=1 x=0 y=-1
x+y=5
2x-y=1
1) 在同一直角坐标系中分别作一 次函数Y=5-X和Y=2X-1的图象, 这两个图象有交点吗?

人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)

人教版数学九年级上册22.2  二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O

第八节 函数与方程 课件(共31张PPT)

第八节 函数与方程 课件(共31张PPT)

答案:C
2.函数 f(x)=4cos2 x2·cosπ2-x-2sin x-|ln(x+1)| 的零点个数为________.
解析:f(x)=2(1+cos x)sin x- 2sin x-|ln(x+1)|=sin 2x-|ln(x+ 1)|,x>-1,函数 f(x)的零点个数即为 函数 y1=sin 2x(x>-1)与 y2=|ln(x+1)|(x>-1)的图象的 交点个数.分别作出两个函数的图象如图所示,可知有两 个交点,则 f(x)有两个零点.
x2-2x,x≤0, 1.已知函数 f(x)=1+1x,x>0, 则函数 y=f(x)+
3x 的零点个数是( )
A.0 B.1
C.2 D.3
解析:令 f(x)+3x=0,
则xx≤2-02,x+3x=0或x1>+01x,+3x=0,
解得 x=0 或 x=-1,
所以函数 y=f(x)+3x 的零点个数是 2.
的取值范围是( )
A.a<-1
B.a>1
C.-1<a<1 D.0≤a<1 解析:令 f(x)=2ax2-x-1, ①当 a=0 时,-x-1=0,x=-1 不合适. ②a≠0 时,f(0)·f(1)<0,a>1.验证若 f(0)=0,此式不成立; 当 f(1)=0 时,2a-1-1=0.
a=1,方程另一根为-12(不合题意),故 a>1,选 B. 答案:B
考点 2 判断函数零点个数
[例 1] (1)函数 f(x)=x-2+1+x-ln2x,,xx≤>00,的零点个数
为( )
A.3
B.2
C.7
D.0
(2)已知函数 y=f(x)是周期为 2 的周期函数,且当 x∈
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
检验:(1)当f(-1)=0时,a=1.所以f(x)=x2+x.
令f(x)=0,即x2+x=0,得x=0或x=-1.
方程在[-1,3]上有两根,不合题意,故a≠1.
(2)当f(3)=0时,a= 1 ,
5
此时f ( x) x2 13 x 6 . 55
令f ( x) 0,即x2 13 x 6 0, 55
则f(-1)·f(1)≤0,即a 1 或a 1. 5
3.函数图象与x轴均有公共点,但不能用二分法求公
共点横坐标的是
(B )
解析 图B不存在包含公共点的闭区间[a,b]使函 数f(a)·f(b)<0.
4.下列函数中在区间[1,2]上一定有零点的是( D ) A.f(x)=3x2-4x+5 B.f(x)=x3-5x-5 C.f(x)=mx2-3x+6 D.f(x)=ex+3x-6 解析 对选项D,∵f(1)=e-3<0,f(2)=e2>0, ∴f(1)f(2)<0.
从图象中可以看出当1≤x≤3时, 两图象有一个交点, 因此f(x)=log2(x+2)-x, x∈[1,3]存在零点. 探究提高函数的零点存在性问题常用的办法 有三种:一是用定理,二是解方程,三是用图象.值得 说明的是,零点存在性定理是充分条件,而并非是 必要条件.
知能迁移1 判断下列函数在给定区间上是否存
图所示).
的图象(如
两函数图象有且只有一个交点,即方程f(x)=0有且
只有一个根.
题型三 零点性质的应用
【例3】(12分)已知函数f(x)=-x2+2ex+m-1,g(x)=x+ e2 (x>0). x
(1)若g(x)=m有零点,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个 相异实根.
2.对函数零点存在的判断中,必须强调: (1)f(x)在[a,b]上连续; (2)f(a)·f(b)<0; (3)在(a,b)内存在零点. 事实上,这是零点存在的一个充分条件,但不必要.
定时检测
一、选择题
1.设f(x)=3x-x2,则在下列区间中,使函数f(x)有零点
的区间是 A.[0,1]
B.[1,2]
给定精确度 ;
第二步,求区间(a,b)的中点x1;
第三步,计算__f_(_x_1_)_: ①若_f_(_x_1_)_=_0,则x1就是函数的零点; ②若_f_(_a_)_·__f_(_x_1_)_<_0,则令b=x1 (此时零点x0∈(a,x1)); ③若_f_(_x_1_)_·__f_(_b_)_<_0_,则令a=x1 (此时零点x0∈(x1,b));
在零点.
(1)f(x)=x3+1; (2) f (x) 1 x, x∈(0,1).
x 解 (1)∵f(x)=x3+1=(x+1)(x2-x+1),
令f(x)=0,即(x+1)(x2-x+1)=0,∴x=-1,
∴f(x)=x3+1有零点-1.
(2)方法一
令f(x)=0,得 1
x
1 x2 0,
0,
§2.7 函数与方程 基础知识 自主学习
要点梳理
1.函数的零点 (1)函数零点的定义
对于函数y=f(x)(x∈D),把使f_(_x_)_=_0__成立的实数x叫 做函数y=f(x)(x∈D)的零点.
(2)几个等价关系
方程f(x)=0
函数y=f(x)的图象与x__轴___有
交点 y=f(x)有_零__点____.
A.在区间 (1 ,1), (1,e)内均有零点 e
B.在区间 (1 ,1), (1,e)内均无零点 e
C.在区间 (1 ,1) 内有零点,在区间(1,e)内无零点 e
D.在区间 (1 ,1) 内无零点,在区间(1,e)内有零点 e
解析 因为 f (1) • f (1) e
(1 • 1 ln 1) • (1 ln1) 1 ( 1 1) 0,
∴f(x)=x2-3x-18,x∈[1,8]有零点.
(2)方法一 ∵f(1)=log23-1>log22-1=0, f(3)=log25-3<log28-3=0, ∴f(1)· f(3)<0, 故f(x)=log2(x+2)-x,x∈[1,3]存在零点. 方法二 设y=log2(x+2),y=x,在同一直角坐标系 中画出它们的图象,
∵f(x)=-x2+2ex+m-1 =-(x-e)2+m-1+e2. 其对称轴为x=e,开口向下, 最大值为m-1+e2. 故当m-1+e2>2e,即m>-e2+2e+1时, g(x)与f(x)有两个交点, 即g(x)-f(x)=0有两个相异实根. ∴m的取值范围是(-e2+2e+1,+∞).
10分 12分
思维启(迪1)可结合图象也可解方程求之. (2)利用图象求解.
解 (1)方法一 ∵ g(x) x e2 2 e2 2 e, x
等号成立的条件是x=e.
故g(x)的值域是[2e,+∞),
4分
因而只需m≥2e,则 g(x)=m就有零点.
6分
方法二 作出g(x) x e2 的图象如图: x
可知若使g(x)=m有零点,则只需m≥2e.
2
∴ f (x) 1 的零点为 9 , 2 5 .
4
82
题型分类 深度剖析
题型一 零点的判断 【例1】判断下列函数在给定区间上是否存在零点.
(1)f(x)=x2-3x-18,x∈[1,8]; (2)f(x)=log2(x+2)-x,x∈[1,3]. 思维启迪第(1)问利用零点的存在性定理或 直接求出零点,第(2)问利用零点的存在性定理 或利用两图象的交点来求解.
思维启该迪问题转化为求函数y=ln x与y=6-2x的 图象的交点个数,因此只需画出图,数形结合即可.
解 在同一坐标系画出 y=ln x与y=6-2x的图象,由 图可知两图象只有一个交点, 故函数y=ln x+2x-6只有一个 零点. 探究提高若采用基本作图法,画出函数y=ln x+ 2x-6的图象求零点个数,则太冗长.构造新函数y=ln x 与y=6-2x,用数形结合法求交点,则简洁明快.
对于在区间[a,b]上连续不断且_f(_a__)_·__f(_b__)_<_0_的 函数y=f(x),通过不断地把函数f(x)的零点所在的区 间__一__分__为__二__,使区间的两个端点逐步逼近_零__点__,进 而得到零点近似值的方法叫做二分法. (2)用二分法求函数f(x)零点近似值的步骤 第一步,确定区间[a,b],验证_f_(_a_)_·__f_(_b_)_<_0__,
知能迁移2 已知函数 f (x) ax x 2(a>1),判断
f(x)=0的根的个数.
x 1
解 设f1(x)=ax (a>1),f2(x)= x 2 , 则f(x)=0的解即为
x 1 f1(x)=f2(x)的解,即为函数f1(x)
与f2(x)图象交点的横坐标. 在同一坐标系中,作出函数
f1(x)=ax (a>1)与f2(x)= x 2 3 1 x 1 x 1
2.二次函数y=ax2+bx+c (a>0)的图象与零点的关系
Δ>0
Δ=0
Δ<0
二次函数 y=ax2+bx+c (a>0)的图

与x轴的交 点
____((__xx__1__2,,__00__))__,__
零点个数
__两__个__
__(_x_1_,_0_)_ _一__个__
无交点 _无__
3.二分法 (1)二分法的定义
(3)函数零点的判定(零点存在性定理)
如果函数y=f(x)在区间[a,b]上的图象是连续不
断的一条曲线,并且有__f(__a__)__·_f_(__b__)__<_0,那么函
数y=f(x)在区间(_a_,__b__)__内有零点,即存在c∈(a,b),
使得_f_(_c_)_=_0___,这个__c__也就是f(x)=0的根.
( D)
C.[-2,-1]
D.[-1,0]
解析 ∵f(-1)=3-1-(-1)2= 1 1 2 0,
3
3
f(0)=30-02=1>0,
∴f(-1)·f(0)<0,
∴有零点的区间是[-1,0].
2.(2009·天津理,4)设函数 f (x) 1 x ln x (x>0),
3
则y=f(x)
()
探究提高此类利用零点求参数的范围的问题,可 利用方程,但有时不易甚至不可能解出,而转化为构 造两函数图象求解,使得问题简单明了.这也体现了 当不是求零点,而是利用零点的个数,或有零点时求 参数的范围,一般采用数形结合法求解.
知能迁移3 是否存在这样的实数a,使函数f(x)=x2+ (3a-2)x+a-1在区间[-1,3]上与x轴恒有一个零点, 且只有一个零点.若存在,求出范围,若不存在,说 明理由. 解 ∵Δ=(3a-2)2-4(a-1)>0 ∴若实数a满足条件,则只需f(-1)·f(3)≤0即可. f(-1)·f(3)=(1-3a+2+a-1)·(9+9a-6+a-1) =4(1-a)(5a+1)≤0. 所以a≤ 1 或a≥1.
第四步,判断是否达到精确度 :即若|a-b|< ,则
得到零点近似值a(或b); 否则重复第二、三、四步.
基础自测
1.若函数f(x)=ax+b有一个零点为2,则g(x)=bx2-ax的
零点是
相关文档
最新文档