第4节土壤水分运动

合集下载

土壤中的水盐运移过程

土壤中的水盐运移过程

土壤中的水盐运移过程
土壤中的水盐运移过程是指水分和溶解在其中的盐分在土壤内部的传输和迁移过程。

这个过程对于植物生长和土壤质量具有重要影响。

水分运移:
1. 入渗:降雨或灌溉水从土壤表面渗入土壤,填充孔隙和微细毛管中。

2. 渗透:水分沿着土壤颗粒间的空隙向下渗透,直至达到饱和带或遇到不透水层。

3. 下渗:当饱和带中的水量超过土壤孔隙的容纳能力时,多余的水分向下移动,形成地下水。

4. 上升:由于土壤毛细作用或根系吸力等因素,土壤中的水分可以向上升至根系处供给植物的需求。

盐分运移:
1. 离子扩散:溶解在水中的盐分通过土壤孔隙中的扩散作用向周围的土壤颗粒和水分扩散,使盐分浓度逐渐均匀。

2. 吸附:土壤颗粒表面带有负电荷,可以吸附正电荷的离子,如钠离子和钾离子,减少其在水中的浓度。

3. 根系吸收:植物根系通过渗透作用和离子交换等机制吸收土壤中的盐分,并将之输送至植物体内。

4. 蒸发结盐:当土壤中的水分蒸发时,水分中溶解的盐分会逐渐浓缩,最终形成结晶并沉积在土壤表面。

影响因素:
土壤中水盐运移过程受到多种因素的影响,包括土壤类型、土壤结构、降雨量、温度、植被覆盖等。

不同的土壤类型具有不同的渗透性和保水能力,对水分和盐分的运移有不同的影响。

土壤中的水盐运移过程是一个复杂的系统,涉及到水分的入渗、渗透、下升和上升,以及盐分的扩散、吸附、根系吸收和蒸发结盐等过程。

了解这些过程对于农业生产和土壤保育具有重要意义。

土壤水分类型及有效性(内容严选)

土壤水分类型及有效性(内容严选)

10
•***毛管水上升高度
•从地下水面到毛管上升谁所能达 到的相对高度,叫毛管水上升高 度。
• h水柱高度(cm),d孔隙直径(mm)
行内借鉴
11
不同土壤质地毛管水上升高度
土壤质地 毛管水上升高度 土壤质地 毛管水上升高度
砂土
砂壤土, 轻壤土
0.5~1.0 1.5
中壤土, 1.2~2.0 重壤土
毛管悬着水达到最大值时的土壤含水 量称为田间持水量,通常作为灌溉水量定
额的最高指标。
在数量上它包括吸湿水、膜状水和毛 管悬着水。
● 饱和含水量(saturated water content) 饱和含 水量是指土壤中孔隙都充满水时的含水量。以 干土质量或容积的百分量表示。
行内借鉴
17
(二)土壤水的有效性(availability) 土壤水的有效性是指土壤水能否被
土壤所有的孔隙都充满了水时,水分向土壤 下层或横向运动的速度。
影响饱和导水率的因素 饱和导水率的特点
• 质地 水通量与孔隙半径 ① 饱和率是常数
4次方呈正比。
② 是土壤导水率的MAX
•结构 土壤结皮对土壤饱和 ③ 主要取决于土壤的质地
导水率有显著的影响。
和结构。
•有机质含量。
沙质土 > 壤质土 > 粘
2、为什么说毛管水是土壤中最宝贵的水分?
3、分析土壤水分的有效性
4、研究土壤水有何重大意义?土壤水在土壤中有何 重要作用?
5、土水势与土壤水吸力有何异同点?
行内借鉴
56
行内借鉴
57
植物吸收利用及其难易程度。 不能被植物吸收利用的水称为无效
水,能被植物吸收利用的水称为有效水。 最大有效水含量是凋萎系数至田间

(完整版)农田水利学

(完整版)农田水利学

第一章§1 农田水分状况农田水分:指农田中的地表水、土壤水和地下水。

地表水:地表积水。

土壤水:包气带中的水分。

地下水:饱水带中的水分(可自由流动的水体)。

与作物生长最密切的是土壤水。

一、土壤水(一)土壤水分形态土壤水又可分为吸着水、毛管水和重力水等几种水分形态。

1.吸着水(1)吸湿水分子力、紧紧束缚在土粒表面、不能移动、分子状态水吸湿水达到最大时的土壤含水率称为吸湿系数。

(2)膜状水分子力、束缚在土粒表面、可沿表面移动但不能脱离土粒表面、液态水膜膜状水达到最大时的土壤含水率称为最大分子持水率。

2.毛管水对于单个土粒,只能依靠分子力吸附水分, 但对于由许多土粒集合而成的土壤,其连续不断的孔隙相当于毛细管,因此还存在一种毛管力,依靠毛管力保持在土壤中的水分称为毛管水。

按水份供给情况不同,分悬着毛管水和上升毛管水。

(1)悬着毛管水灌溉或降雨后,在毛管力作用下保持在上部土层中的水分。

土壤储存水的主要形式。

悬着毛管水达到最大时的土壤含水率称为田间持水率。

(2)上升毛管水在地下水位以上附近土层中,由于毛细管作用所保持的水分。

上升毛管水达到根系,则可被作物吸收利用,但地下水位不允许上升到根系,以防渍害。

盐碱地区应严格控制地下水位,发防发生次生盐碱化。

3.重力水土壤中超过田间持水率的那部分水为重力水。

重力水以深层渗漏的形式进入更下的土层,或地下水。

旱地应避免深层渗漏,以防止水的浪费和肥料的流失。

水田保持适宜的深层渗漏是有益的,会增加根部氧分,有利于根系发育。

(二)土壤水分的有效性土壤对水分的吸力:1000MPa—0.0001MPa作物根系对水分的吸力: 1.5 MPa左右(1 MPa=9.87大气压=100m水柱)如果水分受土壤的吸力小于1.5 MPa, 作物可吸收利用;如水分受土壤的吸力大于1.5 MPa, 则作物不能吸收利用。

1.5 MPa是有效水和无效水的分界点。

土壤水分的有效性可以用下图来说明:(图:土壤水分有效性图)二、农田水分状况(一)旱田适宜的农田水分状况不允许地表积水土壤适宜含水率: 凋萎系数~田间持水率凋萎系数=0.6β田地下水水质较好,则地下水位可较高, 但一下水位不能达到根系层。

土壤物理知识点总结图解

土壤物理知识点总结图解

土壤物理知识点总结图解一、土壤颗粒性质1. 土壤颗粒组成土壤由砂、粉砂、壤土和粘土组成,颗粒大小依次减小。

2. 颗粒形态土壤颗粒的形态多种多样,有圆形、角形、片状等。

3. 颗粒结构土壤颗粒的结构有单粒结构、胶结结构、复合结构等。

二、土壤孔隙结构1. 孔隙分类土壤孔隙包括毛管孔隙、颗粒间隙和大孔隙。

2. 孔隙特征毛细管作用使土壤中的水分能上升,在土壤中形成一种特殊的溶液吸附现象,使土壤能保持一定量的水分。

3. 孔隙组成毛细管作用和颗粒结构使得土壤中有多样化的孔隙组成。

三、土壤水分运动1. 土壤中的水分形态土壤中的水分主要包括毛细吸附水、毛管水和重力水。

2. 水分运动过程水分在土壤中的运动主要有渗流、毛细吸附运动和重力排水等。

四、土壤气体运动1. 土壤中的气体土壤中的气体主要包括氧气、二氧化碳、氮气等,它们对土壤有着重要的影响。

2. 气体运动规律土壤中的气体运动与水分运动联系紧密,同时还受温度、湿度等因素的影响。

五、土壤热量传导1. 热量传导的方式土壤中的热量主要通过传导、对流和辐射传导等方式进行。

2. 土壤热力学性质土壤的热导率、热容量等热力学性质对热量传导具有重要的影响。

六、土壤质地与结构1. 土壤质地土壤质地主要指土壤中砂、粉砂和粘土的含量比例,它对土壤的肥力和透水性等具有重要影响。

2. 土壤结构土壤结构可分为状结构、团粒结构、板状结构等,不同的土壤结构对土壤的通透性、保水性等有重要影响。

七、土壤物理性质与植物生长1. 土壤物理性质对植物生长的影响土壤的通透性、保水性、含氧量等物理性质对植物生长有着直接的影响。

2. 土壤改良通过改良土壤的物理性质,可以提高土壤的肥力、改善土壤的透气性和透水性,促进植物生长。

通过以上内容的学习,对土壤物理知识有了更全面的认识。

在实际的土壤改良和农业生产过程中,对这些知识的理解和掌握将发挥重要作用。

同时,也希望通过图解和详细解释,能更好地帮助读者理解和应用这些知识。

土壤学课件第四章土壤水肥气热四大肥力因素

土壤学课件第四章土壤水肥气热四大肥力因素
18
依靠毛细管的吸引力而被保持在土壤孔隙中的 水分,称毛管水。
毛管水的上升高度: h = 0.15 / r(cm)
一般只有砂土到细砂和粗粉质土才符合这个规律,而从中、 重壤土开始至粘土,反而是质地愈粘重,毛管水上升高度愈 低。这是因为极细孔隙中的水分为相当强的吸附力所影响, 粘滞度高,很难移动。
h 壤土
21
(三)重 力
当土壤含水量达到田间持水量后,若继续供水,则水分将在 重力作用下向下流动,或者湿润下面土层,或是流入地下水, 成为地下水的给源,这部分不被土壤所保持而在重力支配下向 下流动的水称重力水。
当土层内的孔隙全部被水充满时的含水量称饱和蓄水量或全蓄水量。
重力水也是植物有效水,但在饱和含水量时,一般旱作将 因氧气不足而不能生活,但对水稻来说,重力水是必需的。
(1)土壤有机氮的C/N比 (2)土壤含水量 (3)施肥
6
2、无机态氮的转化
NH3
挥发
硝化作用
NO3-
NH4+=NH3 +H+
无机胶体 表面的铵
粘土矿物固定
生物氮
层状硅酸盐矿 物层间NH4+
有机固相 结合态铵
(1)氨的挥发
(2)硝化作用
(3)反硝化作用 粘粒矿物晶格固定
(4)氮的固定
无机氮的生物固定
31
32
三、土壤含水量的表示方法和土壤水分测定
(一)土壤含水量的表示方法
⑴ 质量百分含量θm
水分重
= 烘干土重 ×100%
⑵ 容积百分含量θv
=
水的容积 土壤容积
×100 %=
θm ×容重
⑶ 土壤贮水量 Dw = θm × h h—土层厚度(mm)

第四章 土壤水分的能态

第四章 土壤水分的能态

第四节 土壤水能态测定方法
有多种方法, 有多种方法,如:张力计法、压力膜法、 张力计法、压力膜法、 冰点下降法、水气压法等。 冰点下降法、水气压法等。它们的适宜 范围不同。 范围不同。 最常测定的是基质势,仪器为张力计。 最常测定的是基质势,仪器为张力计。
基质势的测定 (1)张力计法。 张力计法。 主要原理是将充满水的带有陶土滤杯 孔径在1.0 1.5um的细孔 1.0— 的细孔) (孔径在1.0—1.5um的细孔)的金属 管埋入土中, 管埋入土中,水可通过细孔与土壤水 接触,水分由细孔进入土壤。 接触,水分由细孔进入土壤。 金属管上端连接金属表, 金属管上端连接金属表,水分由瓷杯细 孔进入土壤后,管内形成负压, 孔进入土壤后,管内形成负压,真空 压力计上的负压读数即代表管外土壤 水吸力。 水吸力。来自(六)土壤水能态的定量表示
单位容积土壤水的势能值用压力表示, 单位容积土壤水的势能值用压力表示, 标准单位帕(Pa),或千帕(KPa),兆 ),兆 标准单位帕 ,或千帕( ), ),习惯上也曾用巴 帕(MPa),习惯上也曾用巴(bar) ),习惯上也曾用巴( ) 和大气压( 和大气压(atm)表示。 )表示。 单位重量的土壤水的势能值用相当于一 定压力的水柱高厘米数表示。 定压力的水柱高厘米数表示。
土壤-植物 大气系统 土壤 植物-大气系统 植物 土壤水分有效性是一个与大气条件紧密 相连的问题,应该从土壤-植物 植物-大气这 相连的问题,应该从土壤 植物 大气这 个动态系统来阐明土壤水分的有效性。 个动态系统来阐明土壤水分的有效性。 只要根系吸收水分的速率能平衡蒸腾损 耗水分的速率,植物就能正常生长, 耗水分的速率,植物就能正常生长,土 壤水分就是有效的。 壤水分就是有效的。 一旦根系吸水速率低于蒸腾速率,植物 一旦根系吸水速率低于蒸腾速率, 就失水,并且迅速凋萎。 就失水,并且迅速凋萎。此时土壤水分 就是无效的。 就是无效的。

种植基础第二章第四节土壤肥力因素

种植基础第二章第四节土壤肥力因素




土粒
升 水
地下水位
4.重力水
土壤中所有毛管孔隙充满水后,再有多余的 水分不能被毛管孔隙所保持,而受重力作用沿大 孔隙向下移动,这种水叫重力水。
当土壤中所有孔隙充满水时的土壤的含水量叫 饱和含水量。
(二)土壤水分的有效性
土壤吸湿系数、萎蔫系数、田间持 水量、饱和含水量等对某一土壤来说, 其数值是固定的或变化极小,称之为土 壤水分常数。
(一)、土壤空气的特点
土壤空气与大气组成的比较(容积%)
气体
O2
CO2
N2
其他
气体
近地面 20.96 0.03 79.01 0.95 的大气
土 壤 20.03 0.15-
79
1
空气
0.65
土壤空气和大气组成的差异
1.土壤空气中的CO2含量高于大气 2.土壤空气中的O2含量低于大气 3.土壤空气中的水汽含量一般高于大气 4.土壤空气中含有较高量的还原性气体(CH4等)
Cv Cvm Vm Cvo Vo Cvw Vw Cva Va
矿 物 质
土壤组成
有 机 质
水 分
空 气
表2-7土壤各组分的热容量
土壤空气 土壤水分 砂粒和黏粒 有机质
质量热容量
1.0048
容积热量、热容量 0.0013
4.1868 4.1868
0.75-0.96 2.01 2.05-2.43 2.51
• 农业生产中常用中耕松土、灌水和排水等 措施来调节土壤的通气性。
灌溉
排水
三、土壤热量
土壤热量对作物的生长发育及微生物的活动 都有直接影响,它还影响土壤水、气和养 分状况,因此,土壤热量也是重要的肥力 因素

河海大学811水文学原理第五章 土壤水与下渗456

河海大学811水文学原理第五章  土壤水与下渗456
第四节 下渗的物理过程
教学目标:
1. 下渗,下渗率,下渗容量的定义。 2. 下渗率,下渗容量的影响因素。 3. 分析土壤水分剖面,分析出下渗曲线的意义。
一、土壤水分剖面 土壤含水率沿深度方向的变化曲线称为
土壤水分剖面
土壤水分剖面
若土壤含水率用容积含水率表
z2
W 示,则计算土层含水量的公式
0
——初始土壤含水率;
n ——土壤饱和含水率;
Ks ——饱和水力传导度;
f p
dFP dt
d
n
(z,t)d
dt 0
Ks
第五节 下渗理论与公式
下渗曲线不仅是下渗物理过程的定量描述,而 且是下渗物理规律的体现。推求下渗曲线的具 体表达形式是下渗理论的一个重要课题。
下渗方程
求解土壤水分剖面表达式
刻渗入土壤的总水量。
四、下渗机理
1、随时间变化特点 第一阶段为渗润阶段。这阶段土 壤含水量较小,下渗容量较大, 下渗容量随时间递减迅速。 第二阶段为渗漏阶段。这阶段, 由于土壤含水量不断增加,下渗 容量明显减小,下渗容量随时间 递减变得缓慢。 第三阶段为渗透阶段。在这一阶 段,土壤含水量达到了饱和状态, 下渗容量变得稳定,达到下渗容 量的最小值,为稳定下渗率。
湿润锋:湿润区与下渗水尚未涉及到的土壤的交界面 称为湿润锋。在湿润锋处,土壤含水量梯度很大,因 此在该处将有很大的土壤水分作用力来驱使湿润锋继 续下移。
五、求解下渗容量与土壤水分剖面的 关系
若已知供水强度充分大 条件下的土壤水分剖面。
n
FP z( ,t)d Kst 0
z( ,t) ——从土壤水分剖面的数学表达式
2
t D z2 k z
(z,0) 0 (0,t) n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非饱和导水率的测定
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
连续方程
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
Rechards 方程
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
土壤蒸发阶段性
根据土壤蒸发速率的大小和控制因素不同,土壤蒸发可分为 三个阶段:大气蒸发力控制阶段;土壤导水率控制阶段;水汽扩 散控制阶段。
蒸发三阶段示意图
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
蒸发速率与时间关系 1、2、3、4表示起始蒸发速率降低次序
蒸发条件下水分运动定解问题
(1)初始条件 土壤剖面含水量均匀分布, 土壤含水量非均匀分布。
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
入渗率随时间的变化
土壤入渗过程
& 土壤入渗过程三阶段:
渗润阶段 渗漏阶段 渗透阶段
& 土壤水分剖面四个区:
饱和区 过渡区 传导区 湿润区
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
4.2 非饱和土壤中的水流 白金汉—达西定律(Edgar Buckingham, 1907)
假设: (1)土壤是非膨胀、等温的,且不含任何溶质成分,气体
压力势为零。 (2)土水势由基质势和重力势组成。 (3)非饱和土壤导水率是土壤含水量或基质吸力的函数。
© Anhui University of Science & Technology | 2009 | CHEN Xiaoyang
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
土壤水分运动的定解条件
(1)初始条件
(2)边界条件 第一类边界条件(浓度型): 第二类边界条件(通量型): 第三类边界条件(混合型):
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
4.3 土壤水分入渗和再分配
入渗是在灌溉或降雨条件下,水分通过土壤表面垂直或水平进入土 壤的过程。土壤入渗受到供水强度和土壤入渗能力的影响。土壤入渗 能力重用土壤入渗率 i 和累积入渗量 I 来表示。
入渗率是指单位时间、单位面积土壤表面入渗的水量,常用单位 mm/s,或cm/d。而累积入渗量是指一定时段内通过单位土壤表面入 渗的累积水量,或者是在一定时段内,单位面积土壤入渗的总水量, 常用水深来表示,单位为cm或mm。
饱和导水率的测定——定水头法
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
饱和导水率的测定——变水头法
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
© Anhui University of Science & Technology | 2009 | CHEN Xiaoyang
土壤水分再分布
当供水(降雨或灌溉)结束 后,地表积水逐渐消失,土壤入 渗过程即告结束。但在土壤剖面 仍存在水势梯度,土壤水分在水 势梯度的作用下,仍继续移动和 重新分配,直至土壤剖面不存在 水势梯度。当地下水埋藏较浅或 者研究剖面全部饱和时,土壤水 在水势梯度作用下向下运动,排 入地下水或者排出研究土体,称 这种土壤水分再分布过程为内排 水。如果地下水位埋藏较深或者 入渗后土壤不是全饱和,土壤水 在水势梯度作用下的重新分布过 程,称为土壤水再分布。
入渗土壤水分剖面
土壤入渗过程影响因素
& 土壤初始含水量 & 土壤质地 & 供水强度 & 供水水质 & 供水方式 & 雨滴击溅 & 温度场
© Anhui University of Science & Technology | 2011 | C
(1)Horton 入渗模型,1940 (2)Philip 两项入渗模型,1957 (3)Green-Ampt 入渗模型,1911
第4章 土壤水分运动
主要内容: ※ 饱和土壤中的水流 ※ 非饱和土壤中的水流 ※ 土壤水分入渗与再分布 ※ 土壤水蒸发 ※ 土壤水分运动模拟
重、难点: ※ Darcy’s Law;Richards方程;土壤水分入渗模
型;土壤蒸发;土壤水分运动模拟
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
4.1 饱和土壤中的水流 毛细管中的水流
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
Darcy’s Law
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
© Anhui University of Science & Technology | 2011 | CHEN Xiaoyang
图中表示灌溉后0、1、 4、14天的水分剖面
4.4 土壤蒸发
土壤水经过土壤表面以水蒸气形式扩散到大气中的过程为土 壤蒸发。
蒸发过程能维持下去,必须具备三个条件: (1)必须有不断的热能补给,以满足水分汽化热的需要; (2)蒸发面和大气之间必须存在水汽压梯度; (3)蒸发面必须不断地得到水分补充。 前两个条件由气象因素决定,包括太阳辐射、气温、空气湿 度和风速等。第三个条件由土壤导水性质决定。
相关文档
最新文档