第二章-土壤水分运动基本方程2

合集下载

2非饱和水流运动基本方程

2非饱和水流运动基本方程
Darcy’s Law of Soil Water Flow in Unsaturated Zone
非饱和土壤水分运动和饱和土壤水分运动一样,水分从水势高 处向水势低处运动。一般认为,适用于饱和水流动的达西定律 在很多情况下也同样适用于非饱和土壤水分流动。 1931年,Richards最早将达西定律引入非饱和土壤水流动。非 饱和土壤水分流动的达西定律:
Guelph土壤入渗仪
3.2 容水度(或比水容量)
单位基膜势(负压值)变化所引起土壤含水率的变化,一 般称为容水度或比水容量(C),可以下式表示:
Ch d
dh
表示在单位压力水头降低时自单位体积土壤中所释放 出来的水的体积,它与饱和土壤的给水度相似。 用测水分特征曲线的方法来测定
3.3 土壤水分扩散度D
q K ( m ) 或 q K ( )
饱和土壤水分流动的达西定律:
qKsH
水势组成: 流动准则:
ψg :
饱和流
非饱和流
ψ =ψg +ψp
总水头


ψ =ψg +之高度
ψp:
至地下水面的高度
ψp= 0
ψm :
ψm = 0
ψm 取决于土壤的干湿程度
在不同的平均负压(吸力)值下,通量与负压梯度成正比,两者 呈直线关系,但其斜率(即水力传导度)随平均负压而变。
k (h)
h=-30cm h=-50cm
h
负压梯度△h/△x
3.1.2 饱和水力传 导度及其测定
双环入渗仪
The assumption is that the soil layer immediately below the ponded area is fully saturated and thus the matric potential is essentially zero. Common Steady Flow Analysis (Unit Gradient): Accounts only for the flow component due to gravity.

土壤水分运动通量法

土壤水分运动通量法

上式由 z* ~ z 积分得 :q ( z*) q ( z ) * dz z t
z
q z t z
质量守恒定律
q( z*) 和 q( z ) 为高度为 z * 和 z 处的土 式中: 壤水分运动通量。
当时间由 t1 t2 , Q( z*) 、Q( z )分别为由 t1 t2 时间段内通 设: 过 z * 和 z处单位土壤断面面积上的水量,无源 (汇)项时,则根据水量平衡原理可得:
0 0 z02
z02
z01
z01
即图中a’dd’e的面积。
z

z
b H
c θ
( z, t1 )
z01
a d
ZEP
z02 ( z, t ) 2
0
a’
d’
e
三、表面通量法 是以地表处的入渗通量、蒸发通量作为已知通 量的界面,求地下任一深度Z处通量的方法。
Q( z) Qs ( z, t2 )dz ( z, t1 )dz
如何确定某一断面处的通量? 零通量面法
表面通量法 定位通量法
统称为土壤水分运动通量法
二、零通量面与零通量面法 1.零通量面: 土壤中任一点土壤水分的通量
q k ( m ) z

k ( m ) 0
0 时, q 0 z
∴当
称 q 0 的水平面为零通量面ZFP,记为Z0。
z z
H
H
式中:H为地表距潜水面的垂直距离,潜水位埋深; 当 时, Q( z) z 0 为时段内潜水面处单位面积上流过(补给或潜 水蒸发)的水量。
四 、定位通量法 该方法是在地下某一位置 z1 z2 用实测方 法求得其中间点的通量,作为已知通量,据此, 可求得任一位置Z处的通量 Q。 ( z) 如: ①在Z1、Z2处用负压计测基质势m1 和 m2 ; ②求得该处 K K(m ) 的函数关系 ;

土壤水分运动

土壤水分运动

量纲:取决于水头梯度。如果水头梯度取长度比长度则导水率的量纲完全与 通量相同,也是速度的量纲(LT-1),经常使用。其它量纲不直观,应用很 少。
一、饱和土壤中水分运动 Flow of water in saturated soils
影响导水率因素: (1)土壤性质: A.质地: Ks(sand)=10-2~10-3(cm/秒) Ks(clay)=10-4~10-7 (cm/秒) B.结构:饱和导水率取决于能够导水的大孔隙的孔度,并不是取 决于土壤总孔度;田间裂隙、根孔和虫孔都是饱和导水的主要通 道(这些孔道往往在灌水入渗期间成为发生优先流的地方。有结 构土壤饱和导水率大于无结构的土壤。 总孔隙度大的土壤未必是饱和导水率最高的土壤 注意: 由于土壤基模特性的不稳定性,导致实际上土壤饱和 导水率往往不是常数。如土壤中离子代换作用、土壤胀缩过程、 以及封闭气体作用等。饱和导水率是一个常数是理论概念,它建 立在土壤基模特性稳定的基础上。实际上却并不是一个常数。 (2)环境温度:温度会影响到土壤中封闭空气的溶解度、会影响 到土壤中溶质离子溶解度,同样影响到水分的物理性状。所以, 影响到土壤导水率。 (3)流体性质:液体的粘滞系数(viscosity)和密度(fluid density) 也是影响导水率的主要因素。
一、饱和土壤中水分运动 Flow of water in saturated soils
2.达西定律(Darcy’s law) 1856年法国工程师Henri Darcy在Dijon城解决城市人口用水问题时总结发表 了达西定律,他指出:细沙过滤器中水流的速度与其所受的压力差成正比例,而 与过滤器的长度成反比。(达西定律诞生背景) 达西定律表达式: 一维情况下: Q q = A⋅t = − K ∆H ∆Z q : 流速( flux density ; LT -1) Q :流量 ( quantity of water ; m 3 ) A:土柱横截面积 ( cross − sec tional area ; m 2 ) t:时间( time ; s) K :导水率 ( hydraulic conductivi ty; m/s) ∆H :压力差( hydraulic head; m) ,水分移动的驱动力 ∆Z:土柱长度 (column length; m) ∆H :水势梯度 ( hydraulic gradient ; m / m ) ∆Z “ −”:表示水流的方向由 水势高出流向水势低处

第二章 土壤水分运动基本方程2

第二章 土壤水分运动基本方程2

第二章 土壤水分运动基本方程如前所述,达西定律是由达西(Darcy ,Henry 1856)通过饱和砂柱渗透试验得出,后由Richards (1931)将其扩伸至非饱和水流中,并规定导水率为土壤负压h 的函数,即()H h k q ∇= (2-2-1)式中:H ∇——为水势梯度;k (h )——为导水率,是土壤负压h 的函数; q ——为水流通量或流速。

Richards 方程垂向一维方程为)1)(( )(±∂∂-=∂∂-=zhk zH k q z θθ注意:H=h ±z ,垂直坐标向上为“+”;向下时为“–”。

由于k (h )受滞后影响较大,上式仅适用于单纯的吸湿或脱湿过程。

若将导水率作为容积含水率函数,即以k (θ)代替人k (h ),则可避免滞后作用的影响。

一般说来达西定律对饱和与非饱和水流均可适用,即水流通量与势能梯度成正比。

但在饱和土壤中,压力为正值,其总水头包括了由该点在地下水面以下深度来确定的静水压力(正值)和相对于基准面高度来确定的位置水头,总水头为压力水头和位置水头之和,水由总水头高处向低处流动。

在非饱和土壤中,基质势为负值,土水势在不考虑溶质势、温度势及气压势时,只包括重力势和基质势。

因此,总水头常以负压水头和位置水头之和来表示。

一维Richards 方程的几种形式:根据()()θθθD hk =∂∂(K=C ×D )得: x h k q x ∂∂-=)(θ x D q x ∂∂-=θθ)( y h k q y ∂∂-=)(θ yD q y ∂∂-=θθ)( )1)((±∂∂-=z h k q z θ )]()([θθθk zD q z ±∂∂-=第一节 直角坐标系中土壤水分运动基本方程一、基本方程的推导土壤水分运动一般遵循达西定律,且符合质量守恒的连续性原理。

土壤水分运动基本方程可通过达西定律和连续方程进行推导。

如图2-2-1所示,从土壤中取出微分单元体abcdefgh ,其体积为z y x ∆∆∆,由于该立方体很小,在各个面上的每一点流速可以看成是相等的,设其流速为z y x v v v 、、,在t ~t+Δt 时段内,流入立方体的质量为(3个面流入):t y x v t z x v t z y v m z y x ∆∆∆+∆∆∆+∆∆∆=ρρρ入 (2-2-2)流出立方体的质量为(3个面流出):t z y x x v v m x x ∆∆∆⎪⎭⎫⎝⎛∆∂∂+=ρ出t y x z z v v t z x y y v v z zy y ∆∆∆⎪⎭⎫ ⎝⎛∆∂∂++∆∆∆⎪⎪⎭⎫ ⎝⎛∆∂∂++ρρ (2-2-3) 式中:ρ––––水的密度;z y x ∆∆∆,,––––分别表示微分体x 、y 、z 方向长度;x x v x ∆∂∂,y y v y ∆∂∂,z zvz ∆∂∂––––分别表示水流经微分体后,其流速在x 、y 、z 方向的变化值。

第二章 土壤水分运动基本方程2

第二章 土壤水分运动基本方程2

第二章 土壤水分运动基本方程如前所述,达西定律是由达西(Darcy ,Henry 1856)通过饱和砂柱渗透试验得出,后由Richards (1931)将其扩伸至非饱和水流中,并规定导水率为土壤负压h 的函数,即(2-2-1)()H h k q ∇=式中:——为水势梯度;H ∇ k (h )——为导水率,是土壤负压h 的函数; q ——为水流通量或流速。

Richards 方程垂向一维方程为)1)(()(±∂∂-=∂∂-=zhk z H k q z θθ注意:H=h ±z ,垂直坐标向上为“+”;向下时为“–”。

由于k (h )受滞后影响较大,上式仅适用于单纯的吸湿或脱湿过程。

若将导水率作为容积含水率函数,即以k (θ)代替人k (h ),则可避免滞后作用的影响。

一般说来达西定律对饱和与非饱和水流均可适用,即水流通量与势能梯度成正比。

但在饱和土壤中,压力为正值,其总水头包括了由该点在地下水面以下深度来确定的静水压力(正值)和相对于基准面高度来确定的位置水头,总水头为压力水头和位置水头之和,水由总水头高处向低处流动。

在非饱和土壤中,基质势为负值,土水势在不考虑溶质势、温度势及气压势时,只包括重力势和基质势。

因此,总水头常以负压水头和位置水头之和来表示。

一维Richards 方程的几种形式:根据(K=C ×D )得:()()θθθD hk =∂∂x hk q x ∂∂-=)(θx D q x ∂∂-=θθ)( yhk q y ∂∂-=)(θyD q y ∂∂-=θθ)()1)((±∂∂-=zhk q z θ)]()([θθθk zD q z ±∂∂-=第一节 直角坐标系中土壤水分运动基本方程一、基本方程的推导土壤水分运动一般遵循达西定律,且符合质量守恒的连续性原理。

土壤水分运动基本方程可通过达西定律和连续方程进行推导。

如图2-2-1所示,从土壤中取出微分单元体abcdefgh ,其体积为,由于该立方体很小,z y x ∆∆∆在各个面上的每一点流速可以看成是相等的,设其流速为,在t ~t+Δt 时段内,流入立方z y x v v v 、、体的质量为(3个面流入):ty x v t z x v t z y v m z y x ∆∆∆+∆∆∆+∆∆∆=ρρρ入 (2-2-2)流出立方体的质量为(3个面流出):tz y x x v v m x x ∆∆∆⎪⎭⎫⎝⎛∆∂∂+=ρ出 (2-2-3)t y x z z v v t z x y y v v z z y y ∆∆∆⎪⎭⎫ ⎝⎛∆∂∂++∆∆∆⎪⎪⎭⎫ ⎝⎛∆∂∂++ρρ式中:ρ––––水的密度;––––分别表示微分体x 、y 、z 方向长度;z y x ∆∆∆,,,,––––分别表示水流经微分体后,其流速在x 、y 、z 方向的变x x v x ∆∂∂y y v y ∆∂∂z zvz ∆∂∂化值。

第2章 土壤水的保持和运动3

第2章 土壤水的保持和运动3

∂v y + dy ) dxdzdt ∂y
∂vy vy + dy ∂y
dz
vx +
∂vx dx ∂x
ρ (v x +
dy
∂vx x dx ) dydzdt ∂x
dx
vz
y
流入和流出单元体的质量差
流入
m i = ρ v x dydzdt + ρ v y dxdzdt + ρ v z dydxdt
流出
以含水率θ为变量的基本方程
∂θ ∂ ⎡ ∂h ⎤ ∂ ⎡ ∂h ⎤ ∂ ⎡ ∂h ⎤ ∂K (θ ) = K (θ ) ⎥ + K (θ ) ⎥ + ⎢ K (θ ) ⎥ + ∂t ∂x ⎢ ∂x ⎦ ∂y ⎢ ∂y ⎦ ∂z ⎣ ∂z ⎦ ∂z ⎣ ⎣
dz
vx +
∂vx dx ∂x
x
dy
dx v z
y
达 西 定 律(Darcy’s Law)
∂ϕ v x = − K (θ ) ∂x
∂ϕ v y = − K (θ ) ∂y
∂ϕ v z = − K (θ ) ∂z
非饱和导水率(水力传导度) (Hydraulic Conductivity)
水力传导度是指单位水头差作用下,单位断面 积上流过的水流通量,它是土壤含水率或土壤 基质势的函数。由实验测定。
饱和土壤水流
∂v x ∂v y ∂v z + + =0 ∂x ∂z ∂y
拉普拉斯方程
Richards方程
∂v y ∂v z ∂v ∂θ = −( x + ) + ∂t ∂x ∂y ∂z
∂ϕ ∂x
根据达西定律 ∂θ 有: =

第4讲 土壤水份运动基本方程

第4讲 土壤水份运动基本方程

What is hydraulic conductivity?
K is a property of both media and fluid. Experiments show: K is the intrinsic permeability (L2), a property of media only. ρ is the mass density (M/L3) μ is the dynamic viscosity (M/LT) and measures the resistance of fluid to shearing that is necessary for flow.
导水率K
综合反映了多孔介质对流体流动的阻碍作用
多孔介质的基质特征:质地、结构… 流体物理性质:粘滞性、密度…
实验室测定 现场测定
双环入渗试验 Guelph渗透仪 抽水试验
Darcy定律的微分形式:
微分形式与差分 形式有区别吗?
dH q = −K s dL
Return to fluid potential equation, Neglect velocity (kinetic) term, and substitute for p
m
)
θ方程(扩散型方程):
引入扩散率D:
D (θ ) = K (θ ) = K (θ C (θ )
)
dθ dψ m
∂ψ m dψ m ∂θ ∂θ = K (θ ) = D(θ ) K (θ ) ∂x dθ ∂x ∂x
∂θ ∂ ⎡ ∂θ ⎤ ∂ ⎡ ∂θ ⎤ ∂ ⎡ ∂θ ⎤ ∂K (θ ) = D(θ ) ⎥ + ⎢ D(θ ) ⎥ + ⎢ D(θ ) ⎥ ± ∂t ∂x ⎢ ∂x ⎦ ∂y ⎣ ∂y ⎦ ∂z ⎣ ∂z ⎦ ∂z ⎣

第2章_土壤水动力学基本方程

第2章_土壤水动力学基本方程

2.3非饱和土壤水运动的达西定律
2.3.3非饱和导水率的数学表达
含水量为 s Δ ,最大半径为 R1的毛管排空。 2 2 Δ M 1Δ M 1 i 1,2,, M 1 对一般情况 K s iΔ K s Δ 2 w g j 2 w g j i 1 h2 2 h2 j j 2 M M M 又
K s iΔ K s i M2 K s i 1,M , M 1 2, 1 Ks Δ1 M 1 例题2.1 2 2 j 1 h 2 2 w g j 1 h j j j 1 h j
j i 1 h 2 j
Δ 1 1 1 g 2 j i 1 h2 2 i h j w j j
H h z h 1 J w K h K h K h z z z
2.3非饱和土壤水运动的达西定律
2.3.2 Buckingham-Darcy通量定律
Buckingham-Darcy通量定律也可写成: 符号相反, 向下为正
非饱和流与饱和流的比较: 共同之处:都服从热力学第二定律,都是从水势高的地 方向水势低的地方运动。 不同之处: ①土壤水流的驱动力不同。 饱和流的驱动力是重力势和压力势;
非饱和流的是重力势和基质势。
②导水率差异 非饱和导水率远低于饱和导水率;当基质势从0降低到 -100kpa时,导水率可降低几个数量级,只相当于饱和导 水率的十万分之一。 ③土壤空隙的影响土壤。在高吸力下,粘土的非饱和导 水率比砂土高。
16~40cm/d
〉100cm/d

很高
40~100cm/d

2.3非饱和土壤水运动的达西定律
绝大多数田间和植物根区的土壤水流过程都处 在非饱和状态。非饱和流研究为土壤物理学最 活跃的研究领域之一。 2.3.1 非饱和流与饱和流的比较
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 土壤水分运动基本方程如前所述,达西定律是由达西(Darcy ,Henry 1856)通过饱和砂柱渗透试验得出,后由Richards (1931)将其扩伸至非饱和水流中,并规定导水率为土壤负压h 的函数,即()H h k q ∇= (2-2-1)式中:H ∇——为水势梯度;k (h )——为导水率,是土壤负压h 的函数;q ——为水流通量或流速。

Richards 方程垂向一维方程为)1)(( )(±∂∂-=∂∂-=zh k z Hk q z θθ 注意:H=h ±z ,垂直坐标向上为“+”;向下时为“–”。

由于k (h )受滞后影响较大,上式仅适用于单纯的吸湿或脱湿过程。

若将导水率作为容积含水率函数,即以k (θ)代替人k (h ),则可避免滞后作用的影响。

一般说来达西定律对饱和与非饱和水流均可适用,即水流通量与势能梯度成正比。

但在饱和土壤中,压力为正值,其总水头包括了由该点在地下水面以下深度来确定的静水压力(正值)和相对于基准面高度来确定的位置水头,总水头为压力水头和位置水头之和,水由总水头高处向低处流动。

在非饱和土壤中,基质势为负值,土水势在不考虑溶质势、温度势及气压势时,只包括重力势和基质势。

因此,总水头常以负压水头和位置水头之和来表示。

一维Richards 方程的几种形式:根据()()θθθD h k =∂∂(K=C ×D )得: x h k q x ∂∂-=)(θ xD q x ∂∂-=θθ)( y h k q y ∂∂-=)(θ y D q y ∂∂-=θθ)( )1)((±∂∂-=z h k q z θ )]()([θθθk zD q z ±∂∂-=第一节 直角坐标系中土壤水分运动基本方程一、基本方程的推导土壤水分运动一般遵循达西定律,且符合质量守恒的连续性原理。

土壤水分运动基本方程可通过达西定律和连续方程进行推导。

如图2-2-1所示,从土壤中取出微分单元体abcdefgh ,其体积为z y x ∆∆∆,由于该立方体很小,在各个面上的每一点流速可以看成是相等的,设其流速为z y x v v v 、、,在t ~t+Δt 时段内,流入立方体的质量为(3个面流入):t y x v t z x v t z y v m z y x ∆∆∆+∆∆∆+∆∆∆=ρρρ入 (2-2-2)流出立方体的质量为(3个面流出):t z y x x v v m x x ∆∆∆⎪⎭⎫ ⎝⎛∆∂∂+=ρ出 t y x z z v v t z x y y v v z z y y ∆∆∆⎪⎭⎫ ⎝⎛∆∂∂++∆∆∆⎪⎪⎭⎫ ⎝⎛∆∂∂++ρρ (2-2-3) 式中:ρ––––水的密度;z y x ∆∆∆,,––––分别表示微分体x 、y 、z 方向长度;x x v x ∆∂∂,y y v y ∆∂∂,z zv z ∆∂∂––––分别表示水流经微分体后,其流速在x 、y 、z 方向的变化值。

由式(2一2-2)、式(2-2-3)之差可求得流入和流出立方体的质量差: 出入m m m -=∆⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=z v y v x v z y x ρt z y x ∆∆∆∆⨯ (2—2—4)设θ为立方体内土壤含水率,则在Δt 时间内立方体内质量变化又可写为t z y x tm ∆∆∆∆∂∂=∆θρ (2—2—5) 根据质量平衡原理(流入量-流出量=储存量变化量),式(3-2-4)、式(3—2—5)应相等,即⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=∂∂z v y v xv t z y x θ (2-2-6) 根据达西定律得:()x H k v x ∂∂-=θ,()y H k v y ∂∂-=θ,()zH k v z ∂∂-=θ (2-2-7) 式中k (θ)––––土壤水力传导度,为含水率的函数;H ––––总土水势,为基质势与重力势之和(H =h +z )。

因此,式(2-2—6)可以写作以下形式:()()()zz H k y y H k x x H k t ∂⎥⎦⎤⎢⎣⎡∂∂∂+∂⎥⎦⎤⎢⎣⎡∂∂∂+∂⎥⎦⎤⎢⎣⎡∂∂∂=∂∂θθθθ (2-2-8) 上式可以简写为()[]H k t∇∇=∂∂θθ (2-2-9) 式(2-2-8)或式(2-2-9)为土壤水分运动基本方程。

在饱和土壤中,含水量和基质势均为常量。

水力传导度也为常量,常称渗透系数,则方程(2-2-8)可写为0222222=∂∂+∂∂+∂∂zH y H x H (2-2-10) 或写作02=∇H (2-2-10‘)2222222z y x ∂∂+∂∂+∂∂=∇ (2-2-11) 式中:▽2––––拉普拉斯算子。

式(2-2-10)或式(2-2-10‘)为饱和土壤水流的拉普拉斯方程。

二、基本方程的不同形式为运用基本方程分析各种实际问题的方便,可将基本方程改写为多种表达形式。

为简便起见,以下均以一维垂向土壤水分运动为例,给出基本方程的不同表达形式。

(一)以含水率θ为变量的基本方程由式(2-2-8)可得一维垂向土壤水分运动的基本方程为()⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂z H k z t θθ (2-2-12) 式中:H ––––总土水势;z ––––为水流方向坐标,取z 向上为正。

因为H=h 十z ,所以上式可写作()()zk z h k z t ∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂θθθ (2-2-13) 式(2-2-13)为以θ为变量的基本方程,将zh z h ∂∂∂∂=∂∂θθ代入式(2-2-13)得: ()()z k z h k z t ∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂∂∂=∂∂θθθθθ 令()()θθθD h k =∂∂,则式(2—2—13)可以写成(一维垂向土壤水分运动方程): ()()zk z D z t ∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂θθθθ (2-2-14) 在水平运动的情况下,重力项等于0,所以()xD v x ∂∂-=θθ,其形式与Fick 扩散定律相同。

式(2-2-14)具有扩散方程的形式,故将D (θ)称为扩散度。

()⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂x D x t θθθ (2-2-14‘) Fick 定律:自由水中溶质的分子扩散通量符合Fick 定律:x c DJ ∂∂-= 式中:J 为溶质的扩散通量;D 为溶质的扩散系数; xc ∂∂为溶质的浓度梯度。

(二)以基质势h 为变量的基本方程 由于()th h c t h h t ∂∂=∂∂∂∂=∂∂θθ ,则式(2-2-14)可以写成: ()()()zh k z h h k z t h h c ∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂ (2-2-15) 式中:c (h )––––比水容量(也称容水度),c (h )=h ∂∂θ,表示单位基质势变化时含水率变化。

(三)以参数v 为因变量的基本方程采用Kirchhoff 变换,令()()()⎰⎰⎰-∞==c c c h h h h hd k V d k d k v ττττττ1 则 ()h k Vh v 1=∂∂ ()⎰∞=c h d k V ττ由式(2-2-15)得:()()zh k z z h h k t h h ∂∂+∂⎥⎦⎤⎢⎣⎡∂∂∂=∂∂∂∂θ ()()zv v h h h k z z v v h h k t v v h h ∂∂∂∂∂∂+∂⎥⎦⎤⎢⎣⎡∂∂∂∂∂=∂∂∂∂∂∂θ ()()()()()zv h k V h h k z z v h k V h k t v h k V h ∂∂∂∂-∂⎥⎦⎤⎢⎣⎡∂∂∂=∂∂∂∂θ ()()zv v X z v t v v Y ∂∂+∂∂=∂∂22 (2-2-16) 式中h c ––––土壤的进气值,即土壤含水率开始小于饱和含水率时的负压值。

另外,()()()()()h k h c h D h h k v Y ==∂∂=11θ;()()()hh k h k v X ∂∂=1 在非饱和区: ()01<=⎰h h c d k Vv ττ 在饱和区: ()01>=⎰hh c d k V v ττ 且因为 ()0=∂∂=h h c θ,()0=∂∂h h k 所以 ()0=v Y ;()0=v X则方程式(2-2-16)为:022=∂∂zv (四)以位置坐标z 为变量的土壤水运动方程以z 为变量,则z 为θ、t 的函数,z (θ,t )为未知函数。

已知θ=θ(z ,t ),当0≠∂∂zθ处,可以解出z= z (θ,t ),即[14]()()0,,≡-t t z z z θ对z ,t 分别求导数:01=∂∂∂∂-z z θθ,0=∂∂-∂∂∂∂-tz t z θθ于是 θθ∂∂=∂∂z z 1及θθ∂∂∂∂-=∂∂z t zt将以上式子代入方程(2-2-14)得:()()z k z D z t ∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂θθθθ ()zk z z D z t z∂∂∂∂+∂∂⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂∂-θθθθθθθ ()zk z z D z t z ∂∂∂∂+∂∂⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂∂-θθθθθθθ ()θθθθθ∂∂+∂∂⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂-k z z D t z (2-2-17)(五)以参数u 为因变量的土壤水运动方程定义()()()⎰⎰⎰==θθθθθθθθθθθθi s i i d D U d D d D u 1 式中:i θ––––初始含水率;()⎰=θθθθi d D U ; s θ—饱和含水率。

由式(2-2-14)得: ()()zk z k z t ∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂θθθθ()t u u k z u u D z t u u ∂∂∂∂∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂∂∂=∂∂∂∂θθθθθ 将()θθD Uu 1=∂∂代入上式得: ()()()()z u D U k z u D U D z t u D U ∂∂∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂θθθθθ 所以 ()z u k zu D t u ∂∂∂∂+∂∂=∂∂θθ22 (2-2-18) 以上各式中式(2-2-14)、式(2-2-15)是二种经常采用的形式,形式的选定取决于要解决问题的边界条件和初始条件。

以含水率θ为因变量的基本方程常用于求解均质土层或全剖面为非饱和流动问题,这种方程形式对于层状土壤或求解饱和—非饱和流问题不适用;以负压水头h 为因变量的基本方程是应用较多的一种形式,可适用于饱和—非饱和水流求解及层状土壤的水分运动分析计算,但由于非饱和土壤水的导水率k (h )及容水度c(h),受滞后影响较大,计算中参数选取不当会造成较大误差;以v ,u 为因变量基本方程实际上分别相当于以负压水头h 和含水率θ为因变量的基本方程,在某些情况下由于经代换后方程较为简单,易于求解;以坐标为因变量的基本方程根据定解条件需要求解较简单的土壤水分运动问题。

相关文档
最新文档