七年级上册有理数知识点归纳

合集下载

七年级数学有理数的知识点

七年级数学有理数的知识点

七年级数学有理数的知识点在七年级数学中,有理数是一个重要的知识点。

本文将介绍有理数的概念、有理数的加减乘除、负数的概念、相反数、绝对值以及有理数的比较等方面的知识点。

一、有理数的概念有理数是指可以表示为两个整数的比的数,其中分母不为0。

有理数包括正有理数、负有理数以及0。

可以用分数形式表示,例如2/3、-3/4等,也可以用小数表示。

二、有理数的加减乘除1.有理数的加法:同号相加,异号相减,保留符号取绝对值相加。

例如:3+5=8,-3+(-5)=-8,-3+5=2,-3-(-5)=2。

2.有理数的减法:减去一个数等于加上这个数的相反数。

例如:3-5=3+(-5)=-2,-3-(-5)=-3+5=2。

3.有理数的乘法:符号相同为正,符号不同为负,绝对值相乘。

例如:3×4=12,-3×4=-12,-3×(-4)=12。

4.有理数的除法:除数不为0,符号相同为正,符号不同为负,绝对值相除。

例如:8÷2=4,-8÷2=-4,-8÷(-2)=4。

三、负数的概念1.负数的概念:小于0的整数即为负数。

例如:-1、-2、-3等。

2.相反数:两个数互为相反数,当且仅当它们的和等于0。

例如:2和-2互为相反数。

3.绝对值:一个数的绝对值,表示这个数到0的距离。

例如:|-3|=3,|5|=5。

四、有理数的比较1.相等与不等:两个有理数相等,当且仅当它们的差等于0。

例如:-4+6=2,所以-4和6不相等。

2.大小比较:可以用数轴比较大小,也可以比较绝对值。

例如:-5<2,|3|>|-5|。

总之,在数学学习中,有理数是一个非常基础且重要的知识点。

希望这篇文章能够对大家更好地掌握有理数的概念、加减乘除、负数的概念、相反数、绝对值以及有理数的比较等方面的知识点提供一定的帮助。

七年级数学上册必考重点知识点有理数43个知识点

七年级数学上册必考重点知识点有理数43个知识点

七年级数学上册必考重点知识点有理数43个知识点1.整数的概念:正整数、负整数和零。

2.数轴的概念和使用。

3.整数的比较和大小关系。

4.整数的相反数和绝对值。

5.整数的加法与减法。

6.整数的加减法性质。

7.整数的乘法与除法。

8.乘积的正负性。

9.除法的性质。

10.乘方的概念和运算。

11.乘方的特例:0、1和负整数指数。

12.平方根的概念和运算。

13.数的正负的乘方。

14.有理数的概念和表示。

15.有理数的四则运算。

16.有理数的加减乘除法性质。

17.加减乘除法的混合运算。

18.小数的概念和表示。

19.有限小数和循环小数的概念。

20.小数的相加与相减。

21.有理数的乘法和除法。

22.有理数乘除运算的性质。

23.百分数的概念和表示。

24.百分数与小数的相互转换。

25.百分数的增减。

26.百分数的倍数和倍数的百分数。

27.分数的概念和表示。

28.真分数、假分数和带分数的概念。

29.分数的大小比较和性质。

30.分数的相加和相减。

31.分数的相乘和相除。

32.倒数的概念和运算。

33.分数化简与约分。

34.分数的混合运算。

35.分数方程的解法。

36.分数不等式的解法。

37.分数的小数表示。

38.循环小数与无理数的概念。

39.循环小数与分数的相互转换。

40.循环小数的加减乘除法。

41.百分数的小数表示。

42.百分数的应用。

43.有理数的运算问题的解法。

以上是七年级数学上册必考的43个知识点,学生可以通过对这些知识点的理解和掌握,提高自己的数学水平,更好地应对考试和日常学习中的数学问题。

七年级数学上册“有理数”知识点梳理

七年级数学上册“有理数”知识点梳理

七年级上册数学“有理数”知识点导图知识点一、正数和负数(1)大于0的数叫作正数,正数有时在数字前面加“﹢”号,读作“正”例:1,2,3,+4,+5,+6,+7都是正数(2)正数前面加上“﹣”的数叫作负数,“﹣”读作“负”例:﹣1,﹣2,﹣3,﹣4,﹣5,﹣6,﹣7都是负数(3)正数和负数可以表示“相反”的意思例:向前走5米记为﹢5米,则向后走5米记为﹣5米;向右走5米记为﹢5米,则向左走5米记为﹣5米;(4)0既不是正数,也不是负数,它是正数和负数的分界,0不止是表示“没有”例:0℃所表示的是一个确定的温度,不是表示没有温度习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0知识点二、有理数(1)可以写成分数形式的数称为有理数;例:11,﹣12,13,2,﹣3,4都是有理数(2)可以写成正分数形式的数为正有理数;例:11,13,2,4都是正有理数(3)可以写成负分数形式的数为负有理数;例:﹣12,﹣3,都是负有理数习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数1;2;﹣3;﹣5;π;7;﹣9;13;﹣15知识点三、数轴(1)规定了原点、正方向和单位长度的直线叫作数轴(2)在直线上任取一个点表示数0,这个点叫作原点(3)通常规定直线上从原点向右 (或上)为正方向,从原点向左 (或下)为负方向(4)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示12,3,...;从原点向左,用类似方法依次表示-1,-2,-3,...例:习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)知识点四、相反数(1)仅有符号不同的两个数,称这两个数互为相反数。

0的相反数是0例:1和﹣1;12和﹣12;0和0互为相反数习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0知识点五、绝对值(1)数轴上表示数α的点与原点的距离叫作数α的绝对值,记作|α|(2)一个正数的绝对值是它本身;例:|1|=1;|2|=2;|3|=3(3)一个负数的绝对值是它的相反数;例:|﹣1|=1;|﹣2|=2;|﹣3|=3(4)0的绝对值是0例:|0|=0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0知识点六、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数例:1>0;0>﹣1;1>﹣1(2)两个负数,绝对值大的反而小例:|﹣1|=1,|﹣2|=2,2>1,所以﹣1>﹣2;|﹣3|=3,|﹣4|=4,4>3,所以﹣3>﹣4习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14习题参考答案习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0正数:1;3;﹢9;﹢4;6负数:﹣5;﹣7;﹣2;﹣8习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数 1;2;﹣3;﹣5;π;7;﹣9;13;﹣15有理数:1;2;﹣3;﹣5;7;﹣9;13;﹣15正有理数:1;2; 7; 13;负有理数:﹣3;﹣5;﹣9;﹣15习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0 2和﹣2;4和﹣4;﹣6和6;﹣8和8;﹣110和110;0和0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0 |10|=10;|﹣11|=11;|112|=112;|﹣113|=113;|0|=0习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14 7>8;9>﹣10;﹣11>﹣12;0<13;0>﹣14。

新人教版七年级数学上册知识点汇总

新人教版七年级数学上册知识点汇总

新人教版七年级数学上册知识点汇总第一章有理数一、知识框架:本章主要介绍了有理数的相关概念和运算法则,包括正数与负数、有理数、数轴、相反数、绝对值、比大小、倒数、加法法则、加法运算律、减法法则、乘法法则和乘法运算律等。

二、知识概念:1.正数与负数:大于0的数是正数,小于0的数是负数,0既不是正数也不是负数。

2.有理数:⑴凡能写成 p/q (p、q为整数,且p≠0)形式的数,都是有理数。

正整数、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数。

⑵有理数的分类:正有理数:正整数、正分数负有理数:负整数、负分数零:03.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

4.相反数:⑴只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;⑵相反数的和为0,即a+b=0,则a、b互为相反数。

5.绝对值:⑴正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。

注意:绝对值的意义是数轴上表示某数的点离原点的距离;⑵绝对值可表示为:a=|a| (a≥0)a=|a|或a=-a (a<0)绝对值的问题经常分类讨论。

6.有理数比大小:⑴正数大于0,0大于负数,正数大于负数;⑵两个负数比较,绝对值大的反而小。

7.倒数:乘积为1的两个数互为倒数。

注意:0没有倒数;若a≠0,则a的倒数是1/a;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。

8.有理数加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加;⑵异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝值;⑶一个数与0相加,仍得这个数。

9.有理数加法的运算律:⑴加法的交换律:a+b=b+a;⑵加法的结合律:(a+b)+c=a+(b+c)。

10.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

(完整版)人教版七年级数学上册知识点归纳

(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

2024版七年级数学上册知识点归纳

2024版七年级数学上册知识点归纳
- 点的坐标表示:在平面直角坐标系中,每一个点都有一个唯一的坐标与之对应
第八章 二元一次方程组
- 二元一次方程组的概念:含有两个未知数,且未知数的次数都为1的方程组
- 二元一次方程组的解法:代入法、消元法
第九章 不等式与不等式组
- 不等式的概念:用不等号表示大小关系的式子
- 不等式的性质:不等式的加法、减法、乘法、除法性质
2024版七年级数学上册知识点归纳
章节/知识点
具体内容
第一章 有理数
- 有理数的概念:可以写成分数形式的数称为有理数
- 数轴:规定了原点、正方向、单位长度的直线
- 相反数:只有符号不同的两个数叫做互为相反数
- 绝对值:数轴上某个数与原点的距离
- 有理数的性质与运算:包括有理数的加法、减法、乘法、除法以及混合运算
第二章 整式的加减
- 整式的概念:单项式和多项式的统称
- 整式的加减法则:同Байду номын сангаас项合并
第三章 一元一次方程
- 一元一次方程的概念:含有一个未知数,且未知数的次数为1的方程
- 一元一次方程的解法:去分母、去括号、移项、合并同类项、系数化为1
第四章 几何图形初步
- 基本几何图形的认识:点、线、面、角
- 几何图形的性质:如线段、射线的性质
第五章 相交线与平行线
- 相交线的性质:对顶角相等、邻补角互补
- 平行线的性质:平行线间的距离相等、平行线被第三条直线所截形成的同位角相等
第六章 实数
- 实数的概念:有理数和无理数的统称
- 实数的性质:实数具有封闭性、有序性、稠密性等
第七章 平面直角坐标系
- 平面直角坐标系的建立:由两条互相垂直且有公共原点的数轴组成

七年级数学上册:全册各章知识点总结

第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。

三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。

2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。

4.相反数的商为-1。

5.相反数的绝对值相等。

四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。

初一数学上册第一单元有理数知识点归纳

初一数学上册第一单元有理数学问点归纳一.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;π不是有理数;(2)有理数的分类:①②(3)2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)4.肯定值:(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点分开原点的间隔 ;(2)肯定值可表示为:肯定值的问题常常分类探讨;(3)(4)|a|是重要的非负数,即|a|≥0;留意:|a|·|b|=|a·b|,5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数恒久比0大,负数恒久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.二.有理数法那么及运算规律。

(1)同号两数相加,取一样的符号,并把肯定值相加;(2)异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值;(3)一个数及0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4.有理数乘法法那么:(1)两数相乘,同号为正,异号为负,并把肯定值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数确定.5.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的安排律:a(b+c)=ab+ac.6.有理数除法法那么:除以一个数等于乘以这个数的倒数;留意:零不能做除数,.7.有理数乘方的法那么:(1)正数的任何次幂都是正数;三.乘方的定义。

七年级数学知识归纳大全

七年级数学知识点归纳大全第一章有理数1.有理数:(1)凡能写成q/p(p、q都是整数,且p≠0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有正负号不同的两个数互称相反数;0的相反数还是0;(2)相反数的和为0 (a+b=0 ⇔a、b互为相反数。

)4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:|a|,a到b的距离表示为:|a-b| ;绝对值的问题经常分类讨论;5.有理数比大小:(1)两个正数比较,绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么a的倒数是 1/a;若ab=1, a、b互为倒数;若ab=-1, a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。

8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).加减法统一成加法。

10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因数为零,积为零;各个因数都不为零,积的符号由负因数的个数决定.负因数的个数为奇数时,积为负;负因数的个数为偶数时,积为正。

人教版七年级数学上册知识点归纳(附例题解析)

人教版七年级数学上册知识点归纳(附例题解析)第一章:有理数一、有理数的基础知识1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。

概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。

②正数和负数的应用:正数和负数通常表示具有相反意义的量。

③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A、一个数前面有“-”号,这个数就是负数;B、非负数就是正数;C、一个数前面没有“-”号,这个数就是正数;D、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-,正整数集合{}整数集合{}负整数集合{}正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是____________, 0米的意义是______________。

例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。

例5 若0>a,则a是;若0<a,则a是;若ba<,则ba-是;若ba>,则ba-是;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数知识点归纳
一、正数和负数
正数和负数的概念
负数:比0小的数;正数:比0大的数。

0既不是正数,也不是负数
☆注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

强调:带正号的数不一定是正数,带负号的数不一定是负数。

具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量。

习惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度” 等规定为负•
二、有理数
有理数的概念
(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)
(2)正分数和负分数统称为分数
(3)整数和分数统称有理数
☆注意:①n是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

数轴
(1)数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴
-6 ^5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
注意:数轴是一条向两端无限延伸的直线;
原点、正方向、单位长度是数轴的三要素,三者缺一不可;
数轴的三要素都是根据实际需要规定的,同一数轴上的单位长度要统一;
(2)数轴上的点与有理数的关系
所有的有理数都可以用数轴上唯一的点来表示,正有理数可用原点正方向的点表示,负有理数可用原点负方向的点表示,0用原点表示。

相反数
(1)只有符号不同的两个数叫做互为相反数;0的相反数是0 ;任何一个有理数都有相反数
(2)互为相反数的两数的和为0,即:若a、b互为相反数,则a+b=0 ;互为相反数的两个点在数轴上分别位于原点两侧,并且与原点的距离相等。

(3)在一个数的前面加上负号“-”,就得到了这个数的相反数。

a的相反数是
-a o
(4)多重符号的化简
多重符号的化简规律:“ +”号的个数不影响化简的结果,可以直接省略;“-” 号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

绝对值
(1)绝对值的几何定义:数轴上表示数a的点与原点的距离,叫做a的绝对值,
记作:丨a|
(2)求绝对值:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反
数;可用字母表示为:①如果a>0,那么|a|=a ;②如果a<0,那么|a|=-a ;③如果
a=0,那么|a|=0。

可归纳为①:aX)时,|a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。

) ②a W0时,|a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。

)
(3)若几个数的绝对值的和等于0,则这几个数就同时为0。

即|a|+|b|=0,贝U a=0且b=0。

(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
有理数比大小
(1)利用数轴表示两数大小
在以向右为正方向的数轴上数的大小比较,右边的数总比左边的数大;
正数都大于0,负数都小于0,正数大于负数;
(2)数轴上特殊的最大(小)数
最小的自然数是0,无最大的自然数;
最小的正整数是1,无最大的正整数;
最大的负整数是-1,无最小的负整数
(3)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;
(4)大数-小数> 0,小数-大数V 0。

三、有理数的加、减法运算
有理数加法
(1)同号两数相加,取相同符号,并且把绝对值相加
(2)异号两数相加,取绝对值大的数的符号,并且用较大的绝对值减去较小的绝对值
(3)互为相反数的两数相加得0
☆有理数的加法运算定律
加法交换律:两个有理数相加,交换加数的位置,和不变,a+b=b+a
加法结合律:三个有理数相加,先把前两个数相加,再把结果与第三个数相力卩;
或者先把后两个数相加,再把结果与第一个数相加,和不变,(a+b)+c=a+ (b+c )
☆如何利用加法运算定律对多个有理数相加的运算进行简化计算
(1)同号结合相加(正数+正数、负数+负数)
(2)互为相反数的两数结合相加(把相加结果为零的数结合相加)
(3)几个分数相加,将同分母的先结合相加
(4)将求和后为整数的数先结合相加
(5 )几个带分数相加,可将整数部分与分数部分分别结合相加
☆在一个求和的式子中,通常可以把“ +”省略不写,同时去掉加数的括号
有理数的减法
根据相反数的定义,减去一个数,等于加上这个数的相反数,有理数的减法可以转化为加法进行计算。

引入相反数的之后,有理数的加减混合运算可以统一为加法运算。

四、有理数的乘、除法运算
有理数乘法
(1)异号两数相乘得负数,并把绝对值相乘;同号两数相乘得正数,并把绝对值相乘。

(2 )任何数与0相乘都得0
☆有理数的乘法运算定律
乘法交换律:两个有理数相乘,交换因数的位置,它们的积不变。

a x b=b Xa
乘法结合律:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先
把后两个数相乘,再和另外一个数相乘,积不变。

a x b x c=a x (b x c)
乘法分配律:两个数的和(差)同一个数相乘,可以先把两个加数(减数)分
别同这个数相乘,再把两个积相加(减),积不变。

a x (b+c) =a x b+a xc
倒数
(1)乘积为1的两个数互为倒数;注意:0没有倒数;
(2)若a,b互为倒数,则ab=1;
(3)求倒数:求一个数的倒数就是用1去除以这个数。

①求假分数或真分数的倒数,只要把这个分数的分子、分母颠倒位置即可;
②求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;
③正数的倒数是正数,负数的倒数是负数。

(求一个数的倒数,不改变这个
数的性质);
④倒数等于它本身的数是1或-1 ;
有理数除法
(1)除以一个不等0的数,等于乘以这个数的倒数。

(2)两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0
有理数的加减乘除混合运算
(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果
(2)有理数的加减乘除混合运算,如果有括号先计算括号里的,如果无括则按
照’先乘除,后加减’的顺序进行,同级运算中,按前后顺序从左到右依次运算,谁在前先算谁。

五、有理数乘方
乘方的概念:求n个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幕。

乘方中,相同的因式叫做底数,相同因式的个数叫做指数。

记作:a n,在a n中,a叫做底数,n叫做指数,a n叫做幕
乘方的性质
(1)负数的奇次幕是负数,负数的偶次幕的正数。

(2)正数的任何次幕都是正数,0的任何正整数次幕都是0。

(3)互为相反数的两个数的奇数次幕仍互为相反数,偶数次幕相等。

(4)任何一个数的偶数次幕都是非负数。

有理数的混合运算
做有理数的混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算中,按前后顺序从左到右依次运算,谁在前先算谁。

(3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

科学记数法
把一个绝对值大于10的数记成a x io n的形式,其中a是整数数位只有一位的数(即1 < |a|< 10,n是正整数),这种记数法叫科学记数法。

方法:①a的确定:把原数的小数点向左移动,使它的整数位数为1,数的正负
号保持不变;②门=原数的整数数位-1。

相关文档
最新文档