七年级上册数学第一章《有理数》知识点及典型例题
杭州学军中学七年级数学上册第一章《有理数》知识点总结(含答案解析)

1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C【分析】 根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ;当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ;当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确;当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ;故选C .【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.若1<a <2,则化简|a -2|+|1-a |的结果是( )A .a -1B .1C .a +1D .a -3B解析:B【解析】【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案.【详解】∵1<a <2∴a-2<0,1-a<0∴|a -2|+|1-a |= -(a-2)-(1-a )=-a+2-1+a=1,因此答案选择B.【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.3.若21(3)0a b -++=,则b a -=( )A.-412B.-212C.-4 D.1C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a、b后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.4.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.5.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.6.下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.7.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.8.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.9.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A .少5B .少10C .多5D .多10D解析:D【解析】 根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D .10.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-12A 解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.11.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则a b=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A .4个B .5个C .6个D .7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误; ②若a ,b 互为相反数,则a b=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数,∴a 的倒数小于b 的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.12.6-的相反数是()A.6 B.-6 C.16D.16- B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.13.计算-2的结果是()A.0 B.-2 C.-4 D.4A 解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法14.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C 选项:1122()21333---=-+=-,故错误; D 选项运算正确.故选:D .【点睛】 本题考查有理数的加减运算,按照对应法则仔细计算即可.15.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4C 解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.1.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义 解析:19- 【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是19-故答案为19-. 【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.2.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.3.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.4.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.5.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.6.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.7.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点+=,所以2020厘米不与整点重合,则1厘米长的线段盖住1个整点,因为202012021长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.8.把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5-【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.9.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥为______.城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解:解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 10.如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可 解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.11.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.1.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.2.(1)371(24)812⎛⎫-+⨯-⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.3.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.4.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.。
七年级数学上册第一章有理数知识点总结(超全)

(名师选题)七年级数学上册第一章有理数知识点总结(超全)单选题1、中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃答案:C分析:零上温度记为正,则零下温度就记为负,则可得出结论.解:若零上10°C记作+10°C,则零下10°C可记作:−10°C.故选:C.小提示:此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2、数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上随意画出一条长2021cm长的线段AB,则线段AB盖住的的整点有()个A.2018或2019B.2019或2020C.2022或2023D.2021或2022答案:D分析:分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点,∵2021+1=2022,∴2021厘米的线段AB盖住2021或2022个整点.故选:D小提示:本题考查了数轴,解题的关键是根据题意得到找出长度为n(n为正整数)的线段盖住n或n+1个整点并注意利用分类讨论思想解答.3、−(−12)2的倒数是( ) A .-4B .−14C .14D .4答案:A分析:根据有理数的乘方和倒数定义计算即可.解:−(−12)2=−14,−14的倒数为-4;故选:A .小提示:本题考查了有理数的乘方和倒数的定义,解题关键是明确倒数的定义,熟练运用相关法则进行计算.4、下列说法中,正确的个数是( )①若|1a |=1a ,则a ≥0;②若|a |>|b |,则有(a +b )(a ﹣b )是正数; ③A 、B 、C 三点在数轴上对应的数分别是﹣2、6、x ,若相邻两点的距离相等,则x =2;④若代数式2x +|9﹣3x |+|1﹣x |+2011的值与x 无关,则该代数式值为2021;⑤a +b +c =0,abc <0,则b+c |a|+a+c|b |+a+b |c|的值为±1.A .1个B .2个C .3个D .4个答案:A分析:根据绝对值的性质,数轴上的两点之间的距离逐项分析即可.若|1a |=1a ,则a >0,故①不正确;∵ |a |>|b |,当a >b >0时,则a +b >0,a −b >0,∴ (a +b )(a −b )>0,∵ |a |>|b |,当a >0>b 时,则a +b >0,a −b >0,∴ (a +b )(a −b )>0∵ |a |>|b |,当a <b <0时,则a +b <0,a −b <0,∴(a+b)(a−b)>0∴|a|>|b|,(a+b)(a−b)>0,故②正确;A、B、C三点在数轴上对应的数分别是﹣2、6、x,若相邻两点的距离相等,当B为AC的中点时,即−2+x2=6,则x=14当C为AB的中点时,即x=−2+62,则x=2当A为BC的中点时,即−2=6+x2,则x=−10故③不正确;若代数式2x+|9﹣3x|+|1﹣x|+2011的值与x无关,;即2x+|9﹣3x|+|1﹣x|+2011=2x+9−3x−1+x+2011=2019故④不正确;∵abc<0,a+b+c=0∴a,b,c有1个负数,2个正数,设a>0,b>0,c<0,∵a+b+c=0,∴a=−(b+c),b=−(a+c),c=−(a+b)b+c |a|+a+c|b|+a+b|c|=−a|a|+−b|b|+−c|c|=−aa+−bb+−c−c=−1−1+1=−1故⑤不正确综上所述,正确的有②,共1个.故选A.小提示:本题考查了绝对值的意义,数轴上两点的距离,分类讨论是解题的关键.5、规定:(→2)表示向右移动2,记作+2,则(←5)表示向左移动5,记作()A .+5B .-5C .15D .-15 答案:B分析:根据题意,在表示相反意义的量中,规定其中一个为正,则另一个为负,即可得出答案.解:因为(→2)表示向右移动2,记作+2,∴则(←5)表示向左移动5,记作-5;故选B小提示:本题考查正负数的概念,解题的关键在于理解相反意义的量.6、计算1−2+3−4+5−6+7−8+⋅⋅⋅+2017−2018的结果是( )A .-1009B .-2018C .0D .-1答案:A分析:利用加法的结合律将原式整理成(1−2)+(3−4)+⋅⋅⋅+(2017−2018)即可求解.解:1−2+3−4+5−6+7−8+⋅⋅⋅+2017−2018,=(1−2)+(3−4)+(5−6)+(7−8)+⋅⋅⋅+(2017−2018),=(−1)+(−1)+(−1)+(−1)+⋅⋅⋅+(−1),=−1009,故选:A .小提示:本题考查了有理数的加减法,解题的关键是掌握相应的运算法则.7、下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0的绝对值最小;③0是最小的整数;④0的绝对值、相反数、倒数都是它本身.A .0B .1C .2D .3答案:C分析:根据有理数的分类,绝对值,相反数,倒数的定义逐一判断即可.解:①0既不是正数也不是负数,说法正确,符合题意;②0的绝对值最小,说法正确,符合题意;③0不是最小的整数,说法错误,不符合题意;④0的绝对值、相反数都是它本身,0没有倒数,说法错误,不符合题意;∴说法正确的一共有2个,故选C .小提示:本题主要考查了有理数的分类,绝对值,相反数和倒数,熟知相关定义是解题的关键.8、|−23|的倒数为( ) A .23B .32C .−23D .−32答案:B分析:直接利用绝对值的性质再结合倒数的定义分析得出答案.解:|−23|=23 所以23的倒数是:32.故选:B .小提示:此题主要考查了倒数与绝对值,正确把握倒数的定义是解题关键.9、在有理数1,12,-1,0中,最小的数是( )A .1B .12C .-1D .0 答案:C分析:根据负数小于0,0小于正数即可得出最小的数.解:1,12,-1,0这四个数中只有-1是负数,所以最小的数是-1,故选:C .小提示:本题考查了有理数的大小比较.理解0大于任何负数,小于任何正数是解题关键.10、若a 是最大的负整数,b 是相反数等于它本身的数,c 的绝对值是1,则a +b ﹣c =( )A .﹣1或0B .0或﹣2C .﹣2D .﹣1答案:B分析:根据题意a是最大的负整数,a是-1;b=0;c的绝对值是1,c=±1。
七年级上册数学第一章有理数知识点及典型例题

七年级上册数学第一章有理数知识点及典型例题本文介绍了有理数的概念、分类、数轴表示、绝对值及大小比较等知识点,并提供了相关的典型例题。
有理数是用来计量事物件数或表示事物次序的数,可以用分数或小数表示。
但并不是所有的小数都可以化为分数,如圆周率π。
有理数可以分为正整数、零、负整数、正分数、负分数和负有理数等。
其中,为了表示具有相反意义的量,规定一种意义的量为正,与之相反的量为负。
自然数和正有理数都是正数。
数轴是一条直线,规定了原点、单位长度和正方向。
任何一个有理数都可以用数轴上的点来表示。
相反数是指两个数只有符号不同,其中一个数为另一个数的相反数。
互为相反数的两个数所对应的点在数轴上的位置关系是关于原点对称。
绝对值是一个数到原点的距离,用符号“| |”表示。
一个有理数的绝对值一定是非负数。
绝对值的法则包括:①|a|≥0;②|a|=0的充要条件是a=0;③|ab|=|a||b|;④|a/b|=|a|/|b|(b≠0)。
有理数的大小比较可以用数轴比较法或法则比较法。
在考试中,与有理数相关的题型包括“……说法正确的是……”和选择题等。
例如,下列语句中正确的有:①带“-”号的数是负数;②如果a为正数,则-a一定是负数;③不存在既不是正数又不是负数的数;④C表示没有温度。
而下列说法不正确的是:数轴是一条直线;表示-1的点,离原点1个单位长度;数轴上表示-3的点与表示-1的点相距2个单位长度;距原点3个单位长度的点表示—3或3;一个有理数的绝对值一定是负数;一个有理数的绝对值一定不是负数;互为相反数的两个数的绝对值一定相等。
1、上午7:45应记为-2.2、拨了-3周后,时针指向数字9.3、①a+b=0成立。
4、数轴上距离-1为5的点所表示的数是-6.5、绝对值最小的有理数是0,绝对值最小的整数是0,|-π|=π。
6、-4,-3,-2,-1,0,1,2.7、4和5.8、①是整数,也是有理数;②是正数,不是负数,正确的是A.①②。
(文末附答案)人教版七年级上册数学第一章有理数重点题型及知识点

(文末附答案)人教版七年级上册数学第一章有理数重点题型及知识点填空题1、中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交替,宋代以后出现了笔算,在个位数划上斜线以表示负数,如表示−752, 表示2369,则 表示________.2、定义运算a ★b =|ab ﹣2a ﹣b |,如1★3=|1×3﹣2×1﹣3|=2.若a =2,且a ★b =3,则b 的值为_____3、对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b =ab +(a ﹣b ),例如3⊕2=3×2+(3﹣2)=7,则(﹣5)⊕4=_____.4、在数轴上到原点的距离小于4的整数可以为________.(任意写出一个即可)5、已知2<x<3,化简∣2- x ∣+∣3- x ∣= _________.解答题6、把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6 正数集合{ …};负分数集合{ …};非负整数集合{ …};有理数集合{ …}.7、计算:−22÷(−1)2018+6×|−13|−(−3)3 8、小强有5张卡片写着不同的数字的卡片,他想从中取出2张卡片.(1)使数字的积最小,应如何抽?最小积是多少?(2)使数字的积最大,应如何抽?最大积是多少?9、求若干个相同的不为零的有理数的除法运算叫做除方.如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)记作(-3)④,读作“-3 的圈 4 次方”.一般地,把a ÷a ÷a ÷…÷a ⏟ n 个a(a≠0)记作a ⓝ,记作“a 的圈 n 次方”.(1)直接写出计算结果:2③= ,(-3)⑤ = , (−12)⑤= (2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试将有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于 .(3)计算 24÷23+ (-8)×2③.10、把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.0,112,﹣3,﹣(﹣0.5),﹣|﹣34|,+(﹣413).(文末附答案)人教版七年级上册数学第一章有理数_006参考答案1、答案:−7416解析:根据算筹记数的规定可知,“”表示一个4位负数,再查图找出对应关系即可得表示的数.解:由已知可得:“”表示的是4位负整数,是−7416.所以答案是:−7416.小提示:本题考查了应用类问题,解题关键是通过阅读材料理解和掌握我国古代用算筹记数的规定.2、答案:1或7##7或1解析:根据新定义规定的运算法则可得|2b-4-b|=3,再利用绝对值的性质求解可得.解:∵a★b=3,且a=2,∴|2b-4-b|=3,∴2b-4-b=3或2b-4-b=-3,解得b=7或b=1,所以答案是:1或7.小提示:本题主要考查有理数的混合运算,解题的关键是根据新定义规定的运算法则得出关于b的方程及绝对值的性质.3、答案:﹣29解析:根据a⊕b=ab+(a﹣b),可以求得题目中所求式子的值,本题得以解决.解:∵a⊕b=ab+(a﹣b),∴(﹣5)⊕4=(﹣5)×4+[(﹣5)﹣4]=(﹣20)+(﹣9)=﹣29.所以答案是:﹣29.小提示:此题考查新定义运算,有理数的混合运算,掌握新定义的运算方法是解题的关键.4、答案:3(答案不唯一,3,2,1,0,-1,-2,-3任意一个均可)解析:根据数轴特点,判定出答案为:±3,±2,±1,0中任意写出一个即可.解:在数轴上到原点的距离小于4的整数有:-3,3,,-2,2,-1,1,0从中任选一个即可所以答案是:3(答案不唯一,3,2,1,0,-1,-2,-3任意一个均可)小提示:本题考查了数轴、数轴特点、绝对值等知识,熟练掌握这些知识是解题的关键.5、答案:1解析:根据x的取值范围化简绝对值即可得到答案.∵2<x<3,∴2-x<0,3-x>0,∴∣2- x ∣+∣3- x ∣=x-2+3-x=1,所以答案是:1.小提示: 此题考查绝对值的化简,确定绝对值符号里的数的正负性即可将绝对值化简.6、答案:15,0.81,227,171,3.14,π,1.6;-12,-3.1;15,171,0;15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6.解析:正数就是大于0的数,负数就是小于0的数,有理数是整数与分数的统称,据此即可进行分类.解:正数集合{15,0.81,227,171,3.14,π,1.6,…};负分数集合{−12,-3.1,…}; 非负整数集合{15,171,0,…};有理数集合{15,−12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6,…}. 小提示:本题主要考查了有理数的概念,认真掌握正数、负数、整数、分数、正有理数、负有理数的定义与特点是解题关键.注意整数和正数的区别,注意0是整数,但不是正数.7、答案:25.解析:先算乘方和绝对值,再算乘除,最后算加减.原式=-4÷1+6× 13-(-27)=-4+2+27=25小提示:此题考查有理数的混合运算,掌握运算顺序与计算方法是解决问题的关键.8、答案:(1)抽取-8和4,-32;(2)抽取-8和-3.5, 28.解析:(1)异号且绝对值的乘积最大,则这两个数的乘积最小,首先确定这两个数,然后求积即可;(2)同号且绝对值的乘积最大,则这两个数的乘积最大,首先确定这两个数,然后求积即可.解:(1)抽取-8和4,数字的积最小,−8×4=−32;(2)抽取-8和-3.5,数字的积最大,−8×(−3.5)=28.小提示:本题考查有理数的乘法,理解乘法法则是关键.9、答案:(1)12,−127,-8;(2)它的倒数的n-2次方;(3)-1.解析:(1)根据题中的新定义计算即可得到结果;(2)归纳总结得到规律即可;(3)利用得出的结论计算即可得到结果.(1)2③=2÷2÷2=12,(-3)⑤ =(-3)÷(-3)÷(-3)÷(-3)÷(-3)=−127,(−12)⑤=(−12)÷(−12)÷(−12)÷(−12)÷(−12)=-8,故答案为12,−127,﹣8; (2)a ⓝ=a ÷a ÷a ÷…÷a ⏟ n 个a =a ·1a ·1a·…1a ⏟ n 个1a =1a n−2=(1a )n−2,故答案为这个数倒数的(n ﹣2)次方;(3)24÷23+(﹣8)×2③=24÷8+(﹣8)×12=3+(﹣4)=﹣1.小提示:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10、答案:数轴见解析,112>﹣(﹣0.5)>0>﹣|﹣34|>﹣3>+(﹣413)解析:先把各数化简,在数轴上表示出各数,再根据数轴的特点把这些数按从大到小的顺序用“>”连接起来. 解:如图所示:根据数轴的特点把这些数按从大到小的顺序用“>”连接起来为112>﹣(﹣0.5)>0>﹣|﹣34|>﹣3>+(﹣413). 小提示:本题考查了有理数与数轴上点的关系,任何一个有理数都可以用数轴上的点表示,在数轴上,原点左边的点表示的是负数,原点右边的点表示的是正数,右边的点表示的数比左边的点表示的数大.。
人教版七年级数学上册 有理数 知识点归纳(含例题)

1.1正数和负数比0大的数叫做正数,比0小的数叫做负数。
0既不是正数也不是负数,它是正数与负数的分界点。
在正数前面加上符号“-”的数就是负数。
例1、3.2、0.4、25%、15等都是正数;-3.2、-0.4、-25%、-15等都是负数。
正数前面可以加上符号“+”,也可以省略这个符号。
但负数前面的符号“-”不能省略。
例2、13可以写成+13,+13也可以省略“+”号,写成13 。
但是-13不能省略“-”号写作13 。
0和正数统称为非负数,0和负数统称为非正数。
正数和负数可以分别用来表示相反意义的量。
例3、存入100元记为+100,则取出200元记为-200 。
例4、向北走50米记为+50,则向南走70米记为-70 。
0不仅可以表示“没有”,还可以表示其它意思。
例5、0是正数和负数的分界。
例6、0℃不代表没有温度,相反,0℃是一个确定的温度。
1.2有理数正整数、0、负整数统称为整数,即:整数{ 正整数0负整数正分数、负分数统称为分数,即:分数{正分数负分数整数和分数统称为有理数。
有理数的分类:按定义分类 按性质分类有理数{ 整数{ 正整数0负整数分数{正分数负分数 有理数{正有理数{正整数正分数0负有理数{负整数负分数与小学不同,在初中,如果一个小数能化成分数,那么这个小数也是分数。
例1、因为0.2=15,1.5=32,2.666=223,所以0.2、1.5、2.666都是分数。
例2、无限不循环小数,如π、1.010010001…等都不是分数。
引入负数之后,奇数和偶数的范围扩大了。
例3、不仅1、3、5、7……是奇数,而且-1、-3、-5、-7……也是奇数。
例4、不仅0、2、4、6、8……是偶数,而且-2、-4、-6、-8……也是偶数。
用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:①在直线上任取一个点表示数0,这个点叫做原点。
②通常规定直线上从原点向右为正方向,从原点向左为负方向。
在一些特殊情况下,也可以规定直线上从原点向上为正方向,从原点向下为负方向。
七年级数学上册第一单元《有理数》-选择题专项知识点总结(答案解析)

一、选择题1.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B B解析:B【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.2.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.3.计算-3-1的结果是( )A .2B .-2C .4D .-4D 解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.4.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-12A 解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.5.下列关系一定成立的是( )A .若|a|=|b|,则a =bB .若|a|=b ,则a =bC .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b|D 解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A 、B 、C 中,a 与b 的关系还有可能互为相反数,故选项A 、B 、C 不一定成立,D.若a =﹣b ,则|a|=|b|,正确,故选D .【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.6.一个数的绝对值是3,则这个数可以是( )A .3B .3-C .3或者3-D .13C 解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a ,∴|a|=3,∴a=±3故选C .7.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A .+0.02克B .-0.02克C .0克D .+0.04克B 解析:B【解析】-0.02克,选A.8.绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .4C 解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .9.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 10.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .56A 解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.11.用计算器求243,第三个键应按( )A .4B .3C .y xD .=C 解析:C【解析】用计算器求243,按键顺序为2、4、y x 、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.12.绝对值大于1小于4的整数的和是( )A .0B .5C .﹣5D .10A 解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A .13.下列有理数的大小比较正确的是( )A .1123<B .1123->-C .1123->-D .1123-->-+ B 解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A 、1123>,故本选项大小比较错误,不符合题意;B 、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C 、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意; D 、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B .【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.14.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C .【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.15.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样B 解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.16.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 17.下列说法中,正确的是( )A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意;既没有最大的数,也没有最小的数,正确,故选项D 符合题意.故选:D .【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键. 18.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0B 解析:B【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.19.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.20.下列各数中,互为相反数的是( )A.+(-2)与-2 B.+(+2)与-(-2) C.-(-2)与2 D.-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 21.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.22.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B 、3520精确到百位是3500,B 错D 、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.23.下列各式中,不相等的是( )A .(﹣5)2和52B .(﹣5)2和﹣52C .(﹣5)3和﹣53D .|﹣5|3和|﹣53|B解析:B【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解.【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=-∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=-故选B .【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.24.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小.25.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得: ()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.26.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.27.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 28.13-的倒数的绝对值( )A .-3B .13-C .3D .13C 解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.29.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 30.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个A 解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】①a -不一定是负数,故该说法错误;②||a 一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.。
人教初一数学上册知识点

人教初一数学上册知识点一、知识概述1. 《有理数》①基本定义:有理数就是能够写成两个整数之比的数,简单来说就是整数、有限小数还有无限循环小数这一类的数。
比如2是有理数,也是,因为可以写成1/2,…(无限循环)写成1/3也是有理数。
②重要程度:在初一数学里超级重要。
它是学习后面各种计算、方程的基础。
很多数学概念和实际问题的解决都是基于有理数的运算。
③前置知识:在学有理数之前,得知道整数的概念,会简单的加减法等算术运算。
④应用价值:在生活中算钱的时候就会用到,假如买东西花了元,就是有理数,还有计算距离、速度啥的也用到有理数运算。
2. 《整式》①基本定义:像3x、-4y²这种数与字母的乘积形式就是整式。
单独的一个数或者一个字母也叫做整式,就好比5是整式,a也是整式。
②重要程度:这是代数的起步知识,以后学各种函数、方程等都会涉及到整式的相关知识。
③前置知识:要对有理数运算比较熟,还有知道字母可以表示数这个概念。
④应用价值:举个例子,如果要计算长方形面积,设长为x,宽为y,面积就是xy,这就是整式在生活几何中应用的例子。
二、知识体系1. 《有理数》①知识图谱:有理数在初一数学上册中属于数的概念范畴,是基础的基础,很多其他数的学习都和它相关或基于它拓展。
②关联知识:和后面要学的无理数合起来就是实数了。
有理数的运算规则对整式运算也有启发意义。
③重难点分析:对有理数的正负性在运算中的影响是个难点,像两个负数相乘得正数这种规则有些同学一开始很难理解。
关键点就是得牢记运算规则,多做练习。
④考点分析:考试中经常单独出题考查有理数的运算,要么就是和后面的知识结合一起考查。
考查方式从单纯的计算,到在应用题中的运算都有。
2. 《整式》①知识图谱:整式在代数部分处于起始位置,往后的多项式、因式分解等都以整式为基础。
②关联知识:和方程关系紧密,比如一元一次方程中的未知数就是整式的形式。
③重难点分析:整式的系数、次数概念容易混淆,这是难点。
人教版七年级数学上册第一章有理数全章知识点归纳

人教版七年级数学上册第一章有理数全章知识点归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数大于的数叫做正数。
在正数前面加上负号“-”的数叫做负数。
数既不是正数,也不是负数,是正数与负数的分界。
在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、有理数凡能写成分数形式的数,都是有理数,整数和分数统称有理数。
注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数包括正整数和正分数,负有理数包括负整数和负分数。
3、数轴【重点】用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:1.在直线上任取一个点表示数,这个点叫做原点;2.通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…数轴的三要素:原点、正方向、单位长度。
画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
4、相反数只有符号不同的两个数叫做互为相反数。
a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。
一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。
3、相反数的概念a和-a互为相反数。
一个数的相反数是指,正数的相反数是负数,负数的相反数是正数。
每个数都有它自己的相反数。
4、相反数的运用在任意一个数前面添加“-”号,这个新的数就表示原数的相反数。
如果两个数a和b互为相反数,那么a+b=0;反之,如果a+b=0,则a和b互为相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新浙教版七年级上册数学第一章《有理数》知识点及典型例题知识框图将考点与相应习题联系起来考点一、关于“……说法正确的是……”的题型(只可能是选择题)1、下列语句:① 带“-”号的数是负数;② 如果a 为正数,则-a 一定是负数;③ 不存在既不是正数又不是负数的数;④ 00C 表示没有温度,正确的有( )个 A.0 B.1 C.2D.32、下列说法不正确的是( ) A.数轴是一条直线;B.表示-1的点,离原点1个单位长度;C.数轴上表示-3的点与表示- 1的点相距2个单位长度;D.距原点3个单位长度的点表示—3或3。
3、下列说法中不正确的是( )A.-5表示的点到原点的距离是5;B. 一个有理数的绝对值一定是正数;C. 一个有理数的绝对值一定不是负数;D. 互为相反数的两个数的绝对值一定相等. 4、如图:下列说法正确的是( )A.a 比b 大B.b 比a 大C.a 、b 一样大D.a 、b 的大小无法确定5、若|a +b|=-(a +b ),下列结论正确的是( )A.a +b ≤0B.a +b<0C.a +b=0D.a +b>06、下列说法:① 一个数的绝对值的相反数一定是负数;② 只有负数的绝对值是它的相反数;③ 正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等,错误的个数是( ) A.3个 B.2个 C.1个 D.0个7、如果a 表示有理数,那么下列说法中正确的是( )A.+a 与-(-a)互为相反数B. +a 与-a 一定不相等C.-a 一定是负数D. -(+a)与+(-a)一定相等 8、已知字母a 、b 表示有理数,如果a +b =0,则下列说法正确的是( ) A.a 、b 中一定有一个是负数 B.a 、b 都为0 C.a 与b 不可能相等 D.a 与b 的绝对值相等 9、下列说法正确的是( )A. -|a|一定是负数B. 只有两个数相等时,它们的绝对值才相等C. 若|a|=|b|,则a 与b 互为相反数D. 若一个数小于它的绝对值,则这个数为负数10、给出下面说法:① 互为相反数的两个数绝对值相等;② 一个数的绝对值等于它本身,这个数不是负数; ③ 若|m|>m ,则m<0;④ 若|a|>|b|,则a>b ,其中正确的有( ) A.①②③ B.①②④ C.①③④ D.②③④考点二、具有相反意义的量、相反数、数轴、绝对值、有理数的分类等概念的直接考题1、某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为-1,10:45记为1等等,以此类推,上午7:45应记为2、在时钟上,把时针从钟面数字“12”按顺时针方向拨到“6”,计做拨了“+12”周,那么,把时针从“12”开始,拨了“14”周后,该时针所指的钟面数字是 3、若a 与b 互为相反数,则下列式子:①a+b=0;②a=-b ;③|a|=|-b|;④a=b ,其中一定成立的序号为 4、数轴上到数-1所表示的点的距离为5的点所表示的数是5、绝对值最小的有理数是 ;绝对值最小的整数是 ;| 3.14 -π|= _________6、写出所有不小于-4并且小于3.2的整数:7、绝对值小于6且大于3的整数有()A.1个B.2个C.3个D.4个8、下面关于0的说法:①是整数,也是有理数;②是正数,不是负数;③不是整数,是有理数;④是整数,也是自然数,正确的是()A.①②B.②③C.①④D.①③9、在15,38-,0.15,-30,-12.8,-227,-1.010010001,π7-,-3.12112111211112……,-3.141414……中,负分数的个数是()A.3个B.4个C.5个D.6个10、一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数点的个数是(1)判断墨迹盖住的整数共有多少个?并说明理由。
(2)直接写出被盖住的这些整数中有多少对相反数?11、1;23-;8.9;-2.8;+100;115;-0.03;0;-(-7);-3.12112111211112……;-3.141414……;π7-;|-35|正整数:;负整数:;正分数:;分数:;自然数:;属于非负整数集合的有;非负数:;属于非正整数集合的有_______________12、式子4+|x-1|能取得的最小值是,这时x= ;式子3-|2x-1|能取得的最大值是,这时x=13、将下面一组数填入相应的圈内:-0.6,-8,0.212121…,-809,122-,89.9,0,+4,你能说出图中重叠部分表示的是什么数吗?考点三、有理数大小的比较1、比较大小20112012-20092010-;-π -3.142、试比较下列各组数的大小:(1)12-与23-;23-与34-;34-与45-;……;1nn-+与12nn+-+(2)你能模仿(1)得出21nn+-+与1nn+-两者的大小关系吗?举例说明考点四、绝对值在实际生活中的运用,如判断某些产品是否合格,求汽车来回运动所行驶的路程以及耗油量1、正式比赛时,乒乓球的直径有严格的规定。
现在四个乒乓球,超过规定的尺寸记为正数,不足规定的尺寸记为负数。
为了选择一个乒乓球进行比赛,裁判对这四个乒乓球进行了测量,得到结果:A球+0.2mm,B球-0.1mm,C球+0.3mm,D球-0.2mm,你认为应选哪一个乒乓球用于比赛?为什么?2、出租车司机小王某天上午的营运全是在东西走向的光明大道上进行的,如果规定向东为正,向西为负,那么这天下午行车里程(单位:千米)如下:-2,+5,-1,+10,-15,-3若出租车的耗油量为0.1升/千米,这天上午小王开车共耗油多少升?考点五、关于带绝对值的简单加、减、乘、除计算(1)|+64|÷8-|-4| (2) |+313|×|920-| (3)|-35|×(5735-)-40×|-10%|附加题:|112-|+|1132-|+|1143-|+……+|119998-|+|1110099-|考点六、几个非负数和的形式,以及在此基础上将分数拆成两数之差的形式求和1、若|a|+|b-1|=0,则a= ;b= ;2、若|ab-2 |+|b-1|=0,求1ab+1(1)(1)a b+++1(2)(2)a b+++……1(2012)(2012)a b++考点七、关于输入一个数后,进行某种变化后,会得出一个数的程序性题目1、某计算程序是:当输入一个数时,显示的结果总等于这个数的绝对值与2的和。
若输入-2,则显示的结果是;若输入某数后,显示的结果是4,则输入的数是考点八、点在数轴上有规则左右运动的创新题型1、一个点从数轴上的原点出发,向右移动1个单位,再向左移动3个单位,得到点A1,称为第一次跳跃,然后又向右移动3个单位,再向左移动5个单位,得到点A2,称为第二次跳跃……这样下去一直到点A n,若点A n表示的数是-18,则这次是第次跳跃巩 固 练 习一、选择题1、下列说法错误的是( )A.负整数和负分数统称为负有理数B.正整数、0、负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数6个 2、在15,38-,0.15,-30,-12.8,-227,-1.010010001,π7-,-3.12112111211112……,-3.141414……中,负分数的个数是( )A.3个B.4个C.5个D.6个3、下列各数中,比|-2|大的是( )A.-|-2}B.-(-2)C. -(-6)D. -(+6)4、质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下: 第一个0.13毫米,第二个为-0.12毫米,第三个为-0.15毫米,第四个为0.11毫米,则质量最差的零件是( ) A.第一个 B.第二个 C.第三个 D.第四个5、数轴上A 、B 两点分别表示数8.2,365,则A 、B 两点间的距离为( ) A. 1445 B. 1425C. 1.8D. 1.6 6、数轴上到数-1所表示的点的距离为5的点所表示的数是( ) A. -6 B. 6或-4 C. 4 D. -6或47、一个数的绝对值与这个数相等,那么这个数只能是( ) A. 0或1 B. -1 C. ±1 D. 非负数8、一天上午6:00某条江的水位为80.4m ,到上午11:30水位上涨了5.3m ,到下午6:00水位下跌了0.9m 。
则下午6:00的水位为( )A. 76mB. 84.8mC. 85.8mD. 86.6m9、一种零件,图纸上标明的加工要求是直径0.030.0445+-,现有下列尺寸的产品,其中不合格的是( ) A. 直径为45.02 B. 直径为44.8 C. 直径为44.99 D. 直径为45.0110、任意有理数a ,式子2-|a|;|a+2|;|-a|-a ;|-a|+2,值一定不为零的是( ) A. 2-|a| B. |a+2| C. |-a|-a D. |-a|+2 二、填空题1、若a 与-3互为相反数,则a= ;若|-x|=|-6|,则x=2、一个数的绝对值等于2013,则这个数是3、比较大小:-5 -5.2;|-6| |-6.2|4、绝对值不大于2的整数是 ;绝对值最小的有理数是 ;最大的负整数是 ;5、1、若|3a+1|+|b-1|=0,则a= ;b= ;6、1、某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为-1,10:45记为1等等,以此类推,上午11:30应记为7、数轴上的点A 表示-3,让点A 沿着数轴向右移动2个单位到点B ,那么点B 表示数 ;请你写出三个有理数,使它们所对应的点在线段AB 上:8、给出依次排列的一组数:1,-3,5,-7,9,……,按此规律,第6个数为 ;第2013个数为 9、数轴上原点右边8cm 处的点表示的数为32,则原点左边18cm 处的点表示的数为 10、数a 在数轴上的位置如图所示,且|a+1|=2,则|3a+15|=a1三、解答题1、把下列各数填入相应的括号内:1;23-;8.9;-2.8;+100;115;-0.03;0;-(-7);-3.12112111211112……;-3.141414……;π7-;|-35| 正整数: ;负整数: ;正分数: ;分数: ;自然数: ;属于非负整数集合的有 ;非负数: ;属于非正整数集合的有_______________ 2、计算 (1)|+213|×|-52|÷|+109| (2)|-35|×(5735-)-40×|-10%| (3)|-4|×|+52|+|-6|÷|-2|3、画出数轴,然后在数轴上表示下列各数:0,-2.5,312,-2,+5,并按从大到小的顺序排列。