由传递函数转换成状态空间模型

合集下载

由传递函数求状态空间表达式根据前面介绍的微分方程与状态空间

由传递函数求状态空间表达式根据前面介绍的微分方程与状态空间

b0sm b1sm1 L bm1s bm sn a1sn1 L an1s an
c1 c2 L cn
s 1 s 2
s n
(n m)
其中:
ci
lim G(s)(s
si
i )
X
1
(s
)
s
1
1
U (s)
X
2
(
s)
s
1
2
U (s)
X
n
(s)
s
1
n
U (s)
分解式第二部分表示状态变量与输出的关系, 输出y等于各状态变量与输入的线性组合,即式中 的C和D阵。
若传递函数等效为:
G(s)
b0
b1s n1 b2 s n1 s n a1s n1
bn1s an1s
bn an
式中
bi (bi aib0 ), (i 1,2, , n)

此时,式中的C阵和D阵可直接写成
sX 1(s) 1 X1 (s) U (s)
sX2
(s)
2
X
2 (s) U (s)
sX n (s) n X n (s) U (s)
x1 1x1 u
x2
2 x2
u
xn n xn u
Y (s) G(s)U (s) c1 U (s) c2 U (s) L cn U (s)
sn
a1s n1
b
an1s an
系统的微分方程为:
y (n) a1 y (n1) an1 y an y bu
则根据上节公式,可直接写出状态空间表达 式。即:
0 1 0
0
A
0
,
B , C 1

现代控制理论-3传递函数和状态空间模型间的转换

现代控制理论-3传递函数和状态空间模型间的转换

= 4 ⋅ 1 ⋅s+2 s +1 s +3 s + 4
G(s) = 4 ⋅ 1 ⋅ s + 2 s +1 s +3 s + 4
以下三个环节的串联
u
4
y1
1
y2
s+2 y
s +1
s+3
s+4
x1 = −x1 + 4u
y1
=
x1
xy 22
= −3x2 = x2
+
u2
x3 = −4x3 + u3
现代控制理论
Modern Control Theory (3)
俞立
浙江工业大学 信息工程学院
传递函数和状态空间模型间的转换
分解法建立复杂系统的状态空间模型 串联、并联、反馈关联
串联法:
G(s) =
4s + 8
s 3 + 8s 2 + 19s + 12
分解成
G(s) =
4(s + 2)
(s + 1)(s + 3)(s + 4)
例:求传递函数矩阵,其中状态空间模型的系数矩阵:
1 2 A = − 2 1,
1 B = 0,
C = [1 1],
D = [0]
难点:求逆矩阵 (sI − A)−1
1 2 A = − 2 1,
1 B = 0,
C = [1 1],
D = [0]
根据求逆矩阵的定义 (sI − A)−1 = adj(sI − A)
(sI − A) X (s) = BU (s)
X (s) = (sI − A)−1 BU (s)

利用MATLAB进行系统模型之间的相互转换

利用MATLAB进行系统模型之间的相互转换
利用 MATLAB 进行系统模型之间的相互转换
本节将讨论系统模型由传递函数变换为状态方程,反之亦
然。现讨论如何由传递函数变换为状态方程。
将闭环传递函数写为
Y (s) U (s)
=
含s的分子多项式 含s的分母多项式
=
num den
当有了这一传递函数表达式后,使用如下 MATLAB 命令:
[A, B, C, D] = tf2ss (num, den)
J=[-2+j*4 0 0;0 -2-j*4 0;0 0 -10]; JJ=poly(J) JJ=
1 14 60 200 aa1=JJ(2);aa2=JJ(3);aa3=JJ(4); %*****State feedback gain matrix K can be given by ***** K=[aa3-a3 aa2-a2 aa1-a1]*(inv(P)) K=
%*****Enter matrices A and B*****
A=[0 1 0;0 0 1;-1 -5 -6]; B=[0;0;1];
%***** Define the controllability matrix Q*****
Q=[B A*B A^2*B];
%*****Check the rank of matrix Q*****
JA=poly(A)
JA=
1.0000 6.0000 5.0000 1.0000
a1=JA(2);a2=JA(3);a3=JA(4);
%*****Define matrices W and P as follows***** W=[a2 a1 1;a1 1 0;1 0 0]; P=Q*W;
%*****Obtain the desired chracteristic polynomial by defining %the following matrix J and entering statement poly(J)*****

由传递函数转换成状态空间模型(1)

由传递函数转换成状态空间模型(1)

由传递函数转换成状况空间模子——办法多!!!SISO线性定常体系高阶微分方程化为状况空间表达式外部描写←—实现问题:有了内部构造—→模仿体系内部描写实现问题解决有多种办法,办法不合时成果不合.一、直接分化法因为对上式取拉氏反变换,则按下列纪律选择状况变量,于是有写成矩阵情势式中,把这种尺度型中的A系数阵称之为友阵.只要体系状况方程的系数阵A和输入阵b具有上式的情势,c 阵的情势可以随意率性,则称之为能控尺度型.则输出方程写成矩阵情势.在须要对现实体系进行数学模子转换时,不必进行盘算就可以便利地写出状况空间模子的A.b.c矩阵的所有元素.例:已知SISO体系的传递函数如下,试求体系的能控尺度型状况空间模子.解:直接得到体系进行能控尺度型的转换,即若选(若何斟酌?)斟酌式依次对第一式求导,并带入第二式;对第二式求导,并带入第三式;依次类推,便得到写成矩阵情势式中.只要体系状况空间表达式的A阵和c 阵具有上式的情势,b阵的情势可以随意率性,则称之为能不雅尺度型从情势上看,能控尺度型和能不雅尺度型的系数阵A是互为转置,能控尺度型输入阵b和能不雅尺度型输出阵c互为转置,这种互为转置的关系被称为对偶关系.将在第六章进一步评论辩论.经由过程以上对传递函数阵的能控尺度型或能不雅尺度型转换的评论辩论,对单输入体系而言,应留意如下问题:(1)传递函数转化成能控尺度型的状况空间表达式,状况方程的构造只由传递函数阵的顶点(特点)多项式肯定,而与其零点多项式无关,零点多项式只影响输出方程的构造.(2)从能不雅尺度型的转换可以看出,系数阵A的元素仅决议于传递函数顶点多项式系数,而其零点多项式则肯定输入阵B的元素.(3)只有当传递函数零点和顶点多项式同阶时,状况,.例:求前例的能不雅尺度型的状况空间模子解:直接得到能不雅尺度型的状况空间模子,即二、串联分化法若SISO体系的传递函数顶点互异,体系传递函数分子分母写成因式相乘情势图示!!三、并联分化法(对角尺度型/约旦尺度型——特点值尺度型)(一)若SISO体系的传递函数顶点互异,则可求得对角尺度型的模子.当体系的顶点互异时,体系传递函数分子分母写成因式相乘情势写成部分分式个中,其值为选择状况变量为(绘图示意状况变量的取法)即对上式拉氏反变换,得即写成矩阵情势式中,系数矩阵A为对角阵.对角线上的元素是传递函数G(s)的顶点,即体系的特点值.b阵是元素全为1的n×1矩阵.求对角尺度型模子的输出方程中c的构造对上式拉氏反变换,得假如体系的状况方程的A阵是对角阵,暗示体系的各个变量之间是解耦的.多变量的体系解耦是庞杂体系实现准确掌握的症结问题,关于若何实现解耦掌握将在第五章评论辩论.体系的状况构造图如图所示.例:设体系的闭环传递函数如下,试求体系对角尺度型的转换,得对角尺度型的转换为(二)对SISO体系式,当其有重特点值时,可以得到约当尺度型的状况空间模子.此时模子的系数矩阵A中与重特点值对应的那些子块都是与这些特点值相对应的约当块,即其重数为j,而其余为互异的特点值,则传递函数可以用部分分式睁开成式中,,其值为.绘图示意状况变量的取法:例:设体系的闭环传递函数如下,试求体系对约当准型的状况空间模子,该体系为四阶,有一个重顶点,重数为j=2,有两个互异的顶点,按部分分式睁开可得约当尺度型的模子为。

mimo传递函数转化为状态空间模型matlab代码

mimo传递函数转化为状态空间模型matlab代码

MIMO传递函数转化为状态空间模型Matlab代码1. 介绍MIMO(多输入多输出)系统是指系统具有多个输入和多个输出的特性。

在控制系统领域中,MIMO系统的建模和分析是非常重要的。

传递函数和状态空间模型是两种常用的系统建模方法。

本文将介绍如何将MIMO系统的传递函数转化为状态空间模型,并给出相应的Matlab代码实现。

2. MIMO系统的传递函数表示MIMO系统的传递函数通常表示为一个矩阵,每个元素对应一个输入到一个输出的传递函数。

假设有n个输入、m个输出,则MIMO系统的传递函数可以表示为一个m×n的传递函数矩阵G(s)。

传递函数矩阵的元素可以用s表示,如G11(s)、G12(s)等。

3. MIMO系统传递函数到状态空间模型的转化方法MIMO系统的传递函数可以通过状态空间模型来表示。

状态空间模型的基本形式如下:\[ \dot{x}(t) = Ax(t) + Bu(t) \]\[ y(t) = Cx(t) + Du(t) \]其中,A是状态矩阵,B是输入矩阵,C是输出矩阵,D是传递函数零极点对应的矩阵。

MIMO系统的传递函数可以通过以下步骤转化为状态空间模型:1)将传递函数矩阵分解为多个SISO(单输入单输出)系统的传递函数;2)针对每个SISO系统,可以将其转化为状态空间模型;3)将各个SISO系统的状态空间模型组合成一个整体的MIMO系统的状态空间模型。

4. Matlab代码实现下面我们通过一个实例来演示如何用Matlab将MIMO系统的传递函数转化为状态空间模型。

假设传递函数矩阵为:\[ G(s) = \begin{bmatrix} \frac{2s+1}{s^2+3s+2}\frac{3s+2}{s^2+4s+3} \\ \frac{4s+1}{s^2+2s+1}\frac{5s+2}{s^2+3s+2} \end{bmatrix} \]我们需要将传递函数矩阵分解为四个SISO系统的传递函数:\[ G11(s) = \frac{2s+1}{s^2+3s+2} \]\[ G12(s) = \frac{3s+2}{s^2+4s+3} \]\[ G21(s) = \frac{4s+1}{s^2+2s+1} \]\[ G22(s) = \frac{5s+2}{s^2+3s+2} \]针对每个SISO系统,我们可以将其转化为状态空间模型,以G11(s)为例:```Matlab将传递函数G11(s)转化为状态空间模型num = [2, 1]; 分子系数den = [1, 3, 2]; 分母系数[A11, B11, C11, D11] = tf2ss(num, den); 转化为状态空间模型```将各个SISO系统的状态空间模型组合成整体的MIMO系统的状态空间模型:```Matlab对四个SISO系统的状态空间模型进行组合A = [A11, A12; A21, A22];B = [B11, B12; B21, B22];C = [C11, C12; C21, C22];D = [D11, D12; D21, D22];```至此,我们成功地将MIMO系统的传递函数转化为状态空间模型,并通过Matlab代码实现了这一过程。

传递函数到状态空间的实现.docx

传递函数到状态空间的实现.docx

实验题目:传递函数到状态空间的实现 课程名称:计算机仿真 一、实验目的1、 理解并掌握传递函数转换为状态空间方程的方法2、 理解状态初值的计算方法二、 实验内容1、 应用MATLAB 编写一个可以实现传递函数到状态空间方程的可控可观规范型的ni 文件。

并用相应例题验证程序的止确性。

2、 完善该程序使具可以用來计算状态初值。

并用相应的例题验证程序 的正确性。

3、 程序中需要考虑分子分母同阶以及分母首系数不为1的两种情况。

三、 报告内容1、 给出m 文件的程序框图,及验证结果,并记录出现的错误,并给出 解决的方案。

若没有得到解决,请说清楚你的问题2、 如呆做了程序的状态初值得求解,请给岀相应的验证结杲,及程序 编写过程中出现的问题,若已经解决,给出貝体方法。

能观标准型为:2、计算状态变量初值:(1)不含u 的导数项时,则冇:A= • 0 0 •■1 0• •0 1■ ■… 0 ■…• • ••B=O' 0 ■ ■~a n~a n-l~a n-l…一如・丄Z?o s n +b 1s n "1+•••+d n ^1s+c n+…+01八一]s+a 八那么其状态空间模型能控标准型为:C=[(b n — bo (z n ) (&n _i — …@1 —加血)] D=b n!1!实验理论传递函数为G(s)=1、 力能观=B 能观D 能观和0)X?(O) 1(0)」 yj(o)(2)系统微分方程不仅包含u 的输入项,而口包含u 的导数项,则:五、程序检验(1)输入一个分母首系数为1月.分子分母不同阶传递函数:2S 3+ 4S 2+ 3S + 5 G = -------------------------------S 4 + 2S 3 + 5S 2 + 4S + 2程序运行结果: 能控标准型:A 二0 1 0 00 1 00 0 0 1-2-4-5-2B =兀 1(0)a n-l an-2 …兀2(0)a n-2%一3…七(0) ■ • = an-3•■ • • • • • • ■^-1(0)■ 1 … _ 兀“(0)..10 (x)n xa x 1 y (o )~Cn-l1 0 y (o )一 Cn-2 • •… •■ y(0) ■ •+ _ Cn-3■ ■ ■…0 严)(0)_C]…0 严(()) ■ ■_ 0nxl /ix(n -1)一 C] w(O)〃(()):M(O)•• • ••• :宀(0)0 ]“"-2)(0)(/?-l)xly(0) y(0)5 342D 二能观标准型:A =0 00-21 00-40 10-50 01-2B =5342C =0 001D 二初值部分:请输入系统输出的初值二[1 ;1;1;1]请输入系统输入的初值二[0; 0; 0] x0 二12831运行结果正确(2)输入一个分母首系数为2 口分子分母同阶传递函数:S 2 + 2S + 3G =2S 2 + 5S + 3程序运行结果: 能控标准型:0. 5000初值部分:请输入系统输出的初值二[1;1] 请输入系统输入的初值二[0]xO 二A =0 -1. 5000 B =0 1 C 二1. 5000 D =0. 5000能观标准型:A 二0 1.0000 B =1. 5000 1.5000 C 二1.5000 D =1.0000 -2. 50001. 5000-1. 5000 -2. 50001. 50003. 50001.0000运行结果正确六.流程图七、实验小结通过木次实验我了解了如何通过matlab的编程来实现传递函数转化为状态空间方程的能控和能观性,并掌握了程序的状态初值的求解。

实验一MATLAB系统地传递函数和状态空间表达式地转换

实验一MATLAB系统地传递函数和状态空间表达式地转换

实验一 MATLAB 系统的传递函数和状态空间表达式的转换一、实验目的1、学习多变量系统状态空间表达式的建立方法;2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数之间相互转换的方法;3、掌握相应的MATLAB 函数。

二、实验原理设系统的模型如式(1.1)所示:⎩⎨⎧+=+=DCx y BuAx x ' x ''R ∈ u ∈R ’’’ y ∈R P (1.1) 其中A 为nXn 维系统矩阵、B 为nXm 维输入矩阵、C 为pXn 维输出矩阵,D 为直接传递函数。

系统的传递函数和状态空间表达式之间的关系如式(1.2)所示G(s)=num(s)/den(s)=C (SI-A)-1 B+D (1.2) 式(1.2)中,num(s)表示传递函数的分子阵,其维数是pXm ,den(s)表示传递函数的按s 降幂排列的分母。

表示状态空间模型和传递函数的MATLAB 函数如下:函数ss (state space 的首字母)给出了状态空间模型,其一般形式是: sys=ss(A,B,C,D)函数tf (transfer function 的首字母)给出了传递函数,其一般形式是: G=tf(num ,den)其中num 表示传递函数中分子多项式的系数向量(单输入单输出系统),den 表示传递函数中分母多项式的系数向量。

函数tf2ss 给出了传递函数的一个状态空间实现,其一般形式是: [A,B,C,D]=tf2ss(num,den)函数ss2tf 给出了状态空间模型所描述系统的传递函数,其一般形式是: [num,den]=ss2tf(A,B,C,D,iu)其中对于多输入系统,必须确定iu 的值。

例如,若系统有三个输入u 1,u 2,u 3,则iu 必须是1、2、或3,其中1表示u 1,2表示u 2,3表示u 3。

该函数的结果是第iu 个输入到所有输出的传递函数。

三.实验步骤及结果1、应用MATLAB 对下列系统编程,求系统的A 、B 、C 、D 阵,然后验证传递函数是相同的。

已知传递函数求状态空间表达式

已知传递函数求状态空间表达式

已知传递函数求状态空间表达式在控制系统理论中,常常需要将已知的传递函数转换为状态空间表达式。

这是因为状态空间形式更加直观,便于进行控制器设计和系统分析。

首先,我们需要将传递函数化简为标准形式:$$G(s) = frac{b_0 s^n + b_1 s^{n-1} + cdots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + cdots + a_{n-1} s + a_n}$$其中 $n$ 为传递函数的阶数,$b_i$ 和 $a_i$ 是系数。

接下来,我们可以通过状态空间的基本方程来表示传递函数: $$begin{aligned}dot{x} &= Ax + Buy &= Cx + Duend{aligned}$$其中,$x$ 是 $n$ 维状态向量,$u$ 是 $m$ 维输入向量,$y$ 是$p$ 维输出向量。

$A$、$B$、$C$、$D$ 是系数矩阵,它们的维度分别为 $n times n$、$n times m$、$p times n$ 和 $p times m$。

我们可以通过下列步骤获得$A$、$B$、$C$ 和 $D$:1. 首先,将传递函数分解为零极点形式:$$G(s) =kfrac{(s-z_1)(s-z_2)cdots(s-z_n)}{(s-p_1)(s-p_2)cdots(s-p_n )}$$其中,$k$ 是比例系数,$z_i$ 和 $p_i$ 是零点和极点。

2. 利用零极点分解结果,构造传递函数的控制分式表达式:$$G(s) = kfrac{(s-z_1)}{(s-p_1)} cdot frac{(s-z_2)}{(s-p_2)} cdots frac{(s-z_n)}{(s-p_n)}$$3. 对每个控制分式,构造对应的状态空间模型:$$begin{aligned}dot{x_i} &= p_i x_i + uy_i &= z_i x_iend{aligned}$$其中,$i$ 取值为 $1$ 到 $n$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由传递函数转换成状态空间模型——方法多!!! SISO 线性定常系统高阶微分方程化为状态空间表达式SISO ()()()()()()m n u b u b u b y a y a y a y m m m n n n n ≥+++=++++--- 1102211ΛΛ)(2211110nn n n mm m a s a s a s b s b s b s G +++++++=---ΛΛ 假设1+=m n外部描述←—实现问题:有了内部结构—→模拟系统内部描述SISO ⎩⎨⎧+=+=du cx y bu Ax x&实现问题解决有多种方法,方法不同时结果不同。

一、直接分解法因为1011111()()()()()()()()1m m m mn n n nY s Z s Z s Y s U s Z s U s Z s b s b s b s b s a s a s a ----⨯=⨯=⨯++++++++L L ⎩⎨⎧++++=++++=----)()()()()()(1111110s Z a s a s a s s U s Z b s b s b s b s Y n n n n m m m m ΛΛ 对上式取拉氏反变换,则⎩⎨⎧++++=++++=----z a z a z a z u zb z b z b z b y n n n n m m m m &Λ&Λ1)1(1)(1)1(1)(0 按下列规律选择状态变量,即设)1(21,,,-===n n z x zx z x Λ&,于是有⎪⎪⎩⎪⎪⎨⎧+----===-u x a x a x a xx x x x n n n n 12113221Λ&M && 写成矩阵形式式中,1-n I 为1-n 阶单位矩阵,把这种标准型中的A 系数阵称之为友阵。

只要系统状态方程的系数阵A 和输入阵b 具有上式的形式,c 阵的形式可以任意,则称之为能控标准型。

则输出方程121110x b x b x b x b y m m n n ++++=--Λ写成矩阵形式⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--n n m m x x x x b b b b y 121011][M Λ 分析c b A ,,阵的构成与传递函数系数的关系。

在需要对实际系统进行数学模型转换时,不必进行计算就可以方便地写出状态空间模型的A 、b 、c 矩阵的所有元素。

例:已知SISO 系统的传递函数如下,试求系统的能控标准型状态空间模型。

42383)()(23++++=s s s ss U s Y 解:直接得到系统进行能控标准型的转换,即u x x x u x x x a a a x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100324100010100100010321321123321&&& ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321321012]083[][x x x x x x b b b y 若选择状态变量[]Tn x x x x Λ21=满足下列条件(如何考虑?)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧----+++=----+++=--++=-+==------------u b u b u b y a y a y x u b u b u b y a y a y x u b u b y a y a y x u b y a y x y x m m m n n n m m m n n n n n n ΛΛΛΛM &&&&&)2(1)1(0)2(1)1(11)3(1)2(02)3(1)2(210212011 考虑式()()()()()()m n u b u b u b y a y a y a y m m m n n n n ≥+++=++++--- 1102211ΛΛ设系统的输出n x y =,依次对第一式求导,并带入第二式;对第二式求导,并带入第三式;依次类推,便得到⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+-=+-=-----u b x a x x u b x a x x u b x a x x ub x a x n n nn n n m n n m n n 011122111121&&M && 写成矩阵形式u b b b b x x x x a a a a xx x x m m n n n n n n n I⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----011121121112100M M M Λ&&M &&⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-n n x x x x y 121]1000[M Λ式中,1-n I 为1-n 阶单位矩阵。

只要系统状态空间表达式的A 阵和c 阵具有上式的形式,b 阵的形式可以任意,则称之为能观标准型从形式上看,能控标准型和能观标准型的系数阵A 是互为转置,能控标准型输入阵b 和能观标准型输出阵c 互为转置,这种互为转置的关系被称为对偶关系。

将在第六章进一步讨论。

通过以上对传递函数阵的能控标准型或能观标准型转换的讨论,对单输入系统而言,应注意如下问题:(1)传递函数转化成能控标准型的状态空间表达式,状态方程的结构只由传递函数阵的极点(特征)多项式确定,而与其零点多项式无关,零点多项式只影响输出方程的结构。

(2)从能观标准型的转换可以看出,系数阵A 的元素仅决定于传递函数极点多项式系数,而其零点多项式则确定输入阵B 的元素。

(3)只有当传递函数零点和极点多项式同阶时,即n m =,状态空间表达式的输出方程中才出现Du 项,否则D 为零阵。

例:求前例的能观标准型的状态空间模型 解:直接得到能观标准型的状态空间模型,即u x x x x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡083310201400321321&&&[]Tx x x y 321]100[=二、串联分解法若SISO 系统的传递函数极点互异,系统传递函数分子分母写成因式相乘形式1212()()()()()()()()()()m n K s z s z s z Y s G s n m U S s p s p s p +++==≥+++L L例:12123121232312123()()()()()()()()11K s z s z Y s G s U S s p s p s p s z s z K s p s p s p z p z p K s p s p s p ++==+++++=⋅⋅+++⎛⎫⎛⎫--=⋅+⋅+ ⎪ ⎪+++⎝⎭⎝⎭图示!![]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321213232112213321100000x x x k p z p z y u x x x p k p k p z p x x x &&&三、 并联分解法(对角标准型/约旦标准型——特征值标准型)(一)若SISO 系统的传递函数极点互异,则可求得对角标准型的模型。

当系统的极点互异时,系统传递函数分子分母写成因式相乘形式1212()()()()()()()()()()m n K s z s z s z Y s G s n m U S s p s p s p +++==≥+++L L写成部分分式∑=+=++++++==ni ii n n p s c p s c p s c p s c s U s Y s G 12211)()()(Λ其中,i c ,n i ,,2,1Λ=为待定系数,其值为))((lim i s i p s s G c i+=-λ选择状态变量为(画图示意状态变量的取法),)()(ii p s s U s X +=n i ,,2,1Λ= 即)()()(s U s X p s sX i i i =+对上式拉氏反变换,得u x p x i i i =+&即⎪⎪⎩⎪⎪⎨⎧+=+=+=u x p xu x p x u x p x n n n &M &&222111 写成矩阵形式u x x x p p p x x x n n n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡111212121M M O&M && 式中,系数矩阵A 为对角阵。

对角线上的元素是传递函数G (s )的极点,即系统的特征值。

b 阵是元素全为1的n ×1矩阵。

求对角标准型模型的输出方程中c 的结构)()(1s U p s c s Y ni ii∑=+= )()()(s X p s s U i i +=∑==ni i i s X c s Y 1)()(对上式拉氏反变换,得[]Tn n i i x x x c c c x c y ΛΛ2121][∑==如果系统的状态方程的A 阵是对角阵,表示系统的各个变量之间是解耦的。

多变量的系统解耦是复杂系统实现精确控制的关键问题,关于如何实现解耦控制将在第五章讨论。

系统的状态结构图如图所示。

例: 设系统的闭环传递函数如下,试求系统对角标准型的转换611686)()()(23++++==s s s s s U s Y s G 解:将)(s G 用部分分式展开321)3)(2)(1(86)(321+++++=++++=s cs c s c s s s s s G从而可得)(s G 的极点3,2,1111-=-=-=λλλ为互异的,求待定系数i c1)3)(2(86lim))((lim 1111=+++=+=-→→s s s s s G c s s λλ4)3)(1(86lim))((lim 2222=+++=+=-→→s s s s s G c s s λλ5)2)(1(86lim))((lim 3333-=+++=+=-→→s s s s s G c s s λλ得对角标准型的转换为u x x x x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111300020001321321&&&[][]Tx x x y 321541-=(二)对SISO 系统式,当其有重特征值时,可以得到约当标准型的状态空间模型。

相关文档
最新文档