二次积分模型的时间最优控制

浅谈最优控制

浅谈最优控制 发表时间:2008-12-10T10:25:09.263Z 来源:《黑龙江科技信息》供稿作者:李晶1 陈思2 [导读] 主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。 摘要:主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。通过以上知识的讲解使初学者能够快速掌握最优控制的问题。关键词:最优化;最优控制;极值 最优控制是最优化方法的一个应用,如果想了解最优控制必须知道什么是最优化方法。所谓最优化方法为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。 最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。(1)最优设计:世界各国工程技术界,尤其是飞机、造船、机械、建筑等部门都已广泛应用最优化方法于设计中,从各种设计参数的优选到最佳结构形状的选取等,结合有限元方法已使许多设计优化问题得到解决。一个新的发展动向是最优设计和计算机辅助设计相结合。电子线路的最优设计是另一个应用最优化方法的重要领域,它存在着巨大的开发潜力,尤其是对于学电工学的学生来说。配方配比的优选方面在化工、橡胶、塑料等工业部门都得到成功的应用,并向计算机辅助搜索最佳配方、配比方向发展。(2)最优计划:现代国民经济或部门经济的计划,直至企业的发展规划和年度生产计划,尤其是农业规划、种植计划、能源规划和其他资源、环境和生态规划的制订,都已开始应用最优化方法。一个重要的发展趋势是帮助领导部门进行各种优化决策,使工作结构简单,工作效率最高化,节省了很多时间。(3)最优管理:一般在日常生产计划的制订、调度和运行中都可应用最优化方法。随着管理信息系统和决策支持系统的建立和使用,使最优管理得到迅速的发展。(4)最优控制:主要用于对各种控制系统的优化。下面着重来解释一下最优控制。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的动态规划和庞特里亚金等人提出的最大值原理。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。1948年维纳发表了题为《控制论——关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所著的《工程控制论》(EngineeringCybernetics)直接促进了最优控制理论的发展和形成。 为了解决最优控制问题,必须建立描述受控运动过程的运动方程,即系统的数学模型,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。 1 古典变分法 研究对泛函求极值的一种数学方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。 2 极大值原理 极大值原理,是分析力学中哈密顿方法的推广。极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。 3 动态规划 动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。随着社会科技的不断进步,最优控制理的应用领域十分广泛,如时间最短、能耗最小、线性二次型指标最优、跟踪问题、调节问题和伺服机构问题等。但它在理论上还有不完善的地方,其中两个重要的问题就是优化算法中的鲁棒性问题和最优化算法的简化和实用性问题。大体上说,在最优化理论研究和应用方面应加强的课题主要有:(1)适合于解决工程上普遍问题的稳定性最优化方法的研究;(2)智能最优化方法、最优模糊控制器设计的研究;(3)简单实用的优化集成芯片及最优化控制器的开发和推广利用;(4)复杂系统、模糊动态模型的辩识与优化方法的研究;(5)最优化算法的改进。相信随着对这些问题的研究和探索的不断深入,最优控制技术将越来越成熟和实用,它也将给人们带来不可限量的影响。 参考文献 [1]胡寿松.最优控制理论与系统[M].(第二版)北京:科学出版社,2005. [2]阳明盛.最优化原理、方法及求解软件[M].北京:科学出版社,2006. [3]葛宝明.先进控制理论及其应用[M].北京:机械工业出版社,2007. [4]章卫国.先进控制理论与方法导论[M].西安:西北工业大学出版社,2000.

最优控制理论课程总结

《最优控制理论》 课程总结 姓名:肖凯文 班级:自动化1002班 学号:0909100902 任课老师:彭辉

摘要:最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。 关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率Abstract: The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects.During the 50 years, the rapid development of the scientific technology puts more stricter requires forward to mang controlled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases.To the control problem,it requests people to research ,analyse,and devise from the point of view of the Optimal Control Theory. There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlled objects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value. Keywords: The Optimal Control Theroy, The Modern Control Theroy, The Time Domaint’s Model, The Frequency domain’s Model,The Control Law

最优控制

最优控制综述 摘要:最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。而最优控制通常针对控制系统而言,目的在于使一个机组、一台设备或一个生产过程实现局部最优。本文重点阐述了最优系统常用的变分法、极小值原理和动态规划三种方法的基本理论及其在典型系统设计中的应用。 关键词:变分法、极小值原理、动态规划 1 引言 最优控制是分析控制系统常用的方法,是现代控制理论的核心之一。它尤其与航空航天的制导、导航和控制技术密不可分。最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标最优。 这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中的老化指数、抚养指数和劳动力指数为最优等,都是一些经典的最优控制问题。 最优控制问题是要在满足约束条件下寻求最优控制函数,使目标泛函取极值。求解动态最优化问题的方法主要有古典变分法,极小值原理及动态规划法等。 2 研究最优控制的前提条件 2.1状态方程 对连续时间系统: x t=f x t,u t,t 对离散时间系统:x(k+1)=f x k,u k,k k=0,1,……,(N-1)

线性二次型最优控制

一、主动控制简介 概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。 特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。 优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。 组成:传感器、控制器、作动器 工作方式:开环、闭环、开闭环。 二、简单回顾主动控制的应用与MATLAB应用 1.主动变刚度A VS控制装置 工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。 锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度; 打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。 示意图如下: 2. 主动变阻尼A VD控制装置 工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。 关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态; 打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。 示意图如下:

最优控制课程介绍

最优控制 先修课程:常微分方程,最优化方法最优控制问题是具有特殊数学结构的一类最优化问题,在科学、工程和管理乃至人文领域都存在大量的最优控制问题。最优控制研究动态系统在各种约束条件下,寻求目标泛函取极值的最优控制函数与最优状态轨线的数学理论和方法,它是静态最优化在无穷维空间的扩展。希望学生通过本课程的学习,能够结合实际背景,建立最优控制的模型,理解求解最优控制的三大类基本方法的数学思想,灵活地掌握这些方法的基本过程,并能解释计算结果的意义。主要内容如下:最优控制问题及其建模;数学基础;变分法及其在最优控制的应用;极小值原理及其应用;动态规划方法及其应用;应用。 最优控制 一、课程基本信息 1.先修课程:数学系本科包括到大三的全部课程 2.面向对象:理学院数学系各专业 3.推荐教学参考书:吴沧浦,《最优控制的理论与方法》,国防工业出版社,2000 王朝珠等,《最优控制理论》,科学出版社,2003 邢继祥等,《最优控制应用基础》,科学出版社,2003 W. L. Brogan, Modern C ontrol Theor y, (3th eidition), Prentice-Hall, Englew ood C liffs,1991 二、课程的性质和任务本课程是数学与应用数学专业本科生高年级选修课程之一。从数学的角度,最优控制问题是最优化问题中具有特殊结构的一类问题。就问题的来源看,它又是控制问题。最优控制研究动态系统在各种约束条件下寻求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。最优控制问题涉及范围广跨度大,几乎理工医农,管理军事乃至人文经法领域,都存在着大量此类问题。最优化已是寻求最优系统和结构,挖掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本素养之一。通过本课程的主要任务是,从各个教学环节引导学生认识不同数学问题的特点和相应数学模型的结构,自己学会分析实际问题,建立各种数量之间的联系,写出正确的合理的最优控制的模型;领会求解最优控制问题解法是如何提出的数学思想,并学会如何根据这些思想来构成相应方法的技巧;学会能正确地解释计算结果的物理意义的能力。最根本的是学会和培养系统地、动态地、综合地考虑,认识和处理问题的思想方法和动手能力。这样,通过本课程的各个教学环节,提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。三、教学内容和要求基本要求:期望学生能够结合工程背景认识最优控制问题的数学结构的特点,从而能灵活地建立实际问题的数学模型,深刻领会求解它们的三大类方法的数学思想,熟练地掌握这些方法的运用步骤,能正确地解释求解结果的意义,并学会最优控制问题的数值解法。第一章最优控制与最优化问题 1.1 最优化问题的源和流 1.2 最优控制问题的例子和数学描述 1.3 最优控制问题求解的基本思想第二章数学基础 2.1 向量与矩阵的求导法则 2.2 函数极值的几个条件 2.3 线性微分方程的解第三章变分法 3.1 泛函的变分与极值 3.2 Euler方程 3.3 等式约束条件下泛函极值问题的必要条件 3.4 几类可用变分方法求解的最优控制问题 3.5 应用实例第四章极小值原理 4.1 极值曲线场与充分条件 4.2 有控制变量不等式约束的极小值原 理 4.3 含有状态变量不等式的极小值原理 *4.4 极小值原理的证明 4.5 极小值原理的应用实例 4.6 离散极小值原理第五章极小值原理的几类应用 5.1 时间最短最优控制问题 5.2 燃料最省最优控制问题 5.3 线性二次型最优控制问题第六章动态规划 6.1 多阶段决策问题与动态规划思想 6.2 用动态规划思想解最优化问题 6.3 离散系统最优控制问题的动态规划解法 6.4 离散线性二次型问题的动态规划解 6.5 连续系统做优控制问题的动态规划解和HJB方程 6.6 连续二次型问题的动态规划解 6.7 Riccatti方程的求解第七章最优控制的新发展 7.1 对策论和微分对策 7.2 随机最优控制四.实验(上机)内容和基本要求本课程无实验和上机的教学安排,但要求学生结合本专业的特点和所研究的课题,选择部分算法自己上机实现。要求学生熟悉至少一门数学软件平台(Mathematica/ matleb/Maple)和至少一种编程语言。教学实验就是编程解决实际问题。至少做有求解

线性二次型最优控制应用举例与仿真

线性二次型最优控制 一、最优控制概述 最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。 一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。 二、线性二次型最优控制 2.1 线性二次型问题概述 线性二次型最优控制问题,也叫LQ 问题。它是指线性系统具有二次型性能指标的最优控制问题。线性二次型问题所得到的最优控制规律是状态变量的反馈形式,便于计算和工程实现。它能兼顾系统性能指标的多方面因素。例如快速性、能量消耗、终端准确性、灵敏度和稳定性等。线性二次型最优控制目标是使性能指标J 取得极小值, 其实质是用不大的控制来保持比较小的误差,从而达到所用能量和误差综合最优的目的。 2.2 线性二次型问题的提法 给定线性时变系统的状态方程和输出方程如下: ()()()()()()()() X t A t X t B t U t Y t C t X t ?=+? =? (2.1)

MATLAB时间最优PID控制算法

MATLAB时间最优PID控制算法 function [ output_args ] = Untitled3( input_args ) %UNTITLED3 Summary of this function goes here % Detailed explanation goes here clear all; close all; ts=20; sys=tf([1],[60,1],'inputdelay',80); dsys=c2d(sys,ts,'zoh'); [num,den]=tfdata(dsys,'v'); u1=0;u2=0;u3=0;u4=0;u5=0; y1=0;y2=0;y3=0; error1=0;error2=0; ei=0; for k=1:1:200 time(k)=k*ts; yd(k)=1.0; y(k)=-den(2)*y1+num(2)*u5; error(k)=yd(k)-y(k); kp=0.45;kd=12;ki=0.0048; A=0.4;B=0.6; ei=ei+(error(k)+error1)/2*ts; M=1; if M==1 if abs(error(k))<=B f(k)=1; elseif abs(error(k))>B&abs(error(k))<=A+B f(k)=(A-abs(error(k))+B)/A; else f(k)=0; end elseif M==2 f(k)=1; end u(k)=kp*error(k)+kd*(error(k)-error1)/ts+ki*f(k)*ei; if u(k)>=10 u(k)=10; end if u(k)<=-10 u(k)=-10; end u5=u4;u4=u3;u3=u2;u2=u1;u1=u(k);

最优控制理论的发展与展望

最优控制理论的发展与展 望 Last revision on 21 December 2020

最优控制理论的发展与展望 摘要:回顾最优控制的基本思想、常用方法及其应用,并对其今后的发展方向和面临的困难提出一些看法。 关键词:最优控制:最优化技术;遗传算法;预测控制 Abstract: The basic idea, method and application of optimal control are reviewed, and the direction of its development and possible difficulties are predicted. Keywords: optimal control; optimal Technology;Genetic Algorithm;Predictive Control 1引言 最优控制理论是本世纪60年代迅速发展的现代控制理论中的主要内容之一,它研究和解决如何从一切可能的方案中寻找一个最优的方案。1948年维纳等人发表《控制论一关于动物和机器中控制与通信的科学》论文,引进信息、反馈和控制等概念,为最优控制理论诞生和发展奠定了基础。我国着名学者钱学森在1954年编着的《工程控制论》直接促进了最优控制理论的发展与形成。在最优控制理论的形成和发展过程中,具有开创性的研究成果和开辟求解最优控制问题新途径的工作,主要是美国着名学者贝尔曼的“动态规划”和原苏联着名学者庞特里亚金的“最大值原理”。此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,还有库恩和图克共同推导的关于不等式约束条件下的非线性最优必要条件(库恩一图克定理)及卡尔曼的关于随机控制系统最优滤波器等口 2最优控制理论的几个重要内容 最优控制理论的基本思想 最优控制理论是现代控制理论中的核心内容之一。其主要实质是:在满足一定约束条件下,寻求最优控制规律(或控制策略),使得系统在规定的性能指标(目标函数)下具有最优值,即寻找一个容许的控制规律使动态系统(受控对象、从初始状态转移到某种要求的终端状态,保证所规足的性能指标达到最小(大)值。

连续线性二次型最优控制的MATLAB实现

连续线性二次型最优控制的MATLAB 实现 1.绪 论 最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。 本文介绍了最优控制的基本原理,并给定了一个具体的连续线性二次型控制系统,利用MATLAB 软件对其最优控制矩阵进行了求解,通过仿真实验,设计得到最优控制效果比较好,达到了设计的目的。 2.最优控制理论介绍 2.1最优控制问题 设系统状态方程为: ]00)(,),(),()(x t x t t u t x f t x ==? (2—1) 式中,x(t)是n 维状态向量;u(t)是r 维控制向量;n 维向量函数[]t t u t x f ),(),(是x(t)、u(t)和t 的连续函数,且对x(t)与t 连续可微;u(t)在[]f t t ,0上分段连续。所谓最优控制问题,就是要寻求最优控制函数,使得系统状态x(t)从已知初态0 x 转移到要求的终态)(f t x ,在满足如下约束条件下: (1)控制与状态的不等式约束 []0),(),(≥t t u t x g (2—2) (2)终端状态的等式约束 []0),(=f f t t x M (2—3) 使性能指标 [][]?+Θ=f f t t t t t u t x F t t x J f 0 d ),(),(),( (2—4) 达到极值。式中[]t t u t x g ),(),(是m 维连续可微的向量函数,r m ≤;[]f f t t x M ),(是s 维连续可微的向量函数,n s ≤;[]f t t x f ),(Θ和[]t t u t x F ),(),(都是x(t)与t 的连续可

最优控制问题求解方法综述(中英双语)

最优控制问题求解方法综述 Summary of approaches of optimal control problem 摘要:最优控制问题就是依据各种不同的研究对象以及人们预期达到的目的,寻找一个最优控制规律或设计出一个最优控制方案或最优控制系统。解决最优问题的主要方法有变分法、极小值原理和动态规划法,本文重点阐述了各种方法的特点、适应范围、可求解问题的种类和各种方法之间的互相联系。 Abstract:Optimal control problems are to find an optimal control law or design a optimal control program or system according to various kinds of different research objects and the aim people want. The approaches to solve optimal control problems generally contain variational method, the pontryagin minimum principle and dynamic programming. This paper mainly states characteristics, range of application, kinds of the solvable problems of each approach and the association between these three methods. 关键词:最优控制、变分法、极小值、动态规划 Keywords: optimal control , classical variational method , the pontryagin minimum principle , dynamic programming 正文: 最优控制理论是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。 Optimal control theory is a main branch of modern control theory, which focuses on studying basic conditions and synthetic approaches of optimizing systematic performance index. Optimal control theory is a subject studying and solving for the optimal solution from all possible control solutions. What it study can be summarized in this way: given a manipulated dynamic system or motor process, we are supposed to find a optimal control solution from allowable solutions of the same category, making the systematic movement transfer to the appointed state from a original state and getting a optimal performance index at the same time. And this kind of problems exist in technology field or social problems. 为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变

伪谱最优控制方法

伪谱最优控制方法, 又称为正交配置法, 主要利用Lagrange 插值多项式近似离散最优控制问题中的状态变量和控制变量, 将连续型最优控制问题转化成离散形式的非线性规划(NLP) 问题, 然后利用相应的NLP 算法求解. 根据配置点的不同, 伪谱法主要分为Legendre 伪谱法[1]、Gauss 伪谱法[2-3] 和Radau 伪谱法[4-5] 3 种. 为了利用最优控制理论研究串联式混合动力的能量管理策略,需要建立动力总成和各个能量源的数学模型。文中忽略动力系统传动部件的效率损失。串联混合动力驱动系统的能量管理为复杂的非线性系统,其最优控制问题是寻找最优控制序列使得给定的性能指标能够达到最小,同时,也要满足一定的机械和电气约束。本文研究重点在最优控制理论的应用,采用较简单的模型进行混合动力车辆能量管理的研究。整车能量管理问题作为最优控制问题求解,需要形成通用形式表达的最优控制问题。 非线性最优控制问题(Optimal Control Problem, OCP)是指性能指标、状态方程或者约束条件中存在非线性函数项的最优控制问题,通用的表述形式为确定状态x (t),控制u(t) 使性能泛函J 取得最小值:

从数学上看,混合动力汽车能量管理问题就是利用一系列离散控制使一定时间范围内车辆行驶的的性能指标达到最优,故可将能量管理问题抽象为最优控制问题,其核心任务就是获得最优的控制律。 直接法理论 优化问题一般分为参数优化(离散、静态)和过程优化(连续、动态)两大类。最优控制问题本质上是一个连续、动态的过程优化问题,采用动态优化方法求解,比如变分法和极大值原理。但现代计算技术的高速发展使得静态/动态、离散/连续的界限越来越模糊。目前基于求解非线性规划问题的参数优化方法越来越多应用于求解类似于最优控制问题或者动态轨迹优化问题,这就是轨迹优化中的直接法。 直接法通过引入时间离散网格,将控制变量和/或状态变量离散,并将动态约束条件转化为代数约束条件,最终使原来的连续轨迹优化问题转化为一个离散参数优化问题即非线性规划问题(Nonlinear Programing, NLP),结合非线性规划求解器即可获得最优解。优化变量通常包含离散网格点上的控制变量序列和/或状态变量序列。

基于MATLAB的线性二次型最优控制设计

基于M A T L A B的线性二次型最优控制设计 The Standardization Office was revised on the afternoon of December 13, 2020

基于MATLAB 的线性二次型最优控制设计 1. 引 言 最优控制问题就是寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。以状态空间理论为基础的最优控制算法是当前振动控制中采用最为普遍的控制器设计方法。本文所讨论的系统是完全可观测的,所以可以用线性二次型最优控制。 本实验介绍了线性二次型最优控制的基本原理,并给定了一个具体的控制系统,利用MATLAB 软件对其最优控制矩阵进行了求解,通过仿真实验,设计所得到的线性二次型最优控制效果比较好,达到了设计的目的。 2. 最优控制理论介绍 假设线性时不变系统的状态方程模型为 x ‘(t)=Ax(t)+Bu(t) y(t)=Cx(t)+Du(t) 引入一个最优控制的性能指标,即设计一个输入量u,使得 J = 为最小。其中Q 和R 分别为对状态变量和输入变量的加权矩阵; t f 为控制作用的终止时间。矩阵S 对控制系统的终值也给出某种约束,这样的控制问题称为线性二次型(Linear Quadratic ,简称LQ )最优控制问题。 为了求解LQ 问题,我们取Hamilton 函数 其中一种较为简便的解法为: 令λ(t)=P(t)x(t) 而将对λ(t)的求解转化到对函数矩阵P(t)的求解`,特别的,将λ(t)=P(t)x(t)代入上述式子中可得函数矩阵P(t)因满足的微分方程是 1'()()()()()()()()()()(); ().T T P t P t A t A t P t P t B t R t B t P t Q t P tf S -=--+-= (1) 对它的求解可应用成熟的Euler 方法。假定方程(1)的唯一对称半正定解P(t),则LQ 问题的解u(t)由下式给出: '(,(),(),())0.5(()()()()()())()(()()()());LQ ()(()()()());0(()()()()));()()()()(); T T T H t x t u t t x t Q t x t u t R t u t t A t x t B t u t H t Q t x t A t t H Q t x t A t t u x t A t x t B t u t λλδλλδλδλδ=+++=-=-+=+=+并应用变分原理推导出问题解满足的必要条件: ^1()()()()(). LQ u t)=-Kx(t). K T u t R t B t P t x t -=-上述问题的一个特例是动态方程为定常的情形,即 相应的控制向量取为(其中,为才是矩阵,而二次性能指标为

最优控制及应用

最优控制及应用 摘要:最优控制是最优化方法的一个应用。最优控制,又称动态最优化,是现代控制理论的最基本,最核心的部分。它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。 最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。同时本文也介绍了最优控制理论的新进展,即在线优化方法(局部参数最优化和整体最优化设计方法、预测控制中的滚动优化算法、稳态阶梯控制、系统优化和参数估计的集成研究方法)和智能优化方法(神经网络优化方法、遗传算法、模糊优化方法)。 关键词:最优化;最优控制;遗传算法 Optimum Control and Applications Abstract: The optimum control is an application of optimization methods and is also called dynamic optimization, being the most fundamental and the most central part of the modern control theory. Its studied central problem is how to decide the control law on the basis of dynamic characteristics of the controlled system so that the system operates according to technical requirements and a certain indicator, which describes the system performance or quality, is optimized in a certain sense. The four key points of optimum control are the dynamic systems as the controlled plant, initial condition and terminal condition (time and state) and performance index and admissible control. The optimization consists of optimal design, optimal plan, optimal management and optimal control. The optimal control theory is a subject of studying and finding the optimal solution from all possible control plans. The main solutions of solving optimal control problems include the classical variation methods, maximum principles as well as dynamic planning. The optimal control theory has been applied to comprehensive and designed time optimal control systems, minimum fuel control systems, minimum energy-control systems, linear regulators and so on. Besides, the paper also introduces the new development of optimal control theory, that is, on-line optimization methods, (which includes optimal design methods of local parameters and the overall parameters, rolling optimizing methods of predictive control, steady stair-like control and integration methods of system optimization and parameter estimation) and intelligent optimization methods, which covers neural network optimization methods, genetic algorithm and fuzzy optimal methods. Key Words: Optimization, Optimum control, Genetic algorithm

航天器的姿态与轨道最优控制

航天器的姿态与轨道最优控制 董丽娜唐晓华吴朝俊司渭滨(第八小组) (西安交通大学电气工程学院,陕西省,西安市 710049) 【摘要】从航天器的轨道运动学方程出发, 运用线性离散系统最优控制理论, 提出了一种用于航天器轨道维持与轨道机动的最优控制方法, 建立了相关的最优控制模型并给出了求解该模型的算法。仿真计算结果表明, 本文提出的最优控制方法是正确和可行的。 【关键词】航天器轨道保持轨道机动最佳控制 Optimal Control of Spacecraft State and Orbit Dong LiNa,Tang XiaoHua,Wu ChaoJun,Si WeiBin (EE School of Xi’an Jiaotong university,Xi’an, Shannxi province, 710049)【Abstract】This paper provides a new optimal control method for orbital maintenance and maneuver ,which begins with the kinetics equation of spacecraft and is based on the linear discrete optimal control theory , establishes the relative optimal control model and gives its solution. The simulation results show that the given optimal control method in this paper is correct and feasible. 【Key word】Spacecraft ,Orbital keeping ,Orbital maneuver ,Optimal control 1 引言 一般地,常见的航天器有:运载火箭、人造卫星、载人飞船、宇宙飞船、空间站等。宇宙飞船也称太空飞船,它和航天飞机都是往返于地球和在轨道上运行的航天器(如空间站) 。

最优控制理论的发展与展望

最优控制理论的发展与展望 摘要:回顾最优控制的基本思想、常用方法及其应用,并对其今后的发展方向和面临的困难提出一些看法。 关键词:最优控制:最优化技术;遗传算法;预测控制 Abstract: The basic idea, method and application of optimal control are reviewed, and the direction of its development and possible difficulties are predicted. Keywords: optimal control;optimal Technology;Genetic Algorithm;Predictive Control 1引言 最优控制理论是本世纪60年代迅速发展的现代控制理论中的主要内容之一,它研究和解决如何从一切可能的方案中寻找一个最优的方案。1948年维纳等人发表《控制论一关于动物和机器中控制与通信的科学》论文,引进信息、反馈和控制等概念,为最优控制理论诞生和发展奠定了基础。我国著名学者钱学森在1954年编著的《工程控制论》直接促进了最优控制理论的发展与形成。在最优控制理论的形成和发展过程中,具有开创性的研究成果和开辟求解最优控制问题新途径的工作,主要是美国著名学者贝尔曼的“动态规划”和原苏联著名学者庞特里亚金的“最大值原理”。此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,还有库恩和图克共同推导的关于不等式约束条件下的非线性最优必要条件(库恩一图克定理)及卡尔曼的关于随机控制系统最优滤波器等口 2最优控制理论的几个重要内容 2.1最优控制理论的基本思想 最优控制理论是现代控制理论中的核心内容之一。其主要实质是:在满足一定约束条件下,寻求最优控制规律(或控制策略),使得系统在规定的性能指标(目标函数)下具有最优值,即寻找一个容许的控制规律使动态系统(受控对象、从初始状态转移到某种要求的终端状态,保证所规足的性能指标达到最小(大)值。 2.2最优控制问题的常用方法 ·变分法 ·最小值原理 ·动态规划 2.3最优化技术概述及基本方法 一般最优化方法解决实际工程问题可分为三步: ①据所提出的最优化问题,建立数学模型,确定变量,列出约束条件和目标函数;②对所建立的数学模型进行具体分析和研究,选择最优化求解方法;③根据最

相关文档
最新文档