2018-2019年山东省烟台市海阳市八年级(下)期中数学试卷(五四学制)解析版

合集下载

2019学年山东省八年级下学期期中考试数学试卷【含答案及解析】

2019学年山东省八年级下学期期中考试数学试卷【含答案及解析】

2019学年山东省八年级下学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 二次根式有意义,则的取值范围是 ( )A. B. C. D.2. 下列根式中是最简二次根式的是()A. B. C. D.3. 下列计算正确的是()A. B. C. D.4. 如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. B. 4 C. D.5. 如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )A. 60海里B. 45海里C. 20海里D. 30海里6. 下列说法错误的是( )A. 对角线互相平分的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 一组对边相等,另一组对边平行的四边形是平行四边形7. 已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是( )A. OE=DCB. OA=OCC. ∠BOE=∠OBAD. ∠OBE=∠OCE8. 如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A. 13B. 17C. 20D. 269. 平面直角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C (-m,-n),则点D的坐标是()A. (-2 ,l )B. (-2,-l )C. (-1,-2 ) D .(-1,2 )10. .如图,矩形ABCD的对角线AC与BD相交于点Q,CE∥BD,DE∥AC,AD=,DE=2,则四边形OCED的面积为()A. B. 4 C. D. 811. 如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A. 1B. 2C. 3D. 412. 在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A. 10B. 8C. 6或10D. 8或1013. 菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A. 2B.C. 6D. 814. 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A. (1,﹣1)B. (﹣1,﹣1)C. (,0)D. (0,)二、填空题15. 直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为___________.16. 计算的结果是____________.17. 代数式有意义,则字母x的取值范围是________.18. 如图在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,请你添加一个条件_________________,使四边形BECF是正方形.19. 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为______________.三、解答题20. 计算:(1)(2).21. 观察下列等式:第1个等式:==;第2个等式:==;第3个等式:==;第4个等式:==;……按上述规律,回答以下问题:(1)请写出第个等式:=________;(2)求的值.22. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.23. 如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.24. 定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.请解决下列问题:(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;(2)如图2,若点F、M、N、G分别是AB、AD、AE、AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点.25. 阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题时,有如下思路:连接AC.结合小敏的思路作答:(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由,参考小敏思考问题的方法解决一下问题;(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。

烟台市八年级下学期数学期中考试试卷

烟台市八年级下学期数学期中考试试卷

烟台市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共28分)1. (2分) (2019八下·吴兴期末) 若式子有意义,则x的取值范围是()A . x>0B . x>1C . x≥1D . x≤12. (2分) (2017八上·衡阳期末) 将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是().A . 8、15、17B . 7、24、25C . 3、4、5D . 2、3、 43. (2分)如图,AC是菱形ABCD的对角线,AE=EF=FC,则S△BMN :S菱形ABCD的值是()A .B .C .D .4. (2分)二次根式、、、、、中,最简二次根式有()个.A . 1个B . 2个C . 3个5. (2分)(2017·姑苏模拟) 如图,在矩形ABCD中,AB<AD,E为AD边上一点,且AE= AB,连结BE,将△ABE沿BE翻折,若点A恰好落在CE上点F处,则∠CBF的余弦值为()A .B .C .D .6. (2分) (2018九上·定安期末) 下列计算错误的是()A .B .C .D .7. (2分)菱形的周长为20cm,两邻角的比为1:2,则较长的对角线长为().A . 4.5cmB . 4cmC . cmD . cm8. (2分) (2019八下·瑞安期中) 如图, ABCD中,CE⊥AB,E为垂足,如果∠D=65°,则∠BCE等于()B . 30°C . 35°D . 55°9. (2分)(2019·禅城模拟) 下列叙述,错误的是()A . 对角线互相垂直且相等的平行四边形是正方形B . 对角线互相垂直平分的四边形是菱形C . 对角线互相平分的四边形是平行四边形D . 对角线相等的四边形是矩形10. (2分)如果a=2+,b=,那么()A . a>bB . a<bC . a=bD . a=11. (2分) (2019八下·嘉陵期中) 若一个直角三角形两边的长分别为6和8,则第三边的长为()A . 10B .C . 10或D . 10或12. (2分) (2019八下·高阳期中) 如图,平行四边形ABCD的周长为24cm , AC与BD相交于点O ,OE⊥AC 交AD于E ,则△DCE的周长为()A . 4cmB . 16cmC . 12cmD . 24cm13. (2分)(2017·平谷模拟) 把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画A . 1B .C .D . 214. (2分)如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A . 23B . 24C . 25D . 无答案二、填空题 (共5题;共17分)15. (2分) (2017七下·承德期末) 比较大小:3________ (填“>”、“<”或“=”).16. (1分) (2020七下·新乡期中) 将命题“同角的余角相等”,改写成“如果…,那么…”的形式________.17. (2分)如图,平行四边形ABCD中,∠DAB=70°,将平行四边形ABCD变化为一个矩形(图中的虚线部分),在此过程中,分析每条边的运动.AB:________;AD:________;BC:________;CD:________.18. (1分)(2017·市北区模拟) 如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是________.19. (11分)化简题.(1)(2)﹣.三、解答题 (共5题;共21分)20. (2分) (2016九上·淅川期中) 计算:4sin60°+ ÷ ﹣.21. (5分)(2017·绿园模拟) 如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC 的延长线于点E.若点F是AE的中点,求证:BF⊥AF.22. (2分) (2017九下·江阴期中) 已知:如图,▱ABCD中,CD=CB=2,∠C=60°,点E是CD边上自D向C 的动点(点E运动到点C停止运动),连结AE,以AE为一边作等边△AEP,连结DP.(1)求证:△ABE≌△ADP;(2)点P随点E的运动而运动,请直接写出点P的运动路径长________.23. (10分) (2017九上·黑龙江开学考) 如图,每个小正方形的边长都是1的方格纸中,有线段AB和线段CD,点A、B、C、D的端点都在小正方形的顶点上.(1)①在方格纸中画出一个以线段AB为一边的菱形ABEF,所画的菱形的各顶点必须在小正方形的顶点上,并且其面积为20.②在方格纸中以CD为底边画出等腰三角形CDK,点K在小正方形的顶点上,且△CDK的面积为5.(2)在(1)的条件下,连接BK,请直接写出线段BK的长.24. (2分)(2019·丹阳模拟) 已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,∠BCD=120°,求四边形AODE的面积.参考答案一、单选题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共5题;共17分)15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、。

2018-2019学年八年级数学下册期中考试试卷及答案

2018-2019学年八年级数学下册期中考试试卷及答案

2019年春学期期中考试八年级数学试卷 第 1 页 共 3 页密 封 线学校 班级 姓名 学号2019年春学期期中考试试卷八年级数学(满分:150分 时间:120分钟)一、相信你的选择。

(每小题3分,共30分)1.是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是( )2.已知x y >,则下列不等式不成立的是 ( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+3.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( ) A .60° B .90° C .120° D .150°4.一份工作,甲单独做需a 天完成,乙单独做需b 天完成,则甲乙两人合作一天的工作量是( )A a+b;B b a +1;C 2b a +;D ba 11+5.如图,数轴上所表示关于x 的不等式组的解集是( )A .x ≥2B .x >2C .x >﹣1D .﹣1<x ≤26.下列多项式中不能用公式分解的是( )A. a 2+a+41B.-a 2+b 2-2abC.-a 2+25b 2D.-4+b 27.如果把分式yx xy+中的x 和y 都扩大2倍,即分式的值 ( )A 扩大4倍;B 扩大2倍;C 不变;D 缩小2倍8. 下列分解因式正确的是( )A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)29.分式x--11可变形为( )A .﹣B .C .﹣D .10.直线l 1:y=k 1x +b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x <k 1x +b 的解集为( ) A .x <﹣1 B .x >﹣1 C .x >2D .x <2二、耐心填一填,你能行!(每题4分,共32分)11.不等式930x ->的正整数解是 .12.若分式1x -1有意义,则x 的取值范围是_______________.13.若222121,2y xy x y x ++=+则代数式的值是__________.14.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将ΔBCE 绕点C 顺时针方向旋转90°得到ΔDCF ,连接EF ,若∠BEC=60°,则∠EDF 的度数为 .15.已知(a -2)x |a|-1+3>5是关于x 的一元一次不等式,则a的值为____.16.若一个正方形的面积是9m 2+24mn+16n 2,则这个正方形的边长是 . 17.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为_________.18.已知不等式组⎩⎨⎧≥≥-ax x 112的解集是错误!未找到引用源。

2019学年山东省(五四学制)八年级下学期期中考试数学试卷【含答案及解析】

2019学年山东省(五四学制)八年级下学期期中考试数学试卷【含答案及解析】

2019学年山东省(五四学制)八年级下学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 在直角坐标系中,点M,N在同一个正比例函数图象上的是()A. M(2,﹣3),N(﹣4,6)B. M(﹣2,3),N(4,6)C. M(﹣2,﹣3),N(4,﹣6)D. M(2,3),N(﹣4,6)2. 一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A. ﹣2或4B. 2或﹣4C. 4或﹣6D. ﹣4或6二、选择题3. 如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣34. 一元二次方程x2﹣6x﹣5=0配方组可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=45. 关于x的一元二次方程kx2+3x-1=0有实数根,则k的取值范围是()A、k≤B、k≥且k≠0C、k≥D、k>且k≠06. 三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.147. 有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45C.x(x﹣1)=45 D.x(x+1)=45三、单选题8. 抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A. 0B. 1C. 2D. 3四、选择题9. 如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2 B.12cm2 C.9cm2 D.3cm2五、单选题10. 如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是().A. 5个B. 4个C. 3个D. 2个六、填空题11. 若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第象限.12. 关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是______.13. 有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为 .14. 抛物线y=(x﹣1)2﹣3的对称轴是_____________七、判断题15. 如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为_________.八、填空题16. 已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是_____________17. 若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.18. 在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l 上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是.九、解答题19. (1)解方程:3x(x-2)=4-2x. (2)用配方法解方程:20. 已知二次函数图像的顶点坐标为(1,—1),且经过原点(0,0),求该函数的解析式。

2018-2019学年山东省烟台市海阳市八年级下学期期中考试数学试卷(五四学制)解析版

2018-2019学年山东省烟台市海阳市八年级下学期期中考试数学试卷(五四学制)解析版

2018-2019学年八年级下学期期中考试数学试卷一、选择题(每小题只有一个正确答案,请将正确答案的字母代号填在下列表格内)1.(3分)若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是()A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠0 2.(3分)若+x=5,则下列x的取值不可能是()A.6 B.5 C.4 D.33.(3分)若关于x的二次三项式9x2+2(m﹣3)x+16是完全平方式,则m的值为()A.15 B.9 C.﹣9或15 D.9或154.(3分)若两个最简二次根式和是同类二次根式,则n的值是()A.﹣1 B.4或﹣1 C.1或﹣4 D.45.(3分)把a根号外的因式移入根号内,运算结果是()A.B.C.﹣D.﹣6.(3分)若一组数据a1,a2,……,a n的平均数为10,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的平均数和方差分别是()A.13,4 B.23,8 C.23,16 D.23,197.(3分)如图,将△ABC绕点B(0,1)旋转180°得到△A1BC1,设点C的坐标为(m,n),则点C1的坐标为()A.(﹣m,﹣n﹣2)B.(﹣m,﹣n﹣1)C.(﹣m,﹣n+1)D.(﹣m,﹣n+2)8.(3分)若x1是方程ax2+2x+c=0(a≠0)的一个根,设M=(ax1+1)2,N=2﹣ac,则M 与N的大小关系为()A.M>N B.M<N C.M=N D.不能确定二、填空题(请把正确答案填在题中的横线上)9.(3分)若关于x的一元二次方程x2﹣mx+n=0的两根为﹣1和3,则将x2﹣mx+n进行因式分解的结果是.10.(3分)若关于x的方程无解,则m的值为.11.(3分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,若AB=6,AC=10,则MN的长是.12.(3分)若m满足等式+|2019﹣m|=m,则m﹣20192的值为.13.(3分)如图,顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1四边的中点得四边形A2B2C2D2,…,按此规律得到四边形A n B n∁n D n,若矩形ABCD 的面积为16,那么四边形A n B n∁n D n的面积为.14.(3分)如图,在菱形ABCD中,AB=2,DE⊥BC于点E,F是CD的中点,连接AF,EF.若∠AFE=90°,则CE的长为.三、解答题(请写出完整的解题步骤)15.先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.16.关于x的一元二次方程2x2﹣mx+n=0.(1)当m﹣n=4时,请判断方程根的情况;(2)若方程有两个相等的实数根,当n=2时,求此时方程的根.17.如图,在▱ABCD中,点E是AD的中点,连接CE,点G为AB上一点,∠BGC=2∠DCE,在CG上取一点F,使CF=CD,连接EF.请判断线段AG与GF的大小关系,并证明你的结论.18.关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3)的两个实数根分别为x1,x2,且x1<x2(1)求证:方程有一根为定值;(2)若9x1﹣3x2≥4,求m的取值范围.19.阅读下列解题过程例:若代数式的值是2,求a的取值范围.解:原式=|a﹣1|+|a﹣3|,当a<1时,原式=(1﹣a)+(3﹣a)=4﹣2a=2,解得a=1(舍去);当1≤a≤3时,原式=(a﹣1)+(3﹣a)=2=2,符合条件;当a>3时,原式=(a﹣1)+(a﹣3)=2a﹣4=2,解得a=3(舍去)所以,a的取值范围是1≤a≤3上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题(1)当2≤a≤5时,化简:=;(2)若等式=4成立,则a的取值范围是;(3)若=8,求a的取值.20.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使C点落在边AD上的E 处,折痕为MN,过点E作EF∥CD交MN于F,连接CF(1)求证:四边形CFEN为菱形;(2)当点E在AD边上移动时,折痕的端点M、N也随之移动,若限定M、N分别在边BC、CD上移动,求出点E在边AD上移动的最大距离.21.(1)探究发现如图1,正方形ABCD中,点E,F分别在AB,BC上,∠EDF=45°,通过探究可以发现线段EF,AE和CF之间存在一定的数量关系:.(2)拓展延伸如图2,正方形ABCD中,点E,F分别在BA,CB的延长线上,∠EDF=45°①线段EF,AE和CF之间有怎样的数量关系?写出猜想,并加以证明;②若AB=4,EF=6,求△DEF的面积.参考答案与试题解析一、选择题(每小题只有一个正确答案,请将正确答案的字母代号填在下列表格内)1.(3分)若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是()A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠0 【分析】讨论:当k=0时,方程为一元一次方程,有一个实数解;当k≠0时,根据判别式的意义得到△=(﹣4)2﹣4k×(﹣2)≥0,解得k≥﹣2且k≠0,然后综合两种情况得到k的范围.【解答】解:当k=0时,方程变形为﹣4x﹣2=0,解得x=﹣;当k≠0时,△=(﹣4)2﹣4k×(﹣2)≥0,解得k≥﹣2且k≠0,综上所述,k的范围为k≥﹣2.故选:B.2.(3分)若+x=5,则下列x的取值不可能是()A.6 B.5 C.4 D.3【分析】根据二次根式的性质即可求出答案.【解答】解:由题意可知:=5﹣x,∴5﹣x≥0,∴x≤5,故选:A.3.(3分)若关于x的二次三项式9x2+2(m﹣3)x+16是完全平方式,则m的值为()A.15 B.9 C.﹣9或15 D.9或15【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵关于x的二次三项式9x2+2(m﹣3)x+16是完全平方式,∴m﹣3=±12,解得:m=15或﹣9,故选:C.4.(3分)若两个最简二次根式和是同类二次根式,则n的值是()A.﹣1 B.4或﹣1 C.1或﹣4 D.4【分析】根据最简二次根式以及同类二次根式即可求出答案.【解答】解:由题意可知:n2﹣2n=n+4,∴解得:n=4或n=﹣1,当n=4时,n+4=8>0,此时不是最简二次根式,不符合题意,当n=﹣1时,n+4=3>0,综上所述,n=﹣1故选:A.5.(3分)把a根号外的因式移入根号内,运算结果是()A.B.C.﹣D.﹣【分析】根据二次根式的性质,可得答案.【解答】解:a根号外的因式移到根号内,化简的结果是﹣,故选:D.6.(3分)若一组数据a1,a2,……,a n的平均数为10,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的平均数和方差分别是()A.13,4 B.23,8 C.23,16 D.23,19【分析】根据平均数的概念、方差的性质解答.【解答】解:数据a1,a2,……,a n的平均数为10,那么数据2a1+3,2a2+3,…,2a n+3的平均数为2×10+3=23,数据a1,a2,……,a n,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的方差为4×22=16,故选:C.7.(3分)如图,将△ABC绕点B(0,1)旋转180°得到△A1BC1,设点C的坐标为(m,n),则点C1的坐标为()A.(﹣m,﹣n﹣2)B.(﹣m,﹣n﹣1)C.(﹣m,﹣n+1)D.(﹣m,﹣n+2)【分析】利用中点坐标公式计算即可.【解答】解:设C1(x,y),由题意:BC=BC1,∴=0,=1,∴x=﹣m,y=2﹣n,∴C1(﹣m,2﹣n),故选:D.8.(3分)若x1是方程ax2+2x+c=0(a≠0)的一个根,设M=(ax1+1)2,N=2﹣ac,则M 与N的大小关系为()A.M>N B.M<N C.M=N D.不能确定【分析】把x1代入方程ax2+2x+c=0得ax12+2x1=﹣c,作差法比较可得.【解答】解:∵x1是方程ax2+2x+c=0(a≠0)的一个根,∴ax12+2x1+c=0,即ax12+2x1=﹣c,则M﹣N=(ax1+1)2﹣(2﹣ac)=a2x12+2ax1+1﹣2+ac=a(ax12+2x1)+ac﹣1=﹣ac+ac﹣1=﹣1,∵﹣1<0,∴M﹣N<0,∴M<N.故选:B.二、填空题(请把正确答案填在题中的横线上)9.(3分)若关于x的一元二次方程x2﹣mx+n=0的两根为﹣1和3,则将x2﹣mx+n进行因式分解的结果是(x+1)(x﹣3).【分析】根据题意方程的两根即可x2﹣mx+n进行因式分解.【解答】解:由于关于x的一元二次方程x2﹣mx+n=0的两根为﹣1和3,∴x2﹣mx+n=(x+1)(x﹣3)=0,即x2﹣mx+n=(x+1)(x﹣3),故答案为:(x+1)(x﹣3)10.(3分)若关于x的方程无解,则m的值为4,5,6 .【分析】分式方程去分母转化为整式方程,根据分式方程无解确定出m的值即可.【解答】解:去分母得:mx﹣3x+3=2x+2,整理得:(m﹣5)x=﹣1,当m﹣5=0,即m=5时,整式方程无解;当m﹣5≠0,即m≠5,解得:x=﹣,要使分式方程无解,则有x=1或x=﹣1,即﹣=1或﹣=﹣1,解得:m=4或m=6,综上,m的值为4,5,6.故答案为:4,5,611.(3分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,若AB=6,AC=10,则MN的长是 2 .【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质得到AD=AB=6,BN=ND,求出DC,根据三角形中位线定理解答.【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND(ASA)∴AD=AB=6,BN=ND,∴DC=AC﹣AD=4,∵BN=ND,BM=MC,∴MN=DC=2,故答案为:2.12.(3分)若m满足等式+|2019﹣m|=m,则m﹣20192的值为2020 .【分析】根据二次根式有意义的条件可得m≥2020,再利用绝对值的性质计算+|2019﹣m|=m即可.【解答】解:∵m﹣2020≥0,∴m≥2020,∴+|2019﹣m|=m,+m﹣2019=m,=2019,∴m﹣2020=20192,m﹣20192=2020,故答案为:2020.13.(3分)如图,顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1四边的中点得四边形A2B2C2D2,…,按此规律得到四边形A n B n∁n D n,若矩形ABCD 的面积为16,那么四边形A n B n∁n D n的面积为.【分析】根据矩形A1B1C1D1面积、四边形A2B2C2D2的面积、四边形A3B3C3D3的面积,即可发现新四边形与原四边形的面积的一半,找到规律即可解题.【解答】解:顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,则矩形ABCD四边的面积是四边形A1B1C1D1面积的一半,顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为矩形A1B1C1D1面积的一半,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,故新四边形与原四边形的面积的一半,则四边形A n B n∁n D n面积为矩形A1B1C1D1面积的,∴四边形A n B n∁n D n面积=×16=,故答案为:.14.(3分)如图,在菱形ABCD中,AB=2,DE⊥BC于点E,F是CD的中点,连接AF,EF.若∠AFE=90°,则CE的长为﹣1 .【分析】延长EF交AD的延长线于G,由菱形的性质得出AD=CD=AB=2,AD∥BC,证明△DFG≌△CFE(ASA),得出DG=CE,GF=EF,由线段垂直平分线的性质得出AE=AG,设CE=DG=x,则AE=AG=2+x,由直角三角形斜边上的中线性质得出GF=EF=CD=1,得出EG=2EF=2,在Rt△ADE和Rt△GDE中,由勾股定理得出方程,解方程即可.【解答】解:延长EF交AD的延长线于G,如图所示:∵四边形ABCD是菱形,∴AD=CD=AB=2,AD∥BC,∴∠GDF=∠C,∵F是CD的中点,∴DF=CF,在△DFG和△CFE中,,∴△DFG≌△CFE(ASA),∴DG=CE,GF=EF,∵∠AFE=90°,∴AF⊥EF,∴AE=AG,设CE=DG=x,则AE=AG=2+x,∵AG∥BC,DE⊥BC,F是CD的中点,∴DE⊥AG,GF=EF=CD=1,∴EG=2EF=2,在Rt△ADE和Rt△GDE中,由勾股定理得:DE2=AE2﹣AD2=EG2﹣DG2,即(2+x)2﹣22=22﹣x2,解得:x=﹣1,或x=﹣﹣1(舍去),∴CE=﹣1;故答案为:﹣1.三、解答题(请写出完整的解题步骤)15.先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据题目所给条件及分式有意义的条件得出x的值,代入计算可得.【解答】解:原式=÷[﹣]=÷=•=﹣,∵﹣2<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=2,当x=2时,原式=﹣.16.关于x的一元二次方程2x2﹣mx+n=0.(1)当m﹣n=4时,请判断方程根的情况;(2)若方程有两个相等的实数根,当n=2时,求此时方程的根.【分析】(1)先计算判别式得到△=(﹣m)2﹣4×2×n,再把n=m﹣4代入得到△=(m ﹣4)2+16,从而得到△>0,然后判断方程根的情况;(2)根据判别式的意义得△=(﹣m)2﹣4×2×n=0,加上n=2时,于是可求出m=4或m=﹣4,当m=4时,方程变形为2x2﹣4x+2=0,当m=﹣4时,方程变形为2x2+4x+2=0,然后分别解方程即可.【解答】解:(1)△=(﹣m)2﹣4×2×n,∵m﹣n=4,∴n=m﹣4,∴△=m2﹣8(m﹣4)=m2﹣8m+32=(m﹣4)2+16,∵(m﹣4)2≥0,∴△>0,∴方程有两个不相等的实数根;(2)根据题意得△=(﹣m)2﹣4×2×n=0,当n=2时,m2﹣16=0,解得m=4或m=﹣4,当m=4时,方程变形为2x2﹣4x+2=0,解得x1=x2=1;当m=﹣4时,方程变形为2x2+4x+2=0,解得x1=x2=﹣1.17.如图,在▱ABCD中,点E是AD的中点,连接CE,点G为AB上一点,∠BGC=2∠DCE,在CG上取一点F,使CF=CD,连接EF.请判断线段AG与GF的大小关系,并证明你的结论.【分析】连接EG,作EM⊥AB于M,EN⊥CG于N,证明△CDE≌△CFE(SAS),得出DE=FE,∠D=∠CFE,再证明△AEM≌△FEN(AAS),得出EM=EN,证出∠AGE=∠FGE,然后证明△AEG≌△FEG(AAS),即可得出AG=GF.【解答】解:AG=GF,理由如下:连接EG,作EM⊥AB于M,EN⊥CG于N,如图所示:则∠M=∠ENF=90°,∵四边形ABCD是平行四边形,∴∠B=∠D,AD∥BC,AB∥CD,∴∠BGC=∠DCG,∠BAD+∠B=180°,∵∠BGC=2∠DCE,∴∠DCE=∠FCE,在△CDE和△CFE中,,∴△CDE≌△CFE(SAS),∴DE=FE,∠D=∠CFE,∵点E是AD的中点,∴AE=DE,∴AE=FE,∵∠CFE+∠EFG=180°,∴∠BAD=∠EFG,∴∠EAM=∠EFN,在△AEM和△FEN中,,∴△AEM≌△FEN(AAS),∴EM=EN,∴∠AGE=∠FGE,在△AEG和△FEG中,,∴△AEG≌△FEG(AAS),∴AG=GF.18.关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3)的两个实数根分别为x1,x2,且x1<x2(1)求证:方程有一根为定值;(2)若9x1﹣3x2≥4,求m的取值范围.【分析】(1)先计算判别式的值得到△=(m+2)2,由m>3,得到△>0,根据判别式的意义得到方程有两个不相等的实数根,再利用求根公式得到x=,可得到方程有一个根为1,于是得到方程有一根为定值.(2)解方程得到x1=1,x2=2﹣,由9x1﹣3x2≥4得到不等式9﹣3(2﹣)≥4,然后解不等式即可求解.【解答】(1)证明:△=[﹣3(m﹣1)]2﹣4m(2m﹣3)=m2﹣6m+9=(m﹣3)2,∵m>3,∴(m﹣3)2>0,即△>0,∴方程有两个不相等的实数根,∵x=,∴方程有一个根为1,∴方程有一根为定值.(2)解:∵x=,∴x1=1,x2=2﹣,∵9x1﹣3x2≥4,∴9﹣3(2﹣)≥4,解得m≤9.故m的取值范围是3<m≤9.19.阅读下列解题过程例:若代数式的值是2,求a的取值范围.解:原式=|a﹣1|+|a﹣3|,当a<1时,原式=(1﹣a)+(3﹣a)=4﹣2a=2,解得a=1(舍去);当1≤a≤3时,原式=(a﹣1)+(3﹣a)=2=2,符合条件;当a>3时,原式=(a﹣1)+(a﹣3)=2a﹣4=2,解得a=3(舍去)所以,a的取值范围是1≤a≤3上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题(1)当2≤a≤5时,化简:= 3 ;(2)若等式=4成立,则a的取值范围是3≤a≤7 ;(3)若=8,求a的取值.【分析】(1)根据二次根式的性质即可求出答案;(2)先将等式的左边进行化简,然后分情况讨论即可求出答案;(3)先将等式的左边进行化简,然后分情况讨论即可求出答案;【解答】解:(1)∵2≤a≤5,∴a﹣2≥0,a﹣5≤0,∴原式=|a﹣2|+|a﹣5|=a﹣2﹣(a﹣5)=3;(2)由题意可知:|3﹣a+|+|a﹣7|=4,当a≤3时,∴3﹣a≥0,a﹣7<0,∴原方程化为:3﹣a﹣(a﹣7)=4,∴a=3,符合题意;当3<a<7时,∴3﹣a<0,a﹣7<0,∴﹣(3﹣a)﹣(a﹣7)=4,∴4=4,故3<a<7符合题意;当a≥7时,∴3﹣a<0,a﹣7≥0,∴﹣(3﹣a)+(a﹣7)=4,∴a=7,符合题意;综上所述,3≤a≤7;(3)原方程可化为:|a+1|+|a﹣5|=8,当a≤﹣1时,∴a+1≤0,a﹣5<0,∴原方程化为:﹣a﹣1﹣(a﹣5)=8,∴a=﹣2,符合题意;当﹣1<a<5时,∴a+1>0,a﹣5<0,∴(a+1)﹣(a﹣5)=8,∴此方程无解,故﹣1<a<5不符合题意;当a≥5时,∴a+1>0,a+5≥0,∴a+1+a﹣5=8,∴a=6,符合题意;综上所述,a=﹣2或a=6;故答案为:(1)3;(2)3≤a≤720.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使C点落在边AD上的E 处,折痕为MN,过点E作EF∥CD交MN于F,连接CF(1)求证:四边形CFEN为菱形;(2)当点E在AD边上移动时,折痕的端点M、N也随之移动,若限定M、N分别在边BC、CD上移动,求出点E在边AD上移动的最大距离.【分析】(1)由折叠得到对应角相等,对应边相等,再根据EF∥CD,可以证出CF=CN,进而证出四条边相等,证明出是菱形,(2)从两个特殊的情况,分别求出DE的长,进而求出点D在AD上移动的最大距离.【解答】解:(1)由折叠得:FC=FE,NC=NE,∠CFN=∠EFN,∠CNF=∠ENF,∵EF∥CD,∴∠EFN=∠CNF,∴∠CFN=∠CNF,∴CF=CN,∴CF=CN=NE=EF,∴四边形CFEN为菱形,(2)①当点N与点D重合时,如图1所示:由折叠可知,CDEM是正方形,此时DE=3cm,②当点M与点B重合时,如图2所示:由折叠得,BC=BE=5,在Rt△ABE中,由勾股定理得,AE=4cm,DE=5﹣4=1cm,因此,点E在边AD上移动的最大距离为2cm.21.(1)探究发现如图1,正方形ABCD中,点E,F分别在AB,BC上,∠EDF=45°,通过探究可以发现线段EF,AE和CF之间存在一定的数量关系:EF=AE+CF.(2)拓展延伸如图2,正方形ABCD中,点E,F分别在BA,CB的延长线上,∠EDF=45°①线段EF,AE和CF之间有怎样的数量关系?写出猜想,并加以证明;②若AB=4,EF=6,求△DEF的面积.【分析】(1)延长BA,使AM=CF,由题意可证△AMD≌△CFD,可得MD=FD,∠ADM=∠CDF,即可得∠MDE=∠EDF=45°,即可证△MDE≌△FDE,可得EF=EM,则可得EF=AE+CF;(2)①在CB上截取CM=AE,由题意可证△ADE≌△CDM,可得DM=DE,∠ADE=∠CDM,即可得∠EDF=∠MDF=45°,则可证△MDF≌△EDF,可得EF=FM,则可得CF=EF+AE.②由△DEF≌△DMF,可得S△DEF=S△DFM=•MF•DC=×EF•DC.【解答】解:(1)EF=AE+CF理由如下:∵四边形ABCD是正方形∴AB=BC=CD=AD,∠B=∠C=∠ADC=∠DAB=90°如图1:延长BA,使AM=CF,且AD=CD,∠C=∠MAD ∴△AMD≌△CFD(SAS)∴∠MDA=∠CDF,MD=DF∵∠EDF=45°∴∠ADE+∠FDC=45°∴∠ADM+∠ADE=45°=∠MDE∴∠MDE=∠EDF,且MD=DF,DE=DE∴△EDF≌EDM(SAS)∴EF=EM∵EM=AM+AE=AE+CF∴EF=AE+CF.故答案为EF=AE+CF.(2)①结论:CF=EF+AE.理由:如图2:在CB上截取CM=AE,∵∠DAE=∠DCM=90°,AE=CM,AD=CD∴△ADE≌△CDM(SAS)∴DM=DE,∠ADE=∠MDC,∵∠ADM+∠MDC=90°∴∠ADE+∠ADM=90°,即∠EDM=90°∵∠EDF=45°∴∠EDF=∠MDF=45°,且MD=DE,DF=DF,∴△MDF≌△EDF(SAS)∴EF=MF∵CF=FM+CM,∴CF=AE+EF.②∵△DEF≌△DMF,∴S△DEF=S△DFM=•MF•DC=×EF•DC=×6×4=12.。

2018-2019学年度新人教版八年级(下)期中考试数学试卷(含答案解析)

2018-2019学年度新人教版八年级(下)期中考试数学试卷(含答案解析)

2018-2019学年度八年级(下)期中考试数学试卷一、选择题(本大题共12小题,共36.0分)1.下列说法正确的是()A. 任何数都有两个平方根B. 若a2=b2,则a=bC. √4=±2D. −8的立方根是−22.下列二次根式中,能与√3合并的是()A. √24B. √12C. √32D. √183.数轴上点A表示的数为-√105,点B表示的数为√77,则A、B之间表示整数的点有()A. 21个B. 20个C. 19个D. 18个4.不等式9-3x<x-3的解集在数轴上表示正确的是()A.B.C.D.5.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 806.等式√x−1•√x+1=√x2−1成立的条件是()A. x>1B. x<−1C. x≥1D. x≤−17.下列各式计算正确的是()A. √102−82=√102−√82=10−8=2B. √(−4)×(−9)=√−4×√−9=(−2)×(−3)=6C. √14+19=√14+√19=12+13=56D. −√1916=−√2516=−458.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是√3和-1,则点C所对应的实数是()A. 1+√3B. 2+√3C. 2√3−1D. 2√3+19.在△ABC中,BC=8cm,AC=5cm,若△ABC的周长为xcm,则x应满足()A. 15<x<24B. 18<x<21C. 10<x<26D. 16<x<2610.如图,每个小正方形的边长都为1,A、B、C是小正方形各顶点,则∠ABC的度数为()A. 90∘B. 60∘C. 45∘D.30∘11. 已知关于x 的不等式组的{2x −a <2b +1x−a≥b 解集为3≤x <5,则ba 的值为( )A. −2B. −12C. −4D. −1412. 如图,ABCD 是一张矩形纸片,AB =3cm ,BC =4cm ,将纸片沿EF 折叠,点B 恰与点D 重合,则折痕EF 的长等于( )A. 3.25cmB. 3.5cmC. 3.6cmD. 3.75cm二、填空题(本大题共6小题,共18.0分) 13. 已知533=148877,那么5.33等于______.14. 已知x -2=√5,则代数式(x +2)2-8(x +2)+16的值等于______.15. 设√10的整数部分为a ,小数部分为b ,则b (√10+a )的值为______.16. 已知关于x 的不等式组{5−2x >1x−a≥0只有四个整数解,则实数a 的取值范是______. 17. 已知实数a 、b 、c 在数轴上的位置如图所示,化简代数式|a |-√(a +c)2+√(c −a)2-√−b 33的结果等于______.18. 观察下列式子:当n =2时,a =2×2=4,b =22-1=3,c =22+1=5 n =3时,a =2×3=6,b =32-1=8,c =32+1=10 n =4时,a =2×4=8,b =42-1=15,c =42+1=17…根据上述发现的规律,用含n (n ≥2的整数)的代数式表示上述特点的勾股数a =______,b =______,c =______.三、计算题(本大题共1小题,共12.0分)19. 实验中学计划从人民商场购买A 、B 两种型号的小黑板,经洽谈,购买一块A 型小黑板比购买一块B 型小黑板多用20元,且购买5块A 型小黑板和4块B 型小黑板共需820元.(1)求购买一块A 型小黑板、一块B 型小黑板各需多少元?(2)根据实验中学实际情况,需从人民商场购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号的小黑板总费用不超过5240元,并且购买A 型小黑板的数量至少占总数量的13,请你通过计算,求出购买A 、B 两种型号的小黑板有哪几种方案?四、解答题(本大题共5小题,共54.0分)20. (1)已知a 、b 为实数,且√1+a +(1-b )√1−b =0,求a 2017-b 2018的值;(2)若x 满足2(x 2-2)3-16=0,求x 的值.21. 计算下列各题(1)√−0.1253+√3116+3(78−1)2-|−112| (2)(√7+√3)(√7−√3)2 (3)(2√27+14√48-6√13)÷√1222. (1)解不等式组:{1−x+12≤x +2x(x −1)>(x +3)(x −3)并把解集在数轴上表示出来. (2)解不等式组:{3x −4(x −2)≥3x 2−1<2x−1323. 如图,四边形ABCD 中,AD =4,AB =2√5,BC =8,CD =10,∠BAD =90°.(1)求证:BD ⊥BC ;(2)计算四边形ABCD 的面积.24. 如图,在⊙O 中,DE 是⊙O 的直径,AB 是⊙O 的弦,AB 的中点C 在直径DE 上.已知AB =8cm ,CD =2cm (1)求⊙O 的面积;(2)连接AE ,过圆心O 向AE 作垂线,垂足为F ,求OF的长.答案和解析1.【答案】D【解析】解:A、负数没有平方根,0的平方根是0,只有正数有两个平方根,故本选项错误;B、当a=2,b=-2时,a2=b2,但a和b不相等,故本选项错误;C、=2,故本选项错误;D、-8的立方根是-2,故本选项正确;故选:D.根据负数没有平方根,0的平方根是0,正数有两个平方根即可判断A,举出反例即可判断B,根据算术平方根求出=2,即可判断C,求出-8的立方根即可判断D.本题考查了平方根,立方根,算术平方根的应用,能理解平方根,立方根,算术平方根的定义是解此题的关键,题目比较好,难度不大.2.【答案】B【解析】解:A.=2,故选项错误;B、=2,故选项正确;C、=,故选项错误;D、=3,故选项错误.故选B.同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.把每个根式化简即可确定.本题考查同类二次根式的概念,正确对根式进行化简是关键.3.【答案】C【解析】【解答】解:设A、B之间的整数是x,那么-<x<,而-11<-<-10,8<<9,∴-11<x<9,AB之间的整数有19个.故选:C.【分析】本题主要考查了无理数的估量,解题关键是确定无理数的整数部分即可解决问题.先设AB之间的整数是x,于是-<x<,而-11<-<-10,8<<9,从而可求-11<x<9,进而可求A、B之间整数的个数.4.【答案】B【解析】解:移项,得:-3x-x<-3-9,合并同类项,得:-4x<-12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.直接解不等式,进而在数轴上表示出解集.此题主要考查了在数轴上表示不等式的解集以及解不等式,正确解不等式是解题关键.5.【答案】C【解析】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE,=AB2-×AE×BE=100-×6×8=76.故选:C.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE求面积.本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.6.【答案】C【解析】解:∵、有意义,∴,∴x≥1.故选:C.根据二次根式有意义的条件,即可得出x的取值范围.本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.7.【答案】D【解析】解:A、原式==6,所以A选项错误;B、原式==×=2×3=6,所以B选项错误;C、原式==,所以C选项错误;D、原式=-=-,所以D选项正确.故选:D.根据二次根式的性质对A、C、D进行判断;根据二次根式的乘法法则对B进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.【答案】D【解析】解:设点C所对应的实数是x.则有x-=-(-1),解得x=2+1.故选D.设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.9.【答案】D【解析】解:设AB长度为acm,∵根据三角形的三边关系定理得:8-5<a<8+5,∴3<a<13,∴8+5+3<a+8+5<13+8+5,即16<a+8+5<26,∵△ABC的周长为xcm,∴16<x<26,故选:D.根据三角形的三边关系定理求出边AB的范围,再根据不等式的性质进行变形,即可得出选项.本题考查了三角形的三边关系定理,能求出边AB的范围是解此题的关键.10.【答案】C【解析】解:由勾股定理得:AC=BC=,AB=,∵AC2+BC2=AB2=10,∴△ABC为等腰直角三角形,∴∠ABC=45°,故选:C.利用勾股定理的逆定理证明△ACB为直角三角形即可得到∠ABC的度数.本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.11.【答案】A【解析】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=-2.故选:A.先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.12.【答案】D【解析】解:连接DF、BD、EB,由折叠的性质可知,FD=FB,在Rt△DCF中,DF2=(4-DF)2+32,解得,DF=cm,由折叠的性质可得,∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴平行四边形BFDE是菱形,在Rt△BCD中,BD═=5,∵S菱形BFDE=EF×BD=BF×CD,∴×EF×5=×3,解得EF=3.75,故选:D.根据折叠的性质得到FD=FB,根据勾股定理求出BF,证明平行四边形BFDE 是菱形,根据菱形的面积公式计算即可.本题考查的是翻转变换的性质、矩形的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13.【答案】148.877【解析】解:∵533=148877,∴5.33=148.877,故答案为:148.877.直接利用有理数的乘方运算性质得出答案.此题主要考查了有理数的乘方运算,正确得出小数点移动位数是解题关键.14.【答案】5【解析】解:当x-2=时,原式=[(x+2)-4]2=(x-2)2=5故答案为:5根据二次根式的运算法则以及完全平方公式即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.【答案】1【解析】解:∵3<<4,∴a=3,b=-3,∴b(+a)=(-3)(+3)=10-9=1,故答案为:1.先求出的范围,求出a、b的值,代入根据平方差公式求出即可.本题考查了估算无理数的大小,平方差公式的应用,解此题的关键是求出a、b的值.16.【答案】-3<a≤-2【解析】解:,解①得:x≥a,解②得:x<2.∵不等式组有四个整数解,∴不等式组的整数解是:-2,-1,0,1.则实数a的取值范围是:-3<a≤-2.故答案是:-3<a≤-2.首先解不等式组,即可确定不等式组的整数解,即可确定a的范围.本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.【答案】a+b-2c【解析】解:原式=|a|-|a+c|+|c-a|+b,=a-(a+c)+(a-c)+b,=a-a-c+a-c+b,=a+b-2c.故答案为:a+b-2c.根据=|a|进行化简,然后再利用绝对值的性质化简,再合并同类项即可.此题主要考查了实数运算,关键是掌握二次根式的性质和绝对值的性质.18.【答案】2n;n2-1;n2+1【解析】解:∵当n=2时,a=2×2=4,b=22-1=3,c=22+1=5 n=3时,a=2×3=6,b=32-1=8,c=32+1=10n=4时,a=2×4=8,b=42-1=15,c=42+1=17…∴勾股数a=2n ,b=n 2-1,c=n 2+1.故答案为:2n ,n 2-1,n 2+1.由n=2时,a=2×2=4,b=22-1=3,c=22+1=5;n=3时,a=2×3=6,b=32-1=8,c=32+1=10;n=4时,a=2×4=8,b=42-1=15,c=42+1=17…得出a=2n ,b=n 2-1,c=n 2+1,满足勾股数.此题主要考查了数据变化规律,得出a 与b 以及a 与c 的关系是解题关键. 19.【答案】解:(1)设一块A 型小黑板x 元,一块B 型小黑板y 元.则{5x +4y =820x−y=20,解得{y =80x=100.答:一块A 型小黑板100元,一块B 型小黑板80元.(2)设购买A 型小黑板m 块,则购买B 型小黑板(60-m )块则{100m +80(60−m)≤5240m ≥13×60, 解得20≤m ≤22,又∵m 为正整数∴m =20,21,22则相应的60-m =40,39,38∴共有三种购买方案,分别是方案一:购买A 型小黑板20块,购买B 型小黑板40块;方案二:购买A 型小黑板21块,购买B 型小黑板39块;方案三:购买A 型小黑板22块,购买B 型小黑板38块.方案一费用为100×20+80×40=5200元; 方案二费用为100×21+80×39=5220元; 方案三费用为100×22+80×38=5240元. ∴方案一的总费用最低,即购买A 型小黑板20块,购买B 型小黑板40块总费用最低,为5200元【解析】(1)设购买一块A 型小黑板需要x 元,一块B 型为y 元,根据等量关系:购买一块A 型小黑板比买一块B 型小黑板多用20元;购买5块A 型小黑板和4块B 型小黑板共需820元;可列方程组求解.(2)设购买A 型小黑板m 块,则购买B 型小黑板(60-m )块,根据需从公司购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量至少占总数量的,可列不等式组求解.本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量至少占总数量的,列出不等式组求解. 20.【答案】解:(1)∵a ,b 为实数,且√1+a +(1-b )√1−b =0,∴1+a =0,1-b =0,解得a =-1,b =1,∴a 2017-b 2018=(-1)2017-12018=(-1)-1=-2;(2)2(x 2-2)3-16=0,2(x 2-2)3=16,(x 2-2)3=8,x 2-2=2,x 2=4,x =±2.【解析】(1)根据+(1-b )=0和二次根式有意义的条件,可以求得a 、b 的值,从而可以求得所求式子的值; (2)根据立方根的定义求出x 2-2=2,再根据平方根的定义即可解答本题. 本题考查非负数的性质:算术平方根,整式的混合运算-化简求值,解答本题的关键是明确它们各自的计算方法.21.【答案】解:(1)√−0.1253+√3116+3(78−1)2-|−112| =-0.5+74-12-32=-34;(2)(√7+√3)(√7−√3)2=(√7+√3)×(√7-√3)×(√7-√3)=4√7-4√3;(3)(2√27+14√48-6√13)÷√12 =(6√3+√3-2√3)÷2√3=52. 【解析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用平方差公式计算得出答案;(3)首先化简二次根式,进而计算得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】解:(1){1−x+12≤x +2①x(x −1)>(x +3)(x −3)②, 解不等式①得x ≥-1,解不等式②得x <9,故不等式的解集为-1≤x <9,把解集在数轴上表示出来为:(2){3x −4(x −2)≥3①x 2−1<2x−13②, 解不等式①得x ≤5,解不等式②得x >-4,故不等式的解集为-4<x ≤5.【解析】(1)求出两个不等式的解集的公共部分,并把解集在数轴上表示出来即可; (2)求出两个不等式的解集的公共部分即可.考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.23.【答案】解:(1)∵AD =4,AB =2√5,∠BAD =90°, ∴BD =√AB 2+AD 2=6.又BC =8,CD =10,∴BD 2+BC 2=CD 2,∴BD ⊥BC ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积 =12×4×2√5+12×6×8=4√5+24.【解析】(1)先根据勾股定理求出BD 的长度,然后根据勾股定理的逆定理,即可证明BD ⊥BC ;(2)根据图形得到四边形ABCD 的面积=2个直角三角形的面积和即可求解. 此题主要考查了勾股定理和勾股定理的逆定理,把四边形的面积分解成两个直角三角形的面积来求是解本题的关键所在.24.【答案】解:(1)连接OA ,如图1所示∵C 为AB 的中点,AB =8cm ,∴AC =4cm又∵CD =2cm设⊙O 的半径为r ,则(r -2)2+42=r 2解得:r =5∴S =πr 2=π×25=25π(2)OC =OD -CD =5-2=3EC =EO +OC =5+3=8∴EA =√AC 2+EC 2=√42+82=4√5∴EF =EA2=4√52=2√5 ∴OF =√EO 2−EF 2=√25−20=√5【解析】(1)连接OA ,根据AB=8cm ,CD=2cm ,C 为AB 的中点,设半径为r ,由勾股定理列式即可求出r ,进而求出面积.(2)在Rt △ACE 中,已知AC 、EC 的长度,可求得AE 的长,根据垂径定理可知:OF ⊥AE ,FE=FA ,利用勾股定理求出OF 的长.本题主要考查了垂径定理和勾股定理,作出辅助线是解题的关键.。

2018-2019学年八年级(下)期中数学试卷1 解析版

2018-2019学年八年级(下)期中数学试卷1  解析版

2018-2019学八年级(下)期中数学试卷一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2 4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.158.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4二.填空题(共4小题)11.计算3﹣的结果是.12.如图所示,数轴上点A所表示的数为a,则a的值是.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.三.解答题(共11小题)15.计算:(﹣2)×﹣616.先化简,再求值:(2﹣)÷,其中x=﹣3.17.若x、y都是实数,且y=++,求x2y+xy2的值.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.22.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与试题解析一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选:C.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A.2﹣=,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.×=×2=4,此选项正确;D.÷=,此选项错误;故选:C.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣118°=62°,∵CE⊥AB,∴∠BCE=90°﹣∠B=28°.故选:A.5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故选:A.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.15【分析】根据已知条件可以得到EF是△OAB的中位线,则OB=2EF=6,再利用平行四边形的性质得出BD即可.【解答】解:∵点E,F分别是AB,AO的中点,连接EF,EF=3,∴EF是△OAB的中位线,则OB=2EF=6,∵在▱ABCD中,∴BD=2OB=12,故选:C.8.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°【分析】先利用正方形的性质得到DA=DC,∠CAD=45°,∠ADC=90°,利用等边三角形的性质得到DE=DC,∠CDE=60°,则DA=DE,∠ADE=150°,再根据等腰三角形的性质和三角形内角和计算出∠DAE=15°,然后计算∠CAD与∠DAE的差即可.【解答】解:∵四边形ABCD为正方形,∴DA=DC,∠CAD=45°,∠ADC=90°,∵△CDE为等边三角形,∴DE=DC,∠CDE=60°,∴DA=DE,∠ADE=90°+60°=150°,∴∠DAE=∠DEA,∴∠DAE=(180°﹣150°)=15°,∴∠CAE=45°﹣15°=30°.故选:B.9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4【分析】由矩形的性质得出∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得出EP=AP,BE=AB=8,∠E=∠A=90°,由ASA证明△ODP≌△OEF,得出PD=FE,OP=OF,因此DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,得出CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是长方形,∴∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得:EP=AP,BE=AB=8,∠E=∠A=90°,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA),∴PD=FE,OP=OF,∴DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,∴CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,BC2+CF2=BF2,即62+(8﹣x)2=(x+2)2,解得:x=4.8;故选:A.二.填空题(共4小题)11.计算3﹣的结果是﹣.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=3×﹣2=﹣2=﹣.故答案为:﹣.12.如图所示,数轴上点A所表示的数为a,则a的值是﹣.【分析】根据图形,利用勾股定理可以求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为1.【分析】根据三角形中位线定理得到DE=BC=3.5,根据直角三角形的性质得到DF =AB=2.5,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=3.5,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∴EF=DE﹣DF=1,故答案为:1.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,根据垂线段最短即可解决问题;【解答】解:∵∠BAC=90°,∠B=60°,AB=1,∴BC=2AB=2,AC=,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∴则PQ的最小值为2OP′=2OC•sin30°=,故答案为:.三.解答题(共11小题)15.计算:(﹣2)×﹣6【分析】先算乘法,再合并同类二次根式即可.【解答】解:原式=3﹣2﹣3=﹣2.16.先化简,再求值:(2﹣)÷,其中x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.若x、y都是实数,且y=++,求x2y+xy2的值.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【解答】解:由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=4+4.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.【解答】解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,根据AB=AD=6,∠A=60°,得出△ABD是等边三角形,求得BD=8,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°;(2)根据四边形的面积等于三角形ABD和三角形BCD的和即可求得.【解答】解:(1)连接BD,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴BD=6,∠ADB=60°,∵BC=10,CD=8,则BD2+CD2=82+62=100,BC2=102=100,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=150°;(2)S=S△ABD+S△BDC=AD•AD+BD•DC=×6××6+×8×6=9+24.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.【分析】(1)由题意可证△AED≌△ABM,则结论可得.(2)在Rt△ABM中根据勾股定理可求EM的长,即可求AE的长.【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC,AB=CD,∠B=∠C=90°∴∠DAE=∠AMB∵CD=DE,CD=AB∴AB=DE,且∠ABC=∠AED=90°,∠DAE=∠AMB∴△ADE≌△ABM∴BM=AE(2)在Rt△ABM中,AM2=AB2+BM2.∴9EM2=25+4EM2.∴EM=∴AE=BM=222.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.【分析】(1)原式分母有理化,计算即可得到结果;(2)原式各自分母有理化化简后,合并即可得到结果.【解答】解:(1)原式==+;(2)原式=﹣1+﹣+…+﹣=﹣1.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EF A,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=125.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作F A⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠F AE=90°.∴∠F AB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠F AB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠F AB=∠F AM.∴∠F=∠F AM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.。

2018-2019学年度第二学期八年级数学期中考试题及参考答案

2018-2019学年度第二学期八年级数学期中考试题及参考答案

学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------2018-2019学年度第二学期期中考试题(卷)八 年 级 数 学(时间:120分钟 满分:100分)一.选择题(共10小题,每小题3分,共30分) 1.下列运算中正确的是( ) A .=﹣2B .﹣24×=2 C .(﹣2)2×(﹣3)2=36 D .=±42.要使式子有意义,则x 的取值范围是( )A .x >﹣2B .x >2C .x ≤2D .x <23.下列根式中是最简二次根式的是( ) A .2B .C .D .4.下列各组数中不能作为直角三角形的三条边的是( ) A .6,8,10B .9,12,15C .1.5,2,3D .7,24,255.一架5m 的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m ,若梯子的顶端下滑1m ,则梯足将滑动( ) A .0mB .1mC .2mD .3m6.如图,在直角△ABC 中,∠C =90°,AC =3,AB =4,则点C 到斜边AB 的距离是( ) A .B .C .5D7.如图,在ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1 cmB .2 cmC .3 cmD .4 cm8.在Rt △ABC 中,斜边上的中线CD =2.5cm ,则斜边AB 的长是( ) A .2.5cmB .5cmC .7.5cmD .10cm9.如图,在ABCD 中,AB ⊥AC ,若AB =4,AC =6,则BD 的长是( ) A .8B .9C .10D .1110.如图,在菱形ABCD 中,∠BAD =120°,点A 坐标是(﹣2,0),则点B 坐标为( ) A .(0,2) B .(0,)C .(0,1)D .(0,2)二.填空题(共10小题,每小题3分,共30分)11.实数a 在数轴上对应的点的位置如图所示,则化简|a ﹣2|﹣= .12.如果最简二次根式与2是同类二次根式,那么a = .13.若ABC 的三边分别是a 、b 、c ,且a 、b 、c 满足a 2+c 2=b 2,则∠ =90°. 14.ABCD 中,∠A +∠C =220°,则∠A = .15.若点A (3,m )在直角坐标系的x 轴上,则点B (m ﹣1,m +2)到原点O 的距离为 . 16.已知菱形的面积为24cm 2,一条对角线长为6cm ,则这个菱形的边长是 厘米. 17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =12,则AB = .18.三角形各边分别是3cm 、5cm 、6cm ,则连接各边中点所围成的三角形的周长是 cm .19.如图,在△ABC 中,∠ACB 为直角,∠A =30°,CD ⊥AB 于点D ,CE 是AB 边上的中线,若BD =2,则CE = .20.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,已知△BOC 与△AOB 的周长之差为3,平行四边形ABCD 的周长为26,则BC 的长度为 .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------三.解答题(共6小题,共40分) 21.(4分)已知a =+2,b =2﹣,求下列各式的值:(1)a 2+2ab +b 2; (2)a 2﹣b 2.22.(5分)如图所示,在四边形ABCD 中,AB =2,AD =,BC =2,∠CAD =30°,∠D =90°,求∠ACB的度数?23.(5分)已知:如图,在ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .猜测DE 和BF 的位置关系和数量关系,并加以证明.24.(8分)如图,在ABCD 中,AD >AB ,AE 平分∠BAD ,交BC 于点E ,过点E 作EF ∥AB 交AD 于点F . (1)求证:四边形ABEF 是菱形;(2)若菱形ABEF 的周长为16,∠EBA =120°,求AE 的大小.25.(8分)如图,已知四边形ABCD 是平行四边形,△AOB 是等边三角形.(1)求证:四边形ABCD 是矩形.(2)若AB =5cm ,求四边形ABCD 的面积.26.(10分)如图1,已知四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF=90°,且EF 交正方形外角∠DCG 的平分线CF 于点F ,(1)若取AB 的中点M ,可证AE=EF ,请写出证明过程.(2)如图2,若点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,那么结论“AE=EF ”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------2018-2019学年度第二学期八年级数学期中考试题参考答案一、选择题(共10小题)C C A C BD B B C D 二、填空题(共8小题)11、 -2a+3 12、 2 13、 B 14、 110° . 1516、 5 17、6 18、7 19、 4 20、 8 三.解答题(共10小题) 21.∵a =+2,b =2﹣,∴a +b =4,a ﹣b =2,(1)a 2+2ab +b 2=(a +b )2=42=16;(2)a 2﹣b 2=(a +b )(a ﹣b )=4×2=8.22、∵在直角△ACD 中,AD =,∠CAD =30°,∠D =90°,∴由勾股定理得AC =2, ∵AB =2,BC =2,∴AC 2+BC 2=4+4=8=(2)2=AB 2,∴∠ACB =90°.23、解:DE ∥BF DE =BF理由如下:∵四边形ABCD 是平行四边形 ∴AD =BC ,AD ∥BC∴∠DAC =∠ACB ,且AE =CF ,AD =BC ∴△ADE ≌△CBF (SAS ) ∴DE =BF ,∠AED =∠BFC ∴∠DEC =∠AFB ∴DE ∥BF24、(1)证明:∵▱ABCD∴BC ∥AD ,即 BE ∥AF ∵EF ∥AB∴四边形ABEF 为平行四边形∵AE 平分∠BAF ∴∠EAB =∠EAF ∵BC ∥AD ∴∠BEA =∠EAF ∴∠BEA =∠BAE ∴AB =BE∴四边形ABEF 是菱形(2)解:连接BF 交AE 于点O ;则BF ⊥AE 于点O∵BA =BE ,∠EBA =120°∴∠BEA =∠BAE =30° ∵菱形ABEF 的周长为16 ∴AB =4在Rt △ABO 中∠BAO =30° ∴由勾股定理可得:AO =∴AE =25、解:(1)平行四边形ABCD 是矩形.理由如下:∵四边形ABCD 是平行四边形(已知),学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线----------------------------------------------- ∴AO =CO ,BO =DO (平行四边形的对角线互相平分), ∵△AOB 是等边三角形(已知), ∴OA =OB =OC =OD (等量代换), ∴AC =BD (等量代换),∴平行四边形ABCD 是矩形(对角线相等的平行四边形是矩形);(2)因为AB =5,在Rt △ABC 中,由题意可知,AC =10,则BC ==5,所以平行四边形ABCD 的面积S =5×5=25(cm 2)26、解:(1)∵四边形ABCD 是正方形 ∴AB=BC ,∠B=∠BCD=∠DCG=90°, ∵取AB 的中点M ,点E 是边BC 的中点, ∴AM=EC=BE , ∴∠BME=∠BEM=45°, ∴∠AME=135°, ∵CF 平分∠DCG , ∴∠DCF=∠FCG=45°, ∴∠ECF=180°-∠FCG=135°, ∴∠AME=∠ECF , ∵∠AEF=90°, ∴∠AEB+∠CEF=90°, 又∠AEB+∠MAE=90°, ∴∠MAE=∠CEF ,即∴△AME ≌△ECF (ASA ),∴AE=EF ,(2)AE=EF 仍然成立,理由如下:在BA 延长线上截取AP=CE ,连接PE ,则BP=BE , ∵∠B=90°,BP=BE , ∴∠P=45°, 又∠FCE=45°, ∴∠P=∠FCE ,∵∠PAE=90°+∠DAE ,∠CEF=90°+∠BEA , ∵AD ∥CB , ∴∠DAE=∠BEA , ∴∠PAE=∠CEF , ∴△APE ≌△ECF , ∴AE=EF .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年八年级(下)期中数学试卷一、选择题(每小题只有一个正确答案,请将正确答案的字母代号填在下列表格内)1.(3分)若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是()A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠0 2.(3分)若+x=5,则下列x的取值不可能是()A.6 B.5 C.4 D.33.(3分)若关于x的二次三项式9x2+2(m﹣3)x+16是完全平方式,则m的值为()A.15 B.9 C.﹣9或15 D.9或154.(3分)若两个最简二次根式和是同类二次根式,则n的值是()A.﹣1 B.4或﹣1 C.1或﹣4 D.45.(3分)把a根号外的因式移入根号内,运算结果是()A.B.C.﹣D.﹣6.(3分)若一组数据a1,a2,……,a n的平均数为10,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的平均数和方差分别是()A.13,4 B.23,8 C.23,16 D.23,197.(3分)如图,将△ABC绕点B(0,1)旋转180°得到△A1BC1,设点C的坐标为(m,n),则点C1的坐标为()A.(﹣m,﹣n﹣2)B.(﹣m,﹣n﹣1)C.(﹣m,﹣n+1)D.(﹣m,﹣n+2)8.(3分)若x1是方程ax2+2x+c=0(a≠0)的一个根,设M=(ax1+1)2,N=2﹣ac,则M 与N的大小关系为()A.M>N B.M<N C.M=N D.不能确定二、填空题(请把正确答案填在题中的横线上)9.(3分)若关于x的一元二次方程x2﹣mx+n=0的两根为﹣1和3,则将x2﹣mx+n进行因式分解的结果是.10.(3分)若关于x的方程无解,则m的值为.11.(3分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,若AB=6,AC=10,则MN的长是.12.(3分)若m满足等式+|2019﹣m|=m,则m﹣20192的值为.13.(3分)如图,顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1四边的中点得四边形A2B2C2D2,…,按此规律得到四边形A n B n∁n D n,若矩形ABCD 的面积为16,那么四边形A n B n∁n D n的面积为.14.(3分)如图,在菱形ABCD中,AB=2,DE⊥BC于点E,F是CD的中点,连接AF,EF.若∠AFE=90°,则CE的长为.三、解答题(请写出完整的解题步骤)15.先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.16.关于x的一元二次方程2x2﹣mx+n=0.(1)当m﹣n=4时,请判断方程根的情况;(2)若方程有两个相等的实数根,当n=2时,求此时方程的根.17.如图,在▱ABCD中,点E是AD的中点,连接CE,点G为AB上一点,∠BGC=2∠DCE,在CG上取一点F,使CF=CD,连接EF.请判断线段AG与GF的大小关系,并证明你的结论.18.关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3)的两个实数根分别为x1,x2,且x1<x2(1)求证:方程有一根为定值;(2)若9x1﹣3x2≥4,求m的取值范围.19.阅读下列解题过程例:若代数式的值是2,求a的取值范围.解:原式=|a﹣1|+|a﹣3|,当a<1时,原式=(1﹣a)+(3﹣a)=4﹣2a=2,解得a=1(舍去);当1≤a≤3时,原式=(a﹣1)+(3﹣a)=2=2,符合条件;当a>3时,原式=(a﹣1)+(a﹣3)=2a﹣4=2,解得a=3(舍去)所以,a的取值范围是1≤a≤3上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题(1)当2≤a≤5时,化简:=;(2)若等式=4成立,则a的取值范围是;(3)若=8,求a的取值.20.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使C点落在边AD上的E 处,折痕为MN,过点E作EF∥CD交MN于F,连接CF(1)求证:四边形CFEN为菱形;(2)当点E在AD边上移动时,折痕的端点M、N也随之移动,若限定M、N分别在边BC、CD上移动,求出点E在边AD上移动的最大距离.21.(1)探究发现如图1,正方形ABCD中,点E,F分别在AB,BC上,∠EDF=45°,通过探究可以发现线段EF,AE和CF之间存在一定的数量关系:.(2)拓展延伸如图2,正方形ABCD中,点E,F分别在BA,CB的延长线上,∠EDF=45°①线段EF,AE和CF之间有怎样的数量关系?写出猜想,并加以证明;②若AB=4,EF=6,求△DEF的面积.参考答案与试题解析一、选择题(每小题只有一个正确答案,请将正确答案的字母代号填在下列表格内)1.(3分)若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是()A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠0 【分析】讨论:当k=0时,方程为一元一次方程,有一个实数解;当k≠0时,根据判别式的意义得到△=(﹣4)2﹣4k×(﹣2)≥0,解得k≥﹣2且k≠0,然后综合两种情况得到k的范围.【解答】解:当k=0时,方程变形为﹣4x﹣2=0,解得x=﹣;当k≠0时,△=(﹣4)2﹣4k×(﹣2)≥0,解得k≥﹣2且k≠0,综上所述,k的范围为k≥﹣2.故选:B.2.(3分)若+x=5,则下列x的取值不可能是()A.6 B.5 C.4 D.3【分析】根据二次根式的性质即可求出答案.【解答】解:由题意可知:=5﹣x,∴5﹣x≥0,∴x≤5,故选:A.3.(3分)若关于x的二次三项式9x2+2(m﹣3)x+16是完全平方式,则m的值为()A.15 B.9 C.﹣9或15 D.9或15【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵关于x的二次三项式9x2+2(m﹣3)x+16是完全平方式,∴m﹣3=±12,解得:m=15或﹣9,故选:C.4.(3分)若两个最简二次根式和是同类二次根式,则n的值是()A.﹣1 B.4或﹣1 C.1或﹣4 D.4【分析】根据最简二次根式以及同类二次根式即可求出答案.【解答】解:由题意可知:n2﹣2n=n+4,∴解得:n=4或n=﹣1,当n=4时,n+4=8>0,此时不是最简二次根式,不符合题意,当n=﹣1时,n+4=3>0,综上所述,n=﹣1故选:A.5.(3分)把a根号外的因式移入根号内,运算结果是()A.B.C.﹣D.﹣【分析】根据二次根式的性质,可得答案.【解答】解:a根号外的因式移到根号内,化简的结果是﹣,故选:D.6.(3分)若一组数据a1,a2,……,a n的平均数为10,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的平均数和方差分别是()A.13,4 B.23,8 C.23,16 D.23,19【分析】根据平均数的概念、方差的性质解答.【解答】解:数据a1,a2,……,a n的平均数为10,那么数据2a1+3,2a2+3,…,2a n+3的平均数为2×10+3=23,数据a1,a2,……,a n,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的方差为4×22=16,故选:C.7.(3分)如图,将△ABC绕点B(0,1)旋转180°得到△A1BC1,设点C的坐标为(m,n),则点C1的坐标为()A.(﹣m,﹣n﹣2)B.(﹣m,﹣n﹣1)C.(﹣m,﹣n+1)D.(﹣m,﹣n+2)【分析】利用中点坐标公式计算即可.【解答】解:设C1(x,y),由题意:BC=BC1,∴=0,=1,∴x=﹣m,y=2﹣n,∴C1(﹣m,2﹣n),故选:D.8.(3分)若x1是方程ax2+2x+c=0(a≠0)的一个根,设M=(ax1+1)2,N=2﹣ac,则M 与N的大小关系为()A.M>N B.M<N C.M=N D.不能确定【分析】把x1代入方程ax2+2x+c=0得ax12+2x1=﹣c,作差法比较可得.【解答】解:∵x1是方程ax2+2x+c=0(a≠0)的一个根,∴ax12+2x1+c=0,即ax12+2x1=﹣c,则M﹣N=(ax1+1)2﹣(2﹣ac)=a2x12+2ax1+1﹣2+ac=a(ax12+2x1)+ac﹣1=﹣ac+ac﹣1=﹣1,∵﹣1<0,∴M﹣N<0,∴M<N.故选:B.二、填空题(请把正确答案填在题中的横线上)9.(3分)若关于x的一元二次方程x2﹣mx+n=0的两根为﹣1和3,则将x2﹣mx+n进行因式分解的结果是(x+1)(x﹣3).【分析】根据题意方程的两根即可x2﹣mx+n进行因式分解.【解答】解:由于关于x的一元二次方程x2﹣mx+n=0的两根为﹣1和3,∴x2﹣mx+n=(x+1)(x﹣3)=0,即x2﹣mx+n=(x+1)(x﹣3),故答案为:(x+1)(x﹣3)10.(3分)若关于x的方程无解,则m的值为4,5,6 .【分析】分式方程去分母转化为整式方程,根据分式方程无解确定出m的值即可.【解答】解:去分母得:mx﹣3x+3=2x+2,整理得:(m﹣5)x=﹣1,当m﹣5=0,即m=5时,整式方程无解;当m﹣5≠0,即m≠5,解得:x=﹣,要使分式方程无解,则有x=1或x=﹣1,即﹣=1或﹣=﹣1,解得:m=4或m=6,综上,m的值为4,5,6.故答案为:4,5,611.(3分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,若AB=6,AC=10,则MN的长是 2 .【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质得到AD=AB=6,BN=ND,求出DC,根据三角形中位线定理解答.【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND(ASA)∴AD=AB=6,BN=ND,∴DC=AC﹣AD=4,∵BN=ND,BM=MC,∴MN=DC=2,故答案为:2.12.(3分)若m满足等式+|2019﹣m|=m,则m﹣20192的值为2020 .【分析】根据二次根式有意义的条件可得m≥2020,再利用绝对值的性质计算+|2019﹣m|=m即可.【解答】解:∵m﹣2020≥0,∴m≥2020,∴+|2019﹣m|=m,+m﹣2019=m,=2019,∴m﹣2020=20192,m﹣20192=2020,故答案为:2020.13.(3分)如图,顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1四边的中点得四边形A2B2C2D2,…,按此规律得到四边形A n B n∁n D n,若矩形ABCD 的面积为16,那么四边形A n B n∁n D n的面积为.【分析】根据矩形A1B1C1D1面积、四边形A2B2C2D2的面积、四边形A3B3C3D3的面积,即可发现新四边形与原四边形的面积的一半,找到规律即可解题.【解答】解:顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,则矩形ABCD四边的面积是四边形A1B1C1D1面积的一半,顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为矩形A1B1C1D1面积的一半,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,故新四边形与原四边形的面积的一半,则四边形A n B n∁n D n面积为矩形A1B1C1D1面积的,∴四边形A n B n∁n D n面积=×16=,故答案为:.14.(3分)如图,在菱形ABCD中,AB=2,DE⊥BC于点E,F是CD的中点,连接AF,EF.若∠AFE=90°,则CE的长为﹣1 .【分析】延长EF交AD的延长线于G,由菱形的性质得出AD=CD=AB=2,AD∥BC,证明△DFG≌△CFE(ASA),得出DG=CE,GF=EF,由线段垂直平分线的性质得出AE=AG,设CE=DG=x,则AE=AG=2+x,由直角三角形斜边上的中线性质得出GF=EF=CD=1,得出EG=2EF=2,在Rt△ADE和Rt△GDE中,由勾股定理得出方程,解方程即可.【解答】解:延长EF交AD的延长线于G,如图所示:∵四边形ABCD是菱形,∴AD=CD=AB=2,AD∥BC,∴∠GDF=∠C,∵F是CD的中点,∴DF=CF,在△DFG和△CFE中,,∴△DFG≌△CFE(ASA),∴DG=CE,GF=EF,∵∠AFE=90°,∴AF⊥EF,∴AE=AG,设CE=DG=x,则AE=AG=2+x,∵AG∥BC,DE⊥BC,F是CD的中点,∴DE⊥AG,GF=EF=CD=1,∴EG=2EF=2,在Rt△ADE和Rt△GDE中,由勾股定理得:DE2=AE2﹣AD2=EG2﹣DG2,即(2+x)2﹣22=22﹣x2,解得:x=﹣1,或x=﹣﹣1(舍去),∴CE=﹣1;故答案为:﹣1.三、解答题(请写出完整的解题步骤)15.先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据题目所给条件及分式有意义的条件得出x的值,代入计算可得.【解答】解:原式=÷[﹣]=÷=•=﹣,∵﹣2<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=2,当x=2时,原式=﹣.16.关于x的一元二次方程2x2﹣mx+n=0.(1)当m﹣n=4时,请判断方程根的情况;(2)若方程有两个相等的实数根,当n=2时,求此时方程的根.【分析】(1)先计算判别式得到△=(﹣m)2﹣4×2×n,再把n=m﹣4代入得到△=(m ﹣4)2+16,从而得到△>0,然后判断方程根的情况;(2)根据判别式的意义得△=(﹣m)2﹣4×2×n=0,加上n=2时,于是可求出m=4或m=﹣4,当m=4时,方程变形为2x2﹣4x+2=0,当m=﹣4时,方程变形为2x2+4x+2=0,然后分别解方程即可.【解答】解:(1)△=(﹣m)2﹣4×2×n,∵m﹣n=4,∴n=m﹣4,∴△=m2﹣8(m﹣4)=m2﹣8m+32=(m﹣4)2+16,∵(m﹣4)2≥0,∴△>0,∴方程有两个不相等的实数根;(2)根据题意得△=(﹣m)2﹣4×2×n=0,当n=2时,m2﹣16=0,解得m=4或m=﹣4,当m=4时,方程变形为2x2﹣4x+2=0,解得x1=x2=1;当m=﹣4时,方程变形为2x2+4x+2=0,解得x1=x2=﹣1.17.如图,在▱ABCD中,点E是AD的中点,连接CE,点G为AB上一点,∠BGC=2∠DCE,在CG上取一点F,使CF=CD,连接EF.请判断线段AG与GF的大小关系,并证明你的结论.【分析】连接EG,作EM⊥AB于M,EN⊥CG于N,证明△CDE≌△CFE(SAS),得出DE=FE,∠D=∠CFE,再证明△AEM≌△FEN(AAS),得出EM=EN,证出∠AGE=∠FGE,然后证明△AEG≌△FEG(AAS),即可得出AG=GF.【解答】解:AG=GF,理由如下:连接EG,作EM⊥AB于M,EN⊥CG于N,如图所示:则∠M=∠ENF=90°,∵四边形ABCD是平行四边形,∴∠B=∠D,AD∥BC,AB∥CD,∴∠BGC=∠DCG,∠BAD+∠B=180°,∵∠BGC=2∠DCE,∴∠DCE=∠FCE,在△CDE和△CFE中,,∴△CDE≌△CFE(SAS),∴DE=FE,∠D=∠CFE,∵点E是AD的中点,∴AE=DE,∴AE=FE,∵∠CFE+∠EFG=180°,∴∠BAD=∠EFG,∴∠EAM=∠EFN,在△AEM和△FEN中,,∴△AEM≌△FEN(AAS),∴EM=EN,∴∠AGE=∠FGE,在△AEG和△FEG中,,∴△AEG≌△FEG(AAS),∴AG=GF.18.关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3)的两个实数根分别为x1,x2,且x1<x2(1)求证:方程有一根为定值;(2)若9x1﹣3x2≥4,求m的取值范围.【分析】(1)先计算判别式的值得到△=(m+2)2,由m>3,得到△>0,根据判别式的意义得到方程有两个不相等的实数根,再利用求根公式得到x=,可得到方程有一个根为1,于是得到方程有一根为定值.(2)解方程得到x1=1,x2=2﹣,由9x1﹣3x2≥4得到不等式9﹣3(2﹣)≥4,然后解不等式即可求解.【解答】(1)证明:△=[﹣3(m﹣1)]2﹣4m(2m﹣3)=m2﹣6m+9=(m﹣3)2,∵m>3,∴(m﹣3)2>0,即△>0,∴方程有两个不相等的实数根,∵x=,∴方程有一个根为1,∴方程有一根为定值.(2)解:∵x=,∴x1=1,x2=2﹣,∵9x1﹣3x2≥4,∴9﹣3(2﹣)≥4,解得m≤9.故m的取值范围是3<m≤9.19.阅读下列解题过程例:若代数式的值是2,求a的取值范围.解:原式=|a﹣1|+|a﹣3|,当a<1时,原式=(1﹣a)+(3﹣a)=4﹣2a=2,解得a=1(舍去);当1≤a≤3时,原式=(a﹣1)+(3﹣a)=2=2,符合条件;当a>3时,原式=(a﹣1)+(a﹣3)=2a﹣4=2,解得a=3(舍去)所以,a的取值范围是1≤a≤3上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题(1)当2≤a≤5时,化简:= 3 ;(2)若等式=4成立,则a的取值范围是3≤a≤7 ;(3)若=8,求a的取值.【分析】(1)根据二次根式的性质即可求出答案;(2)先将等式的左边进行化简,然后分情况讨论即可求出答案;(3)先将等式的左边进行化简,然后分情况讨论即可求出答案;【解答】解:(1)∵2≤a≤5,∴a﹣2≥0,a﹣5≤0,∴原式=|a﹣2|+|a﹣5|=a﹣2﹣(a﹣5)=3;(2)由题意可知:|3﹣a+|+|a﹣7|=4,当a≤3时,∴3﹣a≥0,a﹣7<0,∴原方程化为:3﹣a﹣(a﹣7)=4,∴a=3,符合题意;当3<a<7时,∴3﹣a<0,a﹣7<0,∴﹣(3﹣a)﹣(a﹣7)=4,∴4=4,故3<a<7符合题意;当a≥7时,∴3﹣a<0,a﹣7≥0,∴﹣(3﹣a)+(a﹣7)=4,∴a=7,符合题意;综上所述,3≤a≤7;(3)原方程可化为:|a+1|+|a﹣5|=8,当a≤﹣1时,∴a+1≤0,a﹣5<0,∴原方程化为:﹣a﹣1﹣(a﹣5)=8,∴a=﹣2,符合题意;当﹣1<a<5时,∴a+1>0,a﹣5<0,∴(a+1)﹣(a﹣5)=8,∴此方程无解,故﹣1<a<5不符合题意;当a≥5时,∴a+1>0,a+5≥0,∴a+1+a﹣5=8,∴a=6,符合题意;综上所述,a=﹣2或a=6;故答案为:(1)3;(2)3≤a≤720.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使C点落在边AD上的E 处,折痕为MN,过点E作EF∥CD交MN于F,连接CF(1)求证:四边形CFEN为菱形;(2)当点E在AD边上移动时,折痕的端点M、N也随之移动,若限定M、N分别在边BC、CD上移动,求出点E在边AD上移动的最大距离.【分析】(1)由折叠得到对应角相等,对应边相等,再根据EF∥CD,可以证出CF=CN,进而证出四条边相等,证明出是菱形,(2)从两个特殊的情况,分别求出DE的长,进而求出点D在AD上移动的最大距离.【解答】解:(1)由折叠得:FC=FE,NC=NE,∠CFN=∠EFN,∠CNF=∠ENF,∵EF∥CD,∴∠EFN=∠CNF,∴∠CFN=∠CNF,∴CF=CN,∴CF=CN=NE=EF,∴四边形CFEN为菱形,(2)①当点N与点D重合时,如图1所示:由折叠可知,CDEM是正方形,此时DE=3cm,②当点M与点B重合时,如图2所示:由折叠得,BC=BE=5,在Rt△ABE中,由勾股定理得,AE=4cm,DE=5﹣4=1cm,因此,点E在边AD上移动的最大距离为2cm.21.(1)探究发现如图1,正方形ABCD中,点E,F分别在AB,BC上,∠EDF=45°,通过探究可以发现线段EF,AE和CF之间存在一定的数量关系:EF=AE+CF.(2)拓展延伸如图2,正方形ABCD中,点E,F分别在BA,CB的延长线上,∠EDF=45°①线段EF,AE和CF之间有怎样的数量关系?写出猜想,并加以证明;②若AB=4,EF=6,求△DEF的面积.【分析】(1)延长BA,使AM=CF,由题意可证△AMD≌△CFD,可得MD=FD,∠ADM=∠CDF,即可得∠MDE=∠EDF=45°,即可证△MDE≌△FDE,可得EF=EM,则可得EF=AE+CF;(2)①在CB上截取CM=AE,由题意可证△ADE≌△CDM,可得DM=DE,∠ADE=∠CDM,即可得∠EDF=∠MDF=45°,则可证△MDF≌△EDF,可得EF=FM,则可得CF=EF+AE.②由△DEF≌△DMF,可得S△DEF=S△DFM=•MF•DC=×EF•DC.【解答】解:(1)EF=AE+CF理由如下:∵四边形ABCD是正方形∴AB=BC=CD=AD,∠B=∠C=∠ADC=∠DAB=90°如图1:延长BA,使AM=CF,且AD=CD,∠C=∠MAD∴△AMD≌△CFD(SAS)∴∠MDA=∠CDF,MD=DF∵∠EDF=45°∴∠ADE+∠FDC=45°∴∠ADM+∠ADE=45°=∠MDE∴∠MDE=∠EDF,且MD=DF,DE=DE∴△EDF≌EDM(SAS)∴EF=EM∵EM=AM+AE=AE+CF∴EF=AE+CF.故答案为EF=AE+CF.(2)①结论:CF=EF+AE.理由:如图2:在CB上截取CM=AE,∵∠DAE=∠DCM=90°,AE=CM,AD=CD∴△ADE≌△CDM(SAS)∴DM=DE,∠ADE=∠MDC,∵∠ADM+∠MDC=90°∴∠ADE+∠ADM=90°,即∠EDM=90°∵∠EDF=45°∴∠EDF=∠MDF=45°,且MD=DE,DF=DF,∴△MDF≌△EDF(SAS)∴EF=MF∵CF=FM+CM,∴CF=AE+EF.②∵△DEF≌△DMF,∴S△DEF=S△DFM=•MF•DC=×EF•DC=×6×4=12.。

相关文档
最新文档