根轨迹的基本概念
自动控制原理 第四章根轨迹

第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。
根指的是闭环特征根(闭环极点)。
根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。
K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。
3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。
4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。
★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。
有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。
(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。
说明属于I型系统,阶跃作用下的稳态误差为0。
在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。
(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。
由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。
2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。
由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。
自动控制原理 第四章 根轨迹法

第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
第四章 根轨迹法(1)

第四章 根轨迹法
(1)当 K * = 0时,s1 = 0、s2 = -2, 此时闭环极点就是开环极点。 (2)当0< K * <1时, s1 、 s2 均为负 实数,且位于负实轴的(-2,0) 一 段上。 (3)当K * = 1时,s1 = s2 = -1,两 个负实数闭环极点重合在一起。 (4)当1< K * <∞时, s1, 1 1 k * 2 两个闭环极点变为一对共轭复数极点。 s1 、 s2 的实部不随K * 变化,其位于过 (-1,0)点且平行于虚轴的直线上。 (5)当K * =∞时, s1 = -1+ j∞、 s2 = -1-j∞,此时s1、s2将趋于无限 远处。
第四章 根轨迹法
② 位于s1左边的实数零、极 点: (S1 – P4 ) 、(S1 – Z1 ) 、 向量引起的相角为0°
∴ 判断 s1是否落在根轨迹 上,位于s1左边的零、极点不 考虑。
③ 位于s1右边的实数零、极点: 每个零、极点提供180°相 角,其代数和为奇数,则满足相角条件。
第四章 根轨迹法
a
(0) (1 j1) (1 j1) (4) (1) 5 4 1 3
60 180 2k 1 180 2k 1 a 180 nm 3 300
k 0 k 1 k 2
第四章 根轨迹法
五、法则五 根轨迹分离点和分离角
K G( s) H ( S )
* i 1 n j 1
(s z )
i
m
S (s p j )
-1
m个开环零点 n个开环极点 K *根轨迹增益
∴在s平面上凡是满足上式的任意一个点s1、s2、…、 s∞,都 是闭环特征根,即闭环极点。
第四章 根轨迹法
自动控制第五章根轨迹法

15
绘制根轨迹的规则
【例5-2】已知负反馈系统的开环传递函数为:
解:(1)根轨迹的分支数和对称性 开环极点分别为: 系统的根轨迹有三条分支 (2)根轨迹的起点与终点 起始于系统的三个开环极点,并趋向于无穷远处
K1 Kb
j Kc
K1
(3)根轨迹的渐近线
Kc K1
16
绘制根轨迹的规则
闭环特征根s1,s2 随着K1值得 改变而变化。
(1) K1= 0:s1 = 0,s2 = 2,是根轨迹的起点,用“”表示。 j K1 (2) 0 < K1<1 :s1 ,s2 均是负实数。 K1 s1 ,s2 。 s1从坐标原点开 始沿负实轴向左移动; s2从(2, K1= 0 K1= 0 K1=1 j0)点开始沿负实轴向右移动。 1 0 2 (3) K1= 1: s1 = s2 = 1,重根。
+
﹣
K s(0.5s+1)
C(s)
式中,K为系统的开环比例系数。 K1 = 2K 称为系统的开环 根轨迹增益。
系统的闭环传递函数为:
K1 ( s) 2 s 2s K1
系统的闭环特征方程为: s2 + 2s + 2K1 = 0
4
一、根轨迹
用解析法求得系统的两个闭环特征根为:
s1,2 1 1 K1
K1
分离角为:
Kb
Kc K1
17
绘制根轨迹的规则
一般情况下,如果根轨迹位于实轴上相邻的开环极点之间, 则在这两个极点之间至少存在一个分离点;同样,如果根 轨迹位于实轴上两个相邻的开环零点之间(其中一个可在 无穷远处),则这两个零点之间至少存在一个汇合点。
根轨迹法的基本概念

K*
s1,2 1
1 K*
令K*(由0到∞ )变动,s1、s2在s平面的移动轨 迹即为根轨迹。
K* 0, s1 0, s2 2 K* 1, s1 1, s2 1 K* 2, s1 1 j, s2 1 j K* 5, s1 1 2 j, s2 1 2 j
特征方程的根 运动模态 性、系统性能)
1
1
1 ,d 4
m
(s zi )
1 G(s)H(s) 0
G(s)H(s) K*
i1 n
m
(s pj )
(s zi )
j 1
K * i1 n
1
(s pj )
j 1
m
n
模值条件: (s zi ) (s pj ) (2k 1)
i1
j1
n
s pj
相角条件: K *
j 1 m
s zi
i 1
相角条件是确定根轨迹的充分必要条件。相角条件满足(2k 1) 称为180º根轨迹。
4-2 绘制根轨迹的基本法则
一、基本法则
1、 根轨迹的起点和终点:
根轨迹起始于开环极点,终止于开环零点;如果开环零点个数少于 开环极点个数,则有(n-m)条根轨迹终止于无穷远处。
起点: K* 0 s pi
K* s p1 s z1
i 1, 2, n
s pn s zm
终点: K* s zi j 1, 2, m
例题:单位反馈系统的开环传递函数为:G(s)H (s) K *(s 1)
s(s 2)(s 3)
试绘制闭环系统的根轨迹
解: 1、开环零点z1=-1,开环极点p1=0,p2=-2,p3=-3, 根轨迹分支数为3条,有两个无穷远的零点。
第4章根轨迹PPT

第四章 根 轨 迹 法
4.1 根轨迹的概念 4.2 绘制根轨迹的依据 4.3 绘制根轨迹的基本法则
4.4 参数根轨迹和多回路系统根轨迹
4.5 正反馈根轨迹 4.6 滞后系统的根轨迹 4.7 根轨迹的应用 4.8 计算机绘制根轨迹
小结
轨迹
§4—1 根轨迹的基本概念
一、根轨迹的定义 如图所示一般闭环系统的闭 环传递函数为
另外,必须指出,用上式求出的点不一定都是分离点或 会合点,还必须满足特征方程或用相应的规则来检验。
轨迹
例4.1的分离点和汇合点
s( s 4)( s 2 2s 2) kg ( s 5)
dk g ds 0
得到-5.93,-3.38,-0.67+j0.46,-0.67-j0.46
轨迹
§4—4
一、参数根轨迹
参数根轨迹和多回路根轨迹
*参数根轨迹:系统闭环极点随Kg以外的参数变化而变化的
轨迹。
*绘制方法:把特征方程作等效处理,把要研究迹的绘制方法,进行绘制。
例4.2 单位反馈系统开环传递函数为
*
绘制以a为变量的根轨迹。并分析a与系统性能的关系。
*
软实验
轨迹
§4—5 正反馈系统的根轨迹
一、正反馈系统的特征方程 传递函数
Y ( s) G1 ( s) G( s) X ( s) 1 G1 ( s) H ( s)
X(s)
G1(S) H(S)
Y(s)
特征方程
1 G1 (s) H (s) 1 G0 (s) 0
简写为
G0 ( s) 1
轨迹
§4—2 绘制根轨迹的依据和条件
根轨迹的绘制依据是特征方程,根据特征方程可以得出比
根轨迹法PPT课件
W.R.EVAOVS(依万斯)于1948年首先提出了求解特征方程 式根的图解法─根轨迹法。
根轨迹简称根迹,它是开环系统某一参数从零变到无穷
时,闭环系统特征方程的根在 s 平面上变化的轨迹。
解: n 3,m 0
① p1 0,p2 1,p3 2 为根轨迹的起点;
开环无零点,故三个分支终点均趋向无穷远。
②
a
(2q 1)
nm
(2q 1)
3
60、180、300
(q 0,1,2)
n
m
a
i 1
pi z j
j 1
nm
3 0 1 3
③ 实轴上根轨迹:
( ,2],[1,0]
j
p3 2
第四章 线性系统的根轨迹法
§4-1 根轨迹法的基本概念 §4-2 绘制根轨迹的基本条件和基本规则 §4-3 参数根轨迹 §4-4 正反馈回路和零度根轨迹 §4-5 利用根轨迹法分析系统的暂态响应
§4-1 根轨迹法的基本概念
一、根轨迹的概念
从上一章讨论知道,闭环系统的动态性能与闭环极点在
s 平面上的位置是密切相关的,分析系统性能时往往要求确
对于实轴上0至1线段的实数根而言,其对应的K*值在
b 点为极大值。
可以证明,当l 条根轨迹分支进入并立即离开分离点时,
分离角为 (2k 1) l .
k 0,1, ,l -1
例4-3:求上例中 b 点的坐标。
[规则3] 根轨迹的渐进线
当开环有限极点数 n大于有限零点数时,有 (n m)
条根轨迹分支沿着与实轴交角为 a 、交点为 a的一组
自动控制原理第四章根轨迹法
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数
自动控制原理 第4章 线性系统的根轨迹法:根轨迹法的基本概念 绘制的基本法则
-1.5
相角条件:92.49o- 66.27o- 78.8o- 127.53o= –180o 模值条件 K*= 2.26×2.11×2.61 = 6 2.072
k* 6 k 4 1.5 1.5
k * (s 1) G (s )H (s ) (s 0.5)( s 1.5)( s 2)
根轨迹的模值条件与相角条件 没有零点的相角条件和模值条件你会推吗? 相角条件: (P140) n m
∑ ∠ (s-z ) - ∑ ∠ (s-p ) = (2k+1) π j i j=1 i=1
m 绘制根轨迹的充要条件
k=0, ±1, ±2, …
模值条件:
1+K Kn =
i=1
) ∏︱ ( s - zn ︱ j p s ︱ ︱ ∏ j=1 i * *
规则6:根轨迹的起始角(出射角)和终止角 (入射角)
起始角(出射角):根轨迹离开复平面上开环极点处的
切线与实轴的夹角
pi
。
m n o pi 1 8 0 zj p p p i j i 1 j 1 j j i
终止角(入射角):根轨迹进入复平面上开环零点处的
j
-2
-1
0
综上所述: (1)k*从0 ~ ∞ 时,系统的根轨迹是连续变化。可见:
系统的参量变化对系统闭环极点分布的影响。
(2)由根轨迹图,可得系统动、静态性能的信息: 1)稳定性 无论k*值如何变化( k*>0),闭环极点不出现
在s的右半平面,所以系统是稳定的。
2)稳态误差
I型系统,K为静态速度误差系数。
2019/2/17
特征方程:
S2+2s+2k=0
根轨迹的基本概念
0.1
0.113
0.887
0.25
0.5
0.5
0.5 j0.5
0.5 j
0.5
0.5 j0.5
0.5 j
由于系统的闭环极点是连续变化的,将它们表示在s平面上就是该系统的根 轨迹,如图所示
图中箭头方向表示当开环增益K增大时闭环极点移动的方向,开环极点用
“ ”来表示,开环零点用“ ”来表示(该系统没有开环零点),粗实线即
设系统的开环传递函数为 m
K* (s zi )
G(s)H (s)
i 1 n
(s pj )
j 1
式中 K* ——根轨迹增益;
zi ——开环零点;
p j ——开环极点。
则系统的根轨迹方程(及闭环特征方程)为
1 G(s)H (s) 0
所以 G(s)H (s) 1 ,即根轨迹方程为
m
K* (s zi )
例如,系统的特征方程为 (0.5s 1)(Ts 1) 10(1 s) 0
即
Ts(0.5s 1) (11 9.5s) 0
方程的两边除以其中不含T的项,得
1 Ts(0.5s 1) 0 11 9.5s
该方程可进一步改写成
1 T *s(s 2) 0 s 11 9.5
其中,T *
i 1 n
1
(s pj )
j 1
显然,满足上式的复变量s为系统的闭环特征根,也就是根轨迹上的点。当 K*
从0到 变化时,n个特征根将随之变化出n条轨迹。这n条轨迹就是系统的根轨迹。
根轨迹方程可分解为相角方程和幅值方程,其中相角方程为
m
n
(s zi ) (s p j ) (2k 1)180 (k 0 ,1,2 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m
n
上述两式称为满足根轨迹方程(kg>=0)的幅值条件和相角条件。
当根轨迹增益kg<0时:
根轨迹方程可写为:
| kg | s z j
j 1
m
s p
i 1
m j 1
n
e
n m j ( s z j ) ( s pi ) i 1 j 1
的旁边。
根轨迹的两种类型:
180o等相角根轨迹:复平面上所有满足相角条件式(kg>=0)
的点连成的曲线,称为180o等相角根轨迹,简称根轨迹。 0o等相角根轨迹:复平面上所有满足相角条件式(kg<0)的 点连成的曲线,称为0o等相角根轨迹。
这样,当根轨迹增益从kg=0到kg=±∞变化时,根据根轨
称 Gk (s) 1 或 k ×
g
(s z ) (s p )
j1
j
m
i1 n
i
1
为负反馈系统根轨迹方程
4.1.2
根轨迹的幅值和相角条件
当根轨迹增益kg>=0时: 根轨迹方程可写为:kg s Nhomakorabea z j
j 1
m
kg
1
(s z )
i
m
s p
i 1
不满足相角条件,所以点B不是根轨迹上 的点。
Im
B A
A2
p2
s2
s
A1
p1
Re
利用幅值条件在根轨迹上确定特定点的根轨迹增益kg
上例中,若A点的坐标是-1+j1,则根据幅值条件:
kg s( s 2) s 1 j1
1 , kg 2
4.1.4
本节小结
根轨迹概念与定义
有必要寻找一种简单的方法获得系统的根轨迹:
利用伊文斯图解法(手工画法)获得系统根轨迹 是一种很实用的工程方法。 使用计算机辅助计算软件,比如MATLAB软件, 获得系统的根轨迹。
4.1.2
根轨迹的幅值和相角条件
根轨迹的幅值和相角条件: 系统的方块图如下:
R( s )
G( s) 闭环传递函数为: ( s) 1 G( s) H (s)
R s
K s 0.5s 1
Y s
R s
D( s) s 2s 2K
s1,2 1 1 2 K
jω
K 0 s1 0 ; s2 2
解为两实根;
K 1
K 0 K 0.5 K 0 0
K 0.5 s1 1 ; s2 1
解为两实重根
控制系统的设计者通常希望借助某种较为简单的分析 方法,当已知的开环系统某个参数发生变化时,可以很明 确地看出闭环特征根的变化趋势。
W.R.伊文思提出了一种在复平面上由开环零、极点确定闭 环极点的图解方法—根轨迹法。 其基本思路:当开环系统的一个或多个参数发生变化时, 根据系统的开环零点和极点,借助若干条绘图准则,绘制出 闭环特征根变化的轨迹,简称根轨迹。
kg s(s 2) |s A s (s 2) A1 A2
B A
Im
A2
p2
s2
s
A1
p1
Re
Gk ( s )
kg s( s 2)
显然,对于A点,有: A1 A2 ,A 点是根轨迹上的点。对于B点,由于: kg | s B s (s 2) B1 B 2 s(s 2)
2 K 1
K 1 s1 1 j ; s2 1 j
解为一对共轭复根
根轨迹定义:控制系统的某一参数由零到无穷大变化时, 闭环系统的特征根(闭环极点)在s平面上形成的轨迹。 在根轨迹图中,根轨迹用粗实线表示,根轨迹上的 箭头表示参变量增加的方向,开环零点和极点在图中 分别用“○”和“×”表示, “ · ”表示根轨迹上的 点。
m j 1 n
n
e
n m j ( s z j ) ( s pi ) i 1 j 1
(s p )
j j 1
i 1 n
1
i
即: k g ( s z j )
(s p )
i i 1
1
1 , 2, (s z ) (s p ) (2k 1),k 0,
闭环传递函数的极点就是闭环特征方程: 1 Gk (s) 0 的根。
换句话说,满足: Gk ( s) 1或:k g 系统的极点,闭环特征 方程的根。
(s z )
i
m
(s p )
j j 1
i 1 n
1的点就是闭环
当根轨迹增益kg从零到无穷大变化时,满足上式的对应于 所有kg的s值,就是闭环传递函数的极点。把这些闭环极点在平 面s上按顺序连接起来,就是闭环系统的根轨迹。
第4章 线性系统的根轨迹分析法
4.1 根轨迹的基本概念 4.2 绘制根轨迹的基本规则 4.3 控制系统根轨迹绘制示例 4.4 基于根轨迹法的系统性能分析
4.1
根轨迹的基本概念
4.1.1 根轨迹概念 4.1.2 根轨迹的幅值和相角条件
4.1.3
利用试探法确定根轨迹上的点
4.1.1
根轨迹的基本概念
根轨迹的意义 由时域分析法可知,系统的输出响应很大程度上取决于闭 环特征方程式的根(特征根),即闭环传递函数的极点。当系 统的某个参数变化时,特征方程的根随之发生变化,系统的性 能也跟着发生变化。 对于高阶系统来说,手工求解闭环特征方程的根较为困 难。尤其是当系统的参数(比如开环增益,开环零点和开环 极点等)发生变化时,闭环特征根需要重复计算,而且不能 看出系统参数变化对闭环特征根分布的影响趋势。
m
n
上述两式称为满足根轨迹方程(kg<0)的幅值条件和相角条件。
说明: 根据幅值条件和相角条件画出的曲线分别称为等幅值根轨 迹和等相角根轨迹。 等幅值根轨迹与等相角根轨迹是正交的。 每一个交点表示了相应的根轨迹增益对应的闭环特征根。 绘制根轨迹时,一般先用相角条件绘制出等相角根轨迹图, 然后利用幅值条件计算出根轨迹上各点对应的值,并标在该点
迹应满足的相应幅值和相角条件,完全可以确定s平面上的根 轨迹和根轨迹上各点对应的kg值。
4.1.3
利用试探法确定根轨迹上的点
利用试探法确定根轨迹上的点: 由于根轨迹上的点满足相角条件,所以可利用相角条件来 判断s平面上的点是否在根轨迹上。 以例4.1.1为例: 假设s平面上有任意点A,如右图所示。 记-p1指向点A的向量为s,-p2指向点A 的向量为s+2,向量s和s+2的相角分 别为A1和A2,假设kg>=0,则开环 传递函数的相角为:
-
G (s)
Y ( s)
H (s)
开环传递函数为: Gk (s) G(s) H (s)
将 Gk (s)写成开环零、极点形式 得:
Gk ( s) k g
(s z )
i i 1 n j j 1
m
(s p )
式中:kg 称为根轨迹增益; zi,p j 为开环零、极点。
绘制根轨迹图的基本方法是根据系统的开环零点、极点以 及根轨迹增益kg来获得系统闭环极点的轨迹 。
根轨迹方程 根轨迹的幅值条件和相角条件
180度和0度等相角根轨迹,等幅值根轨迹
相角条件和幅值条件的使用 用解析法画根轨迹的方法
kg
1
(s z )
i
m
(s p )
j j 1
i 1 n
1
i
即: | k g | (s z j )
(s p )
i i 1
n
1
1 , 2, (s z ) (s p ) 2k,k 0,
j 1 j i 1 i
利用根轨迹法可以: 分析闭环系统的稳定性
计算(或估算)闭环系统的瞬态和稳态性能指标 确定闭环系统的某些参数对系统性能的影响 对闭环系统进行校正
例
GK s
GB ( s )
一、根轨迹的基本概念
Y s
2
K 2K s(0.5 s 1) s s 2
2K s 2 2s 2 K