10.1 非参数bootstrap方法
非参数bootstrap方法

非参数bootstrap方法
非参数bootstrap方法是一种统计学中的重采样技术,用于估计参数的分布或统计量的抽样分布。
它可以应用于各种统计学方法,包括回归分析、假设检验和置信区间估计等。
这种方法的基本思想是通过反复地从原始数据集中抽取子样本,并基于这些子样本来估计参数或统计量的分布。
每个子样本可以有放回地抽样或无放回地抽样,然后利用这些子样本来计算参数或统计量的估计值。
通过对多个子样本进行抽样和计算,可以得到参数估计值或统计量的抽样分布,从而得到参数的置信区间或进行假设检验。
非参数bootstrap方法的优点在于它不需要对数据的分布做出假设,因此适用于各种类型的数据。
它还可以提供对参数估计值或统计量的稳健性评估,可以帮助减少估计误差和提高结果的可靠性。
但是,非参数bootstrap方法的计算成本较高,尤其是对于大规模数据集来说,需要大量的计算资源和时间。
非参数bootstra方法

对于样本10000
(
M* 10000
135.1)2
(134.9
135.1)2
0.04,
用这10000个数的平均值
1
10000
10000
(
i 1
M
* i
135.1)2
0.07
近似E[(M )2 ] ,
既得MSE[(M )2]的bootstrap 估计为 0.07.
例3 设X ( X1, X2 ,, Xn )是来自总体F的样本,
20 相继地、独立地求出B个(B 1000)容量为
n的bootstrap 样本,x* i ( x1* i , x2* i ,, xn* i ), i 1,2,, B. 对于第i个bootstrap 样本,计算
ˆ* i ˆ( x1* i , x2* i ,, xn* i ),
i 1,2,, B,
(ˆ(*k1 ) ,ˆ(*k2 ) ) 这一区间称为的置信水平为1 的bootstrap 置信
区间. 这种求置信区间的方法 称为分位数法.
例4 在例2中(1)以样本中位数作为总体 中位数 的 估计求 的置信水平为0.95的bootstrap的置信区间; (2)以样本20%截尾均值作为总体 20%截尾均值1 的估计,求1的置信水平为0.95的bootstrap置信区
以样本中位数作为总体 中位数 的估计,试求中位
数估计的标准误差的 bootstrap 估计. 解 将原始样本自小到大排序,中间一个数为12.0, 相继地、独立地在上述5个数据中,按放回抽样的 方法取样,取B 10得到下述10个bootstrap样本:
样本1 9.5 18.2 12.0 10.2 18.2 样本2 21.2 18.2 12.0 9.5 10.2 样本3 21.1 10.2 10.2 12.0 10.2 样本4 18.2 12.0 9.5 18.2 10.2 样本5 21.1 12.0 18.2 12.0 18.2 样本6 10.2 10.2 9.5 21.1 10.2 样本7 9.5 21.1 12.0 10.2 12.0 样本8 10.2 18.2 10.2 21.1 21.1 样本9 10.2 10.2 18.2 18.2 18.2 样本10 18.2 10.2 18.2 10.2 10.2
非参数统计中的Bootstrap方法详解(四)

非参数统计中的Bootstrap方法详解引言非参数统计是指不对总体分布进行任何假设的统计方法,它主要用于处理那些数据不服从特定分布的情况。
Bootstrap方法是非参数统计中一种重要的方法,它能够通过对样本数据的重抽样来进行参数估计和推断,具有较高的灵活性和鲁棒性。
本文将对Bootstrap方法进行详细的介绍和解析。
Bootstrap方法的基本原理Bootstrap方法是由Bradley Efron在1979年提出的,它的基本原理是通过对样本数据的重抽样来估计总体分布的参数以及参数的置信区间。
具体来说,Bootstrap方法包括以下几个步骤:1. 从原始样本中有放回地抽取n个样本数据,构成一个新的Bootstrap样本。
2. 对Bootstrap样本进行统计量的计算,例如均值、标准差等。
3. 重复上述步骤B次(通常取B=1000),得到B个统计量的值。
4. 利用这B个统计量的值来估计总体参数的分布,并计算参数的置信区间。
Bootstrap方法的优势和适用范围相比于传统的参数估计方法,Bootstrap方法具有以下几个优势:1. 不需要对总体分布进行假设,适用范围更广。
2. 对于小样本和非正态分布的数据具有较好的效果。
3. 能够通过置信区间的构造来评估参数估计的精度。
Bootstrap方法在各种统计学问题中都得到了广泛的应用,例如在回归分析、假设检验、时间序列分析等领域都有着重要的作用。
Bootstrap方法的实际应用下面我们将通过一个具体的例子来介绍Bootstrap方法在实际应用中的使用。
假设我们有一组观测数据x1, x2, ..., xn,我们希望估计这组数据的均值以及均值的置信区间。
传统的做法是利用t分布来进行参数估计,但是在这里我们将采用Bootstrap方法来进行估计。
首先,我们从原始样本中有放回地抽取n个样本数据,构成一个新的Bootstrap样本。
然后对Bootstrap样本进行均值的计算,重复这个过程B次,得到B个均值的值。
bootstrap检验法

bootstrap检验法Bootstrap检验法1. 前言假设你有一个样本数据集合,你想要知道这个数据集的某些特征(比如均值、中位数、标准差、相关系数等)是否显著不同于其它数据集的这些特征,那么你可以使用假设检验。
经典的假设检验(如t检验、ANOVA、卡方检验等)需要满足一些假设前提条件,比如正态分布、方差齐性等。
如果这些前提条件得不到满足,则假设检验的结果可能会出现误差。
Bootstrap检验法是一种非参数检验方法,不需要满足前提条件,因此可以在不确定数据分布的情况下,对统计量进行检验,从而得出更加鲁棒的结果。
本文将介绍Bootstrap检验法的原理、应用场景以及示例代码,帮助读者更好地理解和应用该检验方法。
2. 原理Bootstrap检验法基于自助法(Bootstrap)的思想。
自助法是一种经验估计的方法,它通过从原始数据集中有放回地抽取n个样本,生成一个新的数据集,重复抽样m次得到m个样本,再对这m个样本进行统计量的计算,形成该统计量分布的样本估计。
Bootstrap检验法则是基于自助法生成的m个样本估计,对所感兴趣的两个样本进行比较的非参数检验。
通常使用百分位数法进行Bootstrap检验。
该方法将两个样本生成的m 个统计量分布进行合并,计算出合并后的统计量分布的百分位数,得到该百分位数两侧的统计量分布,以此作为假设检验的P值。
3. 应用场景Bootstrap检验法可用于比较两个数据集随机变量的各种统计量,比如均值、中位数、标准差、相关系数等。
适用于以下场景:1)样本量较小的情况。
2)数据集分布无法确定的情况。
3)数据集不满足方差齐性等前提条件的情况。
4. 示例代码以下代码演示如何使用Python的Scipy库进行Bootstrap检验:```pythonfrom scipy import statsimport numpy as np# 生成两个不同分布的样本数据集data1 = stats.norm.rvs(loc=2, scale=1, size=100)data2 = stats.norm.rvs(loc=3, scale=1, size=50)# 计算两个样本的均值差值diff_mean = np.mean(data1) - np.mean(data2)# 执行自助抽样n=10000次num_samples = 10000diff_mean_samples = np.empty(num_samples)for i in range(num_samples):bootstrap1 = np.random.choice(data1, size=100, replace=True)bootstrap2 = np.random.choice(data2, size=50, replace=True)diff_mean_samples[i] = np.mean(bootstrap1) - np.mean(bootstrap2)# 计算Bootstrap检验的p值p_value = (np.sum(diff_mean_samples >= diff_mean) +np.sum(diff_mean_samples <= -diff_mean)) / num_samplesprint('Bootstrap检验的p值为:', p_value)```上述代码中,首先生成了两个不同的数据集`data1`和`data2`,分别对应了两个分布。
python建模非参数bootstrap方法

python建模非参数bootstrap方法非参数bootstrap方法是一种基于重采样的统计方法,可以用于估计统计量的置信区间以及假设检验。
在Python中,可以使用scikit-learn和statsmodels等库来实现非参数bootstrap方法。
首先,我们需要导入必要的库和数据集。
下面是一个示例数据集,用于说明如何使用非参数bootstrap方法:```pythonimport numpy as npimport seaborn as sns# 生成示例数据np.random.seed(42)x = np.random.normal(loc=0, scale=1, size=100)```接下来,我们可以使用scikit-learn库中的`bootstrap`函数进行bootstrap重采样。
`bootstrap`函数的第一个参数是要重采样的数据,第二个参数是重采样的次数,可以通过`n_iter`参数指定。
以下是示例代码:```pythonfrom sklearn.utils import resample# 定义bootstrap函数def bootstrap(data, n_iter):bootstrap_resample = resample(data, replace=True,n_samples=n_iter)return bootstrap_resample```在进行统计量的估计时,一种常见的方法是计算重采样样本的均值或中位数。
以下是一个示例,展示了如何使用`bootstrap`函数来计算数据集重采样的均值:```python# 计算重采样样本的均值boot_means = [bootstrap(x, 100).mean() for _ in range(1000)]# 绘制均值的直方图sns.histplot(boot_means, kde=True)```另一种常见的应用是计算统计量的置信区间。
非参数统计中的Bootstrap方法详解(七)

Bootstrap方法是一种常用的非参数统计方法,它的原理和应用十分广泛。
在本文中,我们将详细介绍Bootstrap方法的原理和应用,以帮助读者更好地理解和运用这一方法。
Bootstrap方法的核心思想是通过重复抽样的方式,利用样本数据来估计总体参数或统计量的抽样分布。
它的应用领域非常广泛,可以用于估计总体参数的置信区间、假设检验、回归分析等统计问题。
Bootstrap方法的优点在于不需要对总体分布进行严格的假设,适用于各种类型的数据。
首先,我们来看看Bootstrap方法的原理。
假设我们有一个样本数据集,我们希望估计其中的某个参数的抽样分布。
传统的方法是基于总体分布的假设,使用统计理论进行推导。
而Bootstrap方法则是通过重复抽样的方式,从样本数据中生成一系列的“虚拟样本”,然后利用这些虚拟样本来估计参数的抽样分布。
具体来说,Bootstrap方法包括以下几个步骤:1. 从原始样本中有放回地抽取若干个数据点,构成一个新的虚拟样本。
2. 利用这个虚拟样本来计算参数或统计量的值。
3. 重复上述步骤很多次,得到一系列参数或统计量的值。
4. 根据这些值来估计参数或统计量的抽样分布。
通过这种方法,我们可以得到总体参数或统计量的抽样分布,从而进行置信区间估计、假设检验等统计推断。
接下来,我们来看看Bootstrap方法的应用。
首先,Bootstrap方法可以用于估计总体参数的置信区间。
假设我们需要估计总体均值的置信区间,传统的方法是基于总体分布的假设,使用t分布进行推断。
而Bootstrap方法则是通过生成虚拟样本来估计均值的抽样分布,从而得到置信区间。
这种方法在样本容量较小或总体分布非正态的情况下特别有用。
此外,Bootstrap方法还可以用于假设检验。
假设我们需要检验两个总体均值是否相等,传统的方法是使用t检验。
而Bootstrap方法则是通过生成虚拟样本来估计两个均值的差异,从而进行假设检验。
这种方法在总体分布非正态或方差不齐的情况下特别有用。
Bootstrap方法简介

Bootstrap 方法简介1 Bootstrap 抽样方法Bootstrap 方法是Efron 在 1977 年提出的一种数据处理方法,其本质上是对已知数据的再抽样。
Bootstrap 的数学原理大致如下:1(,,)n T T T =是来自总体分布函数为()F T 的独立同分布随机样本。
()n F T 是由样本T 得到的分布函数(在产品可靠性分析中,()n F T 一般是指数函数或多参数weibull 函数),由()n F T 得到的参数估计ˆˆ()F θθ=,它可以作为样本参数θ的准确值。
再从新总体()nF T 中抽取与样本T 相同的伪样本1(,,)m m T T T =,一般取m n =。
用伪样本m T 求出参数θ的估计值。
重复操作M 次(一般取1000M =)可得到M 个基于伪样本m T 而得到的θ估计值[4]。
Bootstrap 方法在应用中,重复抽样带来的误差不可避免。
误差主要来源于样本数据的抽样误差和从样本分布中的再抽样误差。
对于再抽样误差,只要 Bootstrap 再抽样样本数充分大,由样本分布所得的再抽样误差就会趋于消失,Bootstrap 估计的所有误差就会接近于抽样误差[5] 。
Bootstrap 方法根据抽样方式的不同可分为参数和非参数两种。
非参数方法主要用于在不知道抽样函数服从什么分布情况下,对经验分布不做过多的假设,把试验数据按从小到大排序获得经验分布,然后从中抽取伪样本的一种方法;参数方法主要用于经验分布已知情况下,当试验数据分布明确时,运用参数方法比运用非参数方法效率更高[6]。
由于多方面的原因,使得收集到的故障间隔时间数据中常含有分离群数据,这些数据会导致估计精度降低。
但是,对于高可靠度的现代机电产品来说收集到的每一个数据都来之不易,所以不易轻易舍去。
因此,可以应用改进的参数 Bootstrap 方法,具体过程如下:(1) 将试验样本数据12(,,,)n X X X X =从小到大排序,每次从中去掉一个样本 i X ,剩下1n -个样本用传统方法建模,得出样本分布函数(1)()n i F T -的估计参数值ˆm 和ˆη。
非参数统计中的Bootstrap方法详解(九)

非参数统计中的Bootstrap方法详解引言统计学是一门研究数据收集、分析、解释和呈现的学科,而非参数统计学是统计学中的一个重要分支,它主要研究与总体分布函数的形式无关的统计方法。
Bootstrap方法是非参数统计学中的一种重要方法,它通过对原始数据的重抽样来估计总体参数的分布,为我们提供了一种全新的统计推断方法。
本文将详细介绍Bootstrap方法的原理、应用和局限性。
Bootstrap方法的原理Bootstrap方法是由Bradley Efron在1979年引入统计学领域的,它的核心思想是基于原始样本数据进行重抽样,从而得到大量的样本数据集,然后利用这些重抽样样本数据集来估计总体参数的分布。
具体而言,假设我们有一个包含n个观测值的样本数据集X={x1,x2,...,xn},我们希望估计总体参数θ的分布。
Bootstrap方法的原理如下:1. 从样本数据集X中有放回地抽取n个观测值,组成一个新的重抽样样本数据集X*;2. 利用重抽样样本数据集X*来估计总体参数θ;3. 重复步骤1和步骤2,得到B个重抽样样本数据集X*1,X*2,...,X*B;4. 根据B个重抽样样本数据集X*1,X*2,...,X*B的估计结果,得到总体参数θ的分布。
Bootstrap方法的应用Bootstrap方法在统计学中有着广泛的应用,特别是在参数估计、假设检验和置信区间估计等方面。
下面我们将详细介绍Bootstrap方法在这些方面的应用。
1. 参数估计在传统的参数估计方法中,我们通常会假设总体的分布形式,并根据假设的分布形式来估计总体参数。
然而,在实际应用中,我们往往并不清楚总体的分布形式,这时就可以利用Bootstrap方法来进行参数估计。
通过对重抽样样本数据集的估计结果,我们可以得到总体参数的估计值和标准误差,从而更加准确地估计总体参数。
2. 假设检验假设检验是统计学中常用的推断方法之一,它用于检验样本数据是否来自某个特定的总体分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ˆ ( x1 , x2 ,, xn )那样求出 计算估计 的估计 * * * ˆ ˆ ˆ*称为 的bootstrap估计. ( x1 , x2 ,, xn ), 估计
相继地、独立地抽得B个bootstrap 样本, 以这些样本分别求出 的bootstrap 估计如下:
bootstrap 样本1 bootstrap 样本 2
2
例3 设X ( X1 , X 2 ,, X n )是来自总体F的样本,
ˆ ˆ ( X 1 , X 2 ,, X n )是参数的估计量 .
ˆ关于 的偏差定义为 的估计 ˆ) . ˆ ) E ( b E ( ˆ是 的无偏估计时b 0. 当
样本2 21.2 18.2 12.0 样本3 21.1 10.2 10.2 样本4 18.2 12.0 样本6 10.2 10.2 9.5 9.5 样本5 21.1 12.0 18.2 样本7 9.5 21.1 12.0 样本8 10.2 18.2 10.2 样本9 10.2 10.2 18.2 样本10 18.2 10.2 18.2
试在例2中, 以样本中位数M M ( X )作为总
体F的中位数 的估计, 求偏差b E ( M )的bootstrap 估计.
由例2知原始样本的中位数为135.1.
ˆ 135.1, 以135.1作为总体中位数R 的估计,即
ˆ, 取R R( X ) M ˆ ). 需要估计R( X )的均值E ( M
* * *1 ˆ1* x1 1 , x2 ,, xn 1 , bootstrap估计
* ˆ2 x , x ,, x ,bootstrap估计
* 2
2
*2 1
*2 n
*B *B *B * ˆB bootstrap 样本B x1 , x2 ,, xn ,bootstrap估计
ˆ的标准误差 D( ˆ ), 则
样本1
133.2 134.1 134.1 134.1 134.8 134.8 134.8 134.9 134.9 134.9 135.0 135.2 135.2 135.4 135.4 135.8 135.8 136.3 136.3 136.6 136.6 141.2 143.3 143.3 147.8 148.8
1 于是样本中位数为 (135 .0 135 .2) 135.1. 2 ˆ 135.1. 以135.1作为总体中位数 的估计, 即
ˆ )2 . 取R R( X ) ( M ˆ )2 ] . 需要估计R( X )的均值E[( M
相继地、独立地抽取10000个样本如下:
1 B ˆ* * 2 ˆ ( ) i B 1 i 1
B 1 ˆi* . 其中 * B i 1
ˆ )就是bootstrap 的估计. D(
ˆ ) 即bootstrap 的估计的步骤是 求 D(
10 自原始数据样本x ( x1 , x2 ,, xn )按放回
* * * * 抽得容量为 n 的样本 x ( x , x , , x 抽样的方法, 1 2 n)
(称为bootstrap 样本 )
2 相继地、 独立地求出B个( B 1000)容量为
0
n的bootstrap 样本,x
*
i
( x , x ,, x ),
* 2i*i 1 Nhomakorabea*i n
i 1,2,, B.
得样本中位数为135.3
样本10000
134.3 134.5 134.5 134.5 134.7 134.8 134.8 134.8 134.8 134.8 134.9 134.9 134.9 134.9 135.0 135.4 135.4 135.4 135.4 135.4 135.8 136.6 146.5 146.5 147.8 148.8
1 B ˆ 其中 i , 然而F常常是未知的, B i 1
x1 , x2 ,, xn是来自F的样本值, 设F未知,
Fn 接近F . Fn是相应的经验分布函数 . 当n很大时,
得到一个容量为n的 以Fn代替F , 在Fn中抽样,
* * * 样本x1 , x2 ,, xn . 这就是bootstrap 样本.
对于例2中第i个样本计算
ˆ ) ( M i* 135.1), Ri* R( x* i ) ( M i*
即有对于样本1
i 1,2,,10000. * ( M1 135.1) 0.02
对于样本10000
估计为
M
* 10000
135.1 0.02
将上述10000个数取平均值得到偏差 b的bootstrap
第一节
非参数bootstrap方法
一、估计量的标准误差bootstrap估计 二、估计量的均方误差及偏差的 bootstrap估计 三、bootstrap置信区间
四、用bootstrap t法求均值的bootstrap的置信 区间
五、小结
但已经有一个容量为 n 设总体的分布F未知, 的来自F的数据样本, 自这一样本按放回抽样的方 法抽取一个容量为n的样本, 这种样本称为
对于第i个bootstrap 样本,计算
*i *i *i *i ˆ ˆ ( x1 , x2 ,, xn ),
i 1,2,, B,
ˆi*称为 的第i个bootstrap 的估计. ( )
B 1 * * 2 0 ˆ ˆ ( ) 3 计算 ˆ i B 1 i 1
对以上每个bootstrap 样本, 求得样本中位数分别为 * ˆ2 ˆ4* 12.0 ˆ5* 18.2 ˆ1* 12.0 12.0 ˆ3* 10.2
ˆ6* 10.2
* ˆ10 ˆ7* 12.0 ˆ8* 18.2 ˆ9* 18.2 10.2
ˆ 12.0作为总体中 以原始样本确定的样本中位数
ˆ 的标准差 ˆ D( ˆ ) 来度量估计的精度 . 用估计量
ˆ 的标准差 ˆ 也称为估计量 ˆ 的标准误差. 估计量
设X1 , X 2 ,, X n是来自以F ( x )为分布函数的总体
的样本, 是我们感兴趣的未知参数,
ˆ ˆ ( X 1 , X 2 ,, X n )作为 的估计量, 用
* ( M10000 135.1)2 (134.9 135.1)2 0.04,
用这10000个数的平均值
1 10000 * 2 ( M 135 . 1 ) 0.07 i 10000 i 1
近似E[( M )2 ] ,
既得MSE[( M ) ]的bootstrap 估计为 0.07.
ˆ 的抽样分布很难处理, 应用中
ˆ ) 无法用一个简单的表达式给出, 标准差 D( ˆ ) 的估计. 但可以用计算机模拟的 方法来求得 D(
ˆ的 对每个样本计算 自F产生很多容量为n的样本, ˆ2 ,, ˆB , 则 D( ˆ1 , ˆ ) 可以用 值, 得
1 B ˆ 2 ˆ ( ) i B 1 i 1
得样本中位数为134.9
对于第i个样本计算
ˆ )2 ( M * 135.1)2 , R R( x i ) ( M i* i
* i
*
对于样本1
* 1 2 2
i 1,2,,10000.
( M 135.1) (135.3 135.1) 0.04,
对于样本10000
bootstrap样本或自助样本 .
相继地、 独立地自原始样本中取 出很多
个bootstrap样本, 利用这些样本对总体F进行统计
推断, 这种方法称为非参数bootstrap方法, 又称自
助法.
一、估计量的标准误差bootstrap估计
在估计总体未知参数 时 :
ˆ 的同时还要指出这一估计 ˆ 的精度; 给出 的估计
样本, x ( x1, x2 ,, xn )是一个已知的样本值 . F中
ˆ= ˆ ( X 1 , X 2 ,, X n )是 的估计量 含有未知参数, .
现在来求的置信水平为1 的置信区间.
相继地、独立地从样本x ( x1 , x2 ,, xn )中抽
出B个容量为n的bootstrap 样本, 对于每个bootstrap样本求出的bootstrap 估计: * * ˆ1* , ˆ2 ˆB ,, .
10000 1 * b* ( M i 135.1) 10000 i 1
1 10000 * M i 135.1 10000 i 1
135.14 135.1 0.04.
三、bootstrap置信区间
设X ( X1 , X 2 , X n )是来自总体F容量为n的
B 1 ˆi* . 其中 * B i 1
例1 某种基金的年回报率是具有分布函数F的连续
F的中位数是未知参数 . 型随机变量,F未知,
现有以下的数据(%率)
18.2 9.5 12.0 21.1 10.2
试求中位 以样本中位数作为总体中位数 的估计,
数估计的标准误差的bootstrap 估计.
位数的估计, 其标准误差的bootstrap 估计为
10 1 ˆˆ ( ˆi* * )2 3.4579 . 9 i 1
二、估计量的均方误差及偏差的bootstrap 估计
设X ( X1 , X 2 ,, X n )是来自总体F的样本,
F未知, 它依赖于 R R( X )是感兴趣的随机变量, 样本X .
解 将原始样本自小到大排序, 中间一个数为12.0, 相继地、 独立地在上述5个数据中,按放回抽样的
取B 10得到下述10个bootstrap样本: 方法取样,