卫星轨道计

卫星轨道计
卫星轨道计

卫星轨道计算

1.轨道根数

如果知道卫星的轨道根数,可以根据它们求出卫星在任一时刻的位置。

1.1 开普勒六参数

卫星的轨道根数包括六个积分常数,如图1,包括,a为轨道长半轴;e为轨道偏心率;i 为卫星运动轨道面与赤道面的夹角;Ω为卫星轨道升交点N的赤道经度(自春分点算起);ω为轨道近地点极角,即轨道平面内升交点到近地点的角度;ζ为卫星过近地点时刻

1. 轨道半长轴,是椭圆长轴的一半。

2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。

3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是0。

4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张角称为升交点赤经。

5. 近地点幅角:这是近地点和升交点对地心的张角。

6. 过近地点时刻:卫星位置随时间的变化需要一个初值。

其中i、Ω、ω决定卫星轨道平面和长轴在空间的位置,而a、e、ζ可求出卫星在任何时刻在轨道上的位置。

1.2 TLE卫星星历

TLE两行根数格式如下:

AAAAAAAAAAAAAAAAAAAAAAAA

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN

以国际空间站为例

ISS (ZARYA)

1 25544U 98067A 06052.34767361.00013949 00000-0 97127-4 0 3934

2 25544 051.6421 063.2734 0007415 308.626

3 249.9177 15.74668600414901

(1)第0行

第0行是一个最长为24个字符的卫星通用名称,由卫星所在国籍的卫星公司命名,如SINOSAT 3。卫星通用名称与NORAD编号、国际编号都是卫星识别编码。

(2)行号

行号是卫星星历的序列号,如第1行或第2行。

(3)NORAD卫星编号

NORAD卫星编号,又称为NASA编号,SCC编号,是NORAD特别建立的卫星编号,每一个太空飞行器都被赋予唯一的NORAD卫星编号。

NORAD卫星编号由五位数的卫星识别码组成,每一位数都有特定的含义。

如“鑫诺3号”卫星的NORAD卫星编号为31577;遥感2号(YAOGAN 2)卫星的NORAD卫星编号为31490;“长征3号甲”(CZ-3A)为31578。

(4)秘密级别

卫星星历的秘密级别,分为3个的级别,分别用一个字符来表示:

①U 非保密的

②C 机密的

③S 绝密的

(5)国际编号

国际编号是全世界国家使用的一种卫星标识方法,前两位是发射年份,后面是在这一年的发射序号。

如“鑫诺3号”卫星的国际编号是07021A。

“07”表示“鑫诺3号”卫星的发射年份2007年;

“021”表示2007年国际编号的第21次发射;

“A”表示是第一次。按照国际编号规则,如果一次发射多颗卫星,使用26个英文字母排序,按照A、B、C、D的顺序排列为每个卫星编号;如果超过了26个编号,则使用两位字母,如AA、AB、AC编号。

(6)TLE历时

世界标准时间(UTC,Universal Time/Temps Cordonne),又称为协调世界时。

UTC是从英国国际时间和法国协调时间演变而来。UTC是以原子时秒长为基础,在时刻上尽量接近于世界时的一种时间计量系统。

UTC使用纪元年的后两位,以及用一个十进制小数表示的一年中的第几日和日中的小数部分。

TLE历时使用UTC,指出了飞行体在确定的平近点离角的最精确的UTC时间。

如“鑫诺3号”卫星的TLE历时为07169.62576014。

“07”表示2007年;

“169.62576014”表示2007年的第169.62576014日。换算成精确的U.T.C.时间为2007年6月18日02时10分56秒。

(7)平均运动的一阶时间导数

平均运动的一阶时间导数作为一个平均运动的漂移参数,用来计算每一天平均运动的变化带来的轨道漂移,提供给轨道计算软件预测卫星的位置。两行式轨道数据使用这个数据校准卫星的位置。

(8)平均运动的二阶时间导数

平均运动的二阶时间导数作为一个平均运动的漂移参数,用来计算每一天平均运动的变化带来的轨道漂移,提供给轨道计算软件预测卫星的位置。

(9)BSTAR拖调制系数(地球半径的倒数)

BSTAR拖调制系数,采用十进制小数,适用GP4一般摄动理论的情况下、BSTAR大气阻力这一项,除此之外为辐射压系数。

BSTAR拖调制系数的单位是1/(地球半径)。

(10)美国空军空间指挥中心内部使用

美国空军空间指挥中心内部使用的为1;美国空军空间指挥中心以外公开使用标识为0。(11)星历编号

星历编号是TLE数据按新发现卫星的先后顺序的编号。当一个卫星生成了一套新的TLE数据。在新的TLE数据中,新发现卫星的星历编号按顺序排列,每个数字代表一定意义。如“鑫诺3号”卫星的星历编号为444。

(12)校验和

校验和是指这一行的所有非数字字符,按照“字母、空格、句点、正号=0;负号=1”的规则换算成0和1后,将这一行中原来的全部数字加起来,以10为模计算后所得的和。

校验和可以检查出90%的数据存储或传送错误。按十进制加起来的个位数字的校验和,用于精确纠正误差。

第1行或第1行的校验和,就是第1行或第2行的精确纠正误差的数字。

(13)轨道的交角(度数:°)

轨道的交角是指天体的轨道面和地球赤道面之间的夹度,用0~90°来表示顺行轨道(从地球北极上空看是逆时针运行);用90~180°表示逆行轨道(从地球北极上空看是顺时针运行)。

(16)升交点赤经(度数:°)

升交点赤经是指卫星由南到北穿过地球赤道平面时,与地球赤道平面的交点。

降交点是指卫星由北到南穿过地球赤道平面时,与地球赤道平面的交点。

升交点赤经是指从地球的球心点望过去,升空点的赤经坐标。

(17)轨道离心率

轨道离心率是指卫星椭圆轨道的中心点到地球的球心点的距离(C)除以卫星轨道半长轴(A)得到的一个0(圆型)到1(抛物线)之间的小数值。

在TLE格式中没有体现出小数点,但是总是假定有一个小数点在第一个数字之前。它说明了卫星的轨道椭圆有扁率,以及近地点和远地点的轨道高度。

(18)近地点角距

近地点角距是指在卫星的轨道平面内,从升交点到近地点按照卫星运行方向所走过的角度。近地点角距的数值是一个范围在0~360°之间的度数。

(19)平近点角

平近点角是指平近点角与真近点角和偏近点角之间的关系,即卫星在椭圆轨道上的瞬间位置。平近点角通过开普勒方程求得。

平近点角主要用来指示卫星在TLE数据中的特定的TLE历时瞬间时刻的位置。

平近点角的数值是一个范围在0~360°之间的度数。

(20)平均运动

平均运动(n)是指在一个太阳日内(24h),卫星在它的轨道上绕了多少圈。

平均运动的数值可以在每天0到17圈,没有每天超过17圈的稳定的地球卫星轨道。

卫星轨道周期(T)可以通过求平均运动的倒数获得;卫星轨道半长轴可以用平均运动的数值通过开普勒第三定律求得。开普勒第三定律,又称调和定律:行星绕日一圈时间的平方和行星各自离日的平均距离的立方成正比。

(21)在轨圈数

在轨圈数是指卫星从发射到TLE数据记录的TLE历时之间卫星在轨道上绕行的总圈数。

在轨圈数的最后一位数是小数。

2 MODIS卫星星历下载

北京星地通公司的网页-------https://www.360docs.net/doc/6116017495.html,/eos_data/可以下载到AQUA卫星的TLE;以及其他相关环境卫星的TLE;

3 卫星计算分析软件

卫星工具集分析软件(STK,Satellite Tool Kit)

AGI卫星星历

Norad卫星运行轨道计算软件

Orbition卫星轨道计算软件

ODTK轨道仿真器

StarCalc星图

4.根据卫星星历计算卫星轨道

TLE适用于NORAD发布的SGP、SGP4、SDP4、SGP8、SDP8模型.较常用的是SGP4、SDP4,SGP4用于近地卫星轨道计算,SDP4用于深空卫星轨道计算。

4.1 SGP4 MODEL

(一) 先计算出原始平均运动和半长轴

(二)初始化参数

如果近地点在98km和156km之间, 常量s变为

如果近地点低于98km, 常量s则为

(XKMPER为BSTER) 如果常量s的值改变, 那么就要用下式替代

(三)计算常量(选取恰当的S常量和常量)

(四)计算大气阻力和引力

当在t-to的纪元时刻内,卫星的近地点小于220km的时候,a和IL的公式可以简化,

和可以不计。

(五)长周期项

将代入开普勒方程进行迭代,设

则有,

其中,

(六)短周期项初始量计算

计算密切轨道要素

计算单位方向向量

其中

(七)卫星位置和速度

位置

速度,参数上面有一个点代表一阶导数;

卫星轨道计

卫星轨道计算 1.轨道根数 如果知道卫星的轨道根数,可以根据它们求出卫星在任一时刻的位置。 1.1 开普勒六参数 卫星的轨道根数包括六个积分常数,如图1,包括,a为轨道长半轴;e为轨道偏心率;i 为卫星运动轨道面与赤道面的夹角;Ω为卫星轨道升交点N的赤道经度(自春分点算起);ω为轨道近地点极角,即轨道平面内升交点到近地点的角度;ζ为卫星过近地点时刻 1. 轨道半长轴,是椭圆长轴的一半。 2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。 3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是0。 4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张角称为升交点赤经。 5. 近地点幅角:这是近地点和升交点对地心的张角。 6. 过近地点时刻:卫星位置随时间的变化需要一个初值。 其中i、Ω、ω决定卫星轨道平面和长轴在空间的位置,而a、e、ζ可求出卫星在任何时刻在轨道上的位置。 1.2 TLE卫星星历 TLE两行根数格式如下: AAAAAAAAAAAAAAAAAAAAAAAA 1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN 2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN

以国际空间站为例 ISS (ZARYA) 1 25544U 98067A 06052.34767361.00013949 00000-0 97127-4 0 3934 2 25544 051.6421 063.2734 0007415 308.626 3 249.9177 15.74668600414901 (1)第0行 第0行是一个最长为24个字符的卫星通用名称,由卫星所在国籍的卫星公司命名,如SINOSAT 3。卫星通用名称与NORAD编号、国际编号都是卫星识别编码。 (2)行号 行号是卫星星历的序列号,如第1行或第2行。 (3)NORAD卫星编号 NORAD卫星编号,又称为NASA编号,SCC编号,是NORAD特别建立的卫星编号,每一个太空飞行器都被赋予唯一的NORAD卫星编号。

人造卫星基本原理

人造卫星的基本原理 参考、摘录自——王冈 曹振国《人造卫星原理》 一、关于椭圆轨道 在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大于地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越“扁长”,直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。 因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏离,和速度方向与当地的地球水平方向间的微小偏差,都会使航天器的轨道不是圆形二是椭圆形,椭圆扁率取决于入轨点的速度大小和方向。 二、卫星运动轨道的几何描述 尽管开普勒定律阐明的是行星绕太阳的轨道运动,它们可以用于任意二体系统的运动,如地球和月亮,地球和人造卫星等。 假定地球中心O 在椭圆的一个焦点上 a ——椭圆的半长轴 b ——椭圆的半短轴 >11.2km/s-抛物线 >16.7km/s-双曲线

c e ——偏心率 a c e = P e ——近地点 A p ——远地点 P ——半通径)1(2 2 e a a b P -== Y w ——轴与椭圆交点的坐标 f ——真近点角,近地点和远地点之间连线与卫星向径之间的夹角 E ——偏近点角 只要知道了卫星运行的椭圆轨道的几个主要参数:a ,e 等,卫星在椭圆轨道上任一点(r )处的速度就可以计算出来: )12( a r v - = μ 其中2μ=GM (地心万有引力常数) 椭圆轨道上任一点处的向径r 为:)cos 1(E e a r -= 近地点向径:)1(e a r p -= 远地点向径:)1(e a r A += 所以,近地点r 最小,卫星速度最大e e a v -+? = 112 μ 远地点r 最大,卫星速度最小e e a v +-? = 112 μ 卫星或飞船入轨点处的速度,通常就是近地点的速度,这个速度一般要比当地的环绕速度要大;而椭圆轨道上远地点速度则比当地的环绕速度要小。 圆形轨道可以看成椭圆轨道的特殊情况。即a=b=r ,所以 r GM r v = = 2 μ A

卫星轨道参数计算

卫星轨道平面的参数方程: 1cos( ) p e r r :卫星与地心的距离 P :半通径(2 (1)p a e 或21p b e ) θ:卫星相对于升交点角 ω:近地点角距 卫星轨道六要素: 长半径a 、偏心率e 、近地点角距ω、真近点角f (或者卫星运动时间t p )、轨道面倾角i 、升交点赤径Ω。

OXYZ─赤道惯性坐标系,X轴指向春分点T ; ON─卫星轨道的节线(即轨道平面与赤道平面的交线),N为升交点; S─卫星的位置; P─卫星轨道的近地点; f─真近点角,卫星位置相对于近地点的角距; ω─近地点幅角,近地点到升交点的角距; i─轨道倾角,卫星通过升交点时,相对于赤道平面的速度方向; Ω─升交点赤经,节线ON与X轴的夹角; e─偏心率矢量,从地心指向近地点,长度等于e; W─轨道平面法线的单位矢量,沿卫星运动方向按右旋定义,它与Z轴的夹角为i; a─半长轴; α,δ─卫星在赤道惯性坐标系的赤经、赤纬。 两个坐标系:地心轨道坐标系、赤道惯性坐标系。 地心轨道坐标系Ox0y0z0:以e e 1为x0轴的单位矢量,以W为z0轴的单位矢量,y0轴的单位矢量可以由x0轴的单位矢量与z0轴的单位矢量确定,它位于轨道平面内。 赤道惯性坐标系:OXYZ,X轴指向春分点。 由地心轨道坐标系到赤道惯性坐标系的转换: 1.先将地心轨道坐标绕W旋转角(-ω),旋转矩阵为R Z(-ω); 2.绕节线ON旋转角(-i),旋转矩阵为R X(-i); 3.最后绕Z轴旋转角(-Ω),旋转矩阵为R Z(-Ω); 经过三次旋转后,地心轨道坐标系和赤道惯性坐标系重合。 在地心轨道坐标系中,卫星的位置坐标是: 0 0 0 cos sin 0 x r f y r f z

高中物理人造卫星变轨问题专题

高中物理人造卫星变轨 问题专题 集团文件版本号:(M928-T898-M248-WU2669-I2896-

人造卫星变轨问题专题 (一) 人造卫星基本原理 绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。 轨道半径r 确定后,与之对应的卫星线速度 r GM v = 、周期 GM r T 3 2π =、向心加速度2r GM a =也都是唯一确定的。如果卫星的质 量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。一旦卫星发生了变轨,即轨道半径 r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情 况决定)。同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。 (二) 常涉及的人造卫星的两种变轨问题 1. 渐变 由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是减小,然后再判断卫星的其他相关物理量如何变化。 1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄 大气的阻力作用。如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。这种变轨的起因是阻力。阻力对卫星做负功,使卫星速 度减小,卫星所需要的向心力r mv 2减小了,而万有引力2 r GMm 的 大小没有变,因此卫星将做向心运动,即轨道半径r 将减小。 由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦生热),卫星机械能E 机将减小。 为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。而且万有引力做的正功远大于克服空气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。

卫星星历计算和轨道参数计算编程实习(精)

专业:地图学与地理信息工程(印刷 班级:制本49—2 学号:3272009010 姓名:张连杰 时间:2012/9/21 一、概述 在C++6.0中建立基于单文档的MFC工程,利用简洁的界面方便地由卫星轨道根数计算卫星的实时位置和速度,并可以根据卫星的星历反求出卫星轨道根数。 二、目的 通过卫星编程实习,进一步加深理解和掌握卫星轨道参数的计算和卫星星历的计算方法,提高编程能力和实践能力。 三、功能 1、由卫星位置与速度求取卫星轨道参数; 2、由卫星轨道参数计算卫星星历。 四、编程环境及工具 Windows7环境,VC++6.0语言工具 五、计划与步骤 1.深入理解课本上的星历计算方法和轨道根数的求取方法,为编程实习打下算法基础; 2.学习vc++对话框的设计和编程,解决实习过程中的技术难题;

3.综合分析程序的实现过程,一步步编写代码实现。 六、程序异常处理 1.在进行角度转换时候出现的问题导致结果错误。计算三角函数时候先要把角度转换成弧度进行计算,最后输出结果的时候需要再把弧度转换回角度输出。 2.在计算omiga值得时候的错误。对计算出的omiga值要进行象限的判断,如果不符合条件要加或减一个周期pi(因为是反正弦函数。 七、原创声明 本课程设计报告及相应的软件程序的全部内容均为本人独立完成。其间,只有程序中的中间参量计算值曾与同学共同讨论。特此声明。 八、程序中的关键步骤和代码 1、建立基于单文档的名字为TrackParameter的MFC工程。 2、在资源视图里面增加一个对话框改属性ID为IDD_DIALOG1,在新的对话框IDD_DIALOG1上面添加控件按钮,并建立新的类CsatelliteDlg. 3、在菜单栏里面添加菜单实习一,并添加命令响应函数OnMenuitem32771(,在该函数中编写代码 CsatelliteDlg dlg; dlg.DoModal(; 这样执行时候调出对话框satelliteDlg. 4.在对话框satelliteDlg中的OK按钮的消息响应函数中添加相关赋值和公式计算代码。 5.按照以上步骤设计实习二。

求卫星轨道的周长

数值分析实验报告 题目 一、问题提出 地球卫星轨道是一个椭圆,椭圆周长的计算公式是 ,这里a是椭圆的半长轴,c是地球中心(椭圆中心)的距离,记h为近地点距离,H为远地点距离,R= 6371(km)为地球半径,则a=(2R+H+h)/2,c=(H-h)/2.我国第一颗人找地球卫星近地点距离h=439(km),远地点距离H=2384(km),试求卫星轨道的周长. 二、模型建立

龙贝格求积算法公式为: ,2,1 , )(141)2(144 ) (1)1(1)( =---=-+-k h T h T T k m m k m m m k m 椭圆周长的计算公式: R= 6371(km ),则a=(2R+H+h )/2,c=(H-h)/2. R= 6371(km ), h=439(km ),H=2384(km ) 三、 求解方法 Matlab M 文件: function R = romberg(f,a,b,n) format long R = zeros([n + 1, n + 1]); R(0+1, 0+1) = (b - a) / 2 * (feval(f, a) + feval(f, b)); for i = 1 : n, h = (b - a) / 2^i; s = 0; for k = 1 : 2^(i-1), s = s + feval(f, a + (2*k - 1)*h); end

R(i+1, 0+1) = R(i-1+1, 0+1)/2 + h*s; end for j = 1 : n, fac = 1 / (4^j - 1); for m = j : n, R(m+1, j+1) = R(m+1, j-1+1) + fac*(R(m+1, j-1+1) - R(m-1+1, j-1+1)); end end function I=f(x) R=6371;h=439;H=2384; a=(2*R+H+h)/2;c=(H-h)/2; I=sqrt(1-(c/a)^2*(sin(x)^2)); 四、输出结果 积分I输出结果: ans = 0 0 即加速3次求得: k 1 2

计算卫星位置的程序

计算卫星位置 一、C语言程序 #include #include #include #define bGM84 3.986005e14 #define bOMEGAE84 7.2921151467e-5 void main() { long double roota=0.515365263176E+04; //轨道长半轴的平方根(根号a) long double toe=0.720000000000E+04; //观测时刻toe long double m0=-0.290282040486E+00; //参考时刻toe的平近点角 long double e=0.678421219345E-02; //轨道偏心率e long double delta_n=0.451411660250E-08;//卫星的摄动改正数△n long double smallomega=-0.258419417299E+01;//近地点角距ω long double cus=0.912137329578E-05;//纬度幅角正弦调和项改正的振幅(弧度)long double cuc=0.189989805222E-06;//纬度幅角余弦调和项改正的振幅(弧度)long double crs=0.406250000000E+01;//轨道半径的余弦调和项改正的振幅(m)long double crc=0.201875000000E+03;//轨道半径的正弦调和项改正的振幅(m)long double cis=0.949949026108E-07;//轨道倾角的余弦调和项改正的振幅(弧度)long double cic=0.130385160446E-07;//轨道倾角的正弦调和项改正的振幅(弧度)long double idot=-0.253939149013E-09;//轨道倾角变化率I long double i0=0.958512160302E+00; //轨道倾角(弧度) long double bigomega0=-0.137835982556E+01;//升交点赤经 long double earthrate=bOMEGAE84; //地球自转的速率we long double bigomegadot=-0.856928551657e-08; long double t=0.720000000000E+04; //加入卫星钟差改正的归化时间 long double A; long double n0=0,n,tk; long double mk,ek,tak,ik,omegak,phik,uk,rk; long double corr_u,corr_r,corr_i; long double xpk,ypk,xk,yk,zk; int i; printf("输入的数据:\n"); printf("√a=%e \n",roota); printf("toe=%e \n",toe); printf("e=%e \n",e); printf("i0=%e \n",i0); printf("ω=%e \n",smallomega); printf("△n=%e \n",delta_n); printf("Ω0=%e \n",bigomega0); printf("I=%e \n",idot); printf("Cuc=%e \n",cuc);

人造地球卫星的运行轨道

人造地球卫星的运行轨道 夜晚,人们常常会看到明亮的星在天幕群星之间匆匆穿行,不久便消失在远方的天空。这就是人造地球卫星。 人造地球卫星沿着一定的轨道围绕地球运行。从这一点上看,它与月球很相像,属于以地球为中心的天体系统。但是,人造地球卫星与所有的天然天体不同,它是人工研制和发射到运行轨道上的一种空间飞行器(或航天器),是按照人的意志、为了人们的某种目的沿轨道运行的特殊天体。人造卫星体积很小,根本不能与月球相比。它与地球的距离也比月地距离小得多,即使距地面最远的人造卫星,其近地点高度,也不及月地最近距离的十分之一。由于人造卫星离地球较近,所以,在地球上只有天黑后不久和黎明前的一段时间内,才能看到它们。深夜时,也有人造卫星从天空经过,然而,由于完全掩没于地球的黑影之中,人们是无法看到它们的。 这些人造卫星飞行的方向是各不相同的。人造卫星的飞行方向不同,表明它们各自的轨道平面与赤道平面有着不同的夹角。 人造地球卫星运行轨道所在的平面,叫做轨道平面。所有人造卫星的轨道平面都通过地心。轨道平面与地球赤道平面的夹角,叫做轨道倾角。根据轨道倾角,人造地球卫星的轨道有顺行轨道、逆行轨道、极轨道和赤道轨道等几种。 朝偏东向运行的卫星,轨道倾角小于90°,称为顺行轨道。沿这种轨道运行的卫星,在发射过程中,运载火箭是朝偏东方向飞行的。由于发射时利用了地球自转的一部分速度,因此比较节省能量。世界上早期发射的人造卫星,大部分是属于这种类型的。 卫星沿南北方向运行,轨道倾角等于90°,称为极轨道。极轨道平面不仅通过地心,而且通过地球的南、北两极。由于地球不断地自转,因此,沿这种轨道运行的人造卫星,能从地球的任何上空通过。 卫星向偏西方向运行,轨道倾角大于90°,称为逆行轨道。沿这种轨道运行的人造卫星,在发射过程中,运载火箭是朝偏西方向飞行的。由于发射时需要抵消地球自转的一部分速度,因此,消耗的能量比较多。

卫星轨道和位置

摘要 本文主要在已知水星的远日点和绕日运行的线速度的条件下,通过建立微分方程模型,使用解析法和数值方法求解水星的轨道方程与位置。解析法的求解的过程中,结合了开普勒三大定律,准确的给出了微分方程的精确解,求得水星到太阳的最近距离)(104.601610m r m ?≈,水星绕太阳运行的周期约为88天。数值计算求解水星自远日点运行50天后的位置时,本文分别采用了Simpson 求积法,基于压缩映射的求根方法以及经典的四阶龙格—库塔法,使用matlab 数学软件编程,得到了较为合理的行星运行模型的近似解,三种方法所得结果对应分1 3.791θ=,101 4.76710r ≈?, 2 3.791θ=,102 4.76710r ≈?及 3 3.802θ=,103 4.77910r ≈?。 关键词 行星轨道 微分方程 Simpson 法 四阶龙格—库塔法 matlab 一. 问题重述 水星到太阳的最远距离为110.698210?m ,此时水星绕太阳运行的线速度为43.88610? m /s 。试求 问题一 水星到太阳的最近距离 问题二 水星绕太阳运行的周期 问题三 从远日点开始的第50天(地球天)结束时水星的位置并画出轨道曲线 二. 问题分析 求水星到太阳的最近距离以及水星绕太阳运行的周期等,需要先将水星轨道方程 求出,因此可以根据Newton 第二定律及万有引力定律222i mMG d Z e m r dt θ-=,建立微 分方程模型,将原问题转化为求解带有初值条件的微分方程问题,进而采用解析法或数值方法求解远日点和周期。

三. 模型假设 1.水星运行的轨道是以太阳为一个焦点的椭圆 2.从太阳指向水星的线段在单位时间内扫过的面积相等 3.水星运行周期的平方与其运行轨道椭圆长轴的立方之比为常量 四. 符号系统 1.0v 水星在远日点的线速度 2. M 太阳的质量 3. m 水星的质量 4. o r 水星在远日点的距离 5. T 周期 五. 建立模型与求解 模型一 水星的轨迹方程 设太阳中心所在的位置为复平面的原点O ,在时刻t ,水星位于 ()i Z t re θ= 所表示的点P 。这里(),()r r t t θθ==均为t 的函数,分别表示()Z t 的模和辐角。于是水星的速度为 ()i i i dZ dr d dr d e ire e ir dt dt dt dt dt θθθθθ=+=+,加速度为2222222(())(2)i d Z d r d d dr d e r i r dt dt dt dt dt dt θθθθ?? =-++???? () ,而太阳对行星的引力依万有引力定律,大小为 2mMG r ,方向由行星位置P 指向太阳的中心O,故为 2 i mMG e r θ -,其中301.98910()M kg =?为太阳的质量,m 为水星的质量,11226.67210(/)G N m kg -=??为 万有引力常数。 依Newton 定律,我们得到 222i mMG d Z e m r dt θ-= ,将()代入,然后比较实部 与虚部,就有

人造卫星的分类及主要用途

人造卫星的分类及主要用途 自从牛顿发现万有引力定律,并设想在高山上水平抛出物体,当速度大到一定程度时,物体就不会落回地面,成为一颗人造卫星,300多年过去后,他的这一理论得到了证实,在地球上方发射了各种各样的人造卫星。 一、人造卫星的分类。 1、按用途分:科学探测和研究的科学卫星,包括空间物理探测卫星和天文卫星等;试验卫星,包括进行航天新技术试验或者是为应用类卫星进行试验的卫星;应用卫星,包括通信卫星、气象卫星、地球资源卫星、侦察卫星、导航卫星等, 2、按轨道的高低分:低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道、大椭圆轨道和极地轨道7大类。 3、按运行轨道划分: 顺行轨道:顺行轨道的特点是轨道倾角即轨道平面与地球赤道平面的夹角小于90度。卫星地面较近,高度仅为数百公里,故又将其称为近地轨道。我国用长征一、二号、风暴一号两种运载火箭发射的8颗科学技术试验卫星, 17颗返回式遥感卫星,神州号试验飞船,都是用顺行轨道。 逆行轨道:逆行轨道的特征是轨道倾角大于90度。欲把卫星送入这种轨道运行,运载火箭需要朝西南方向发射。不仅无法利用地球自转的部分速度,而且还要付出额外能量克服地球自转。因此,除了太阳同步轨道外,一般都不利用这类轨道。 赤道轨道:赤道轨道的特点是轨道倾角为0度,卫星在赤道上空运行。这种轨道有无数条,但其中的一条地球静止同步轨道具有特殊的重要地位。世界上主要的通信卫星都分布在这条轨道上。我国用长征三号火箭先后发射了1颗试验卫星、5颗东方红二号系列通信卫星、2颗风云二号气象卫星、用长征三号甲火箭发射了1颗实践四号探测卫星、2两颗东方红三号通信卫星、1颗中星22号通信卫星都在这一轨道上。 极地轨道:就卫星轨道类型来说,还有一种轨道倾角为90度的极地轨道。它是因轨道平面通过地球南北两极而得名。在这种轨道上运行的卫星可以飞经地球上任何地区上空。我国长征二号丙改进型火箭以1箭双星的方式6次从太原起飞,把12颗美国铱星送入太空,就属于这种发射方式。

卫星轨道计算 [文档在线提供]

一.GPS观测量 接收机在观测相位和伪距数据的同时,还将广播星历和预报星历记录下来。接收GPS信号还能获取纳秒级精度的时间基准信号。 由于接收机的型号很多,厂商设计的数据格式各不相同,国际上为了能统一使用不同接收机的数据,设计了一种与接收机无关的RINEX(The Receiver Independent Exchange Format)格式,目前已使用2号版本。下面分别介绍RINEX 2格式的广播星历文件、观测数据文件、和地面气象数据文件。 RINEX 2格式的GPS数据文件的命名规则为: . s s s s d d d f y y t 其中:ssss~以4个字节表示的台站名; ddd~文件中第一组数据观测时间的年积日(例如:1月1日为001,2月2日为032); f~该站该日收到的某类文件的顺序号,0表示只有一个; yy~以两位数表示的年(例如:96表示1996年); t~文件种类: O~观测数据文件; N~广播星历文件; M~地面气象数据文件。 为了便于交流,RINEX 2格式的GPS数据文件均以①无带标;②ASCII码;③每个记录长度为80个字符,块大小为8000;录制在磁带上,磁带上的第一个文件是全部文件的目录。但目前国际上的IGS等组织是通过通讯方式(Internet网),来快速地提取全球GPS长年观测站数据的,并将数据存在大型计算机中,使用着可通过Internet网任意提取。 应注意,在RINEX 2格式的GPS数据中,时间均以GPST计,即与UTC要差一个整数跳秒数。 ⒈广播星历文件 接收机锁定卫星并解出C/A码后,就能取得广播星历,即卫星坐标计算参数,在实时GPS应用中,它是必不可少的,大部分的工程网观测数据的后处理也采用广播星历。RINEX 2格式的广播星历文件如下表2.1.1所示,作为例子,表中给出了PRN9和PRN17两颗卫星的广播星历数据,PRN表示GPS卫星的伪随机编号号码,GPS卫星在有些场合采用美国航空与航天局NASA(National Aeronautics and Space Administration)的编号。 表2.1.1 RINEX 2格式的广播星历文件

2021年人造卫星基本原理

人造卫星的基本原理 欧阳光明(2021.03.07) 参考、摘录自——王冈曹振国《人造卫星原理》 一、关于椭圆轨道 在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大于地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越“扁长”,直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。 因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏离,和速度方向与当地的地球水平方向间的微小偏差,都会使航天器的轨道不是圆形二是椭圆形,椭圆扁率取决于入轨点的速度大小和方向。 a——椭圆的半长轴b——椭圆的半短轴>11.2km/s-抛物线 双曲线

c e ——偏心率 a c e = P e ——近地点 A p ——远地点 P ——半通径)1(22 e a a b P -==Y w f ——真近点角,近地点和远地点之间连线与卫星向径之间的夹角 E ——偏近点角 只要知道了卫星运行的椭圆轨道的几个主要参数:a ,e 等,卫星在椭圆轨道上任一点(r )处的速度就可以计算出来: )12(a r v -=μ 其中2μ=GM (地心万有引力常数) 椭圆轨道上任一点处的向径r 为:)cos 1(E e a r -= 近地点向径:)1(e a r p -= 远地点向径:)1(e a r A += 所以,近地点r 最小,卫星速度最大e e a v -+?=112μ 远地点r 最大,卫星速度最小e e a v +-? =112μ 卫星或飞船入轨点处的速度,通常就是近地点的速度,这个速度一般要比当地的环绕速度要大;而椭圆轨道上远地点速度则比当地的环绕速度要小。 A

卫星轨道基本概念

卫星轨道 本节中将简单说明人造卫星轨道的特性。为方便起见,假设卫星轨道是圆形的,这样也可得到许多有用的信息。 以地心为中心可画出一个半径无穷大的圆球,这个球面称为天球(celestial sphere)。天空中的太阳、月亮以及星星和地心的联机会和天球相交于一点,因此天体的运动可用它们在天球上的轨迹来表示(图1)。地球赤道面和天球的交线称为天球赤道。地球实际上是绕日运行的,但以固定在地球上的坐标系来看,太阳会绕地球运行,这就是太阳的视运动(apparent motion)。太阳在天球上的轨迹称为黄道,黄道面和赤道面的交线称为二分线,二分线和天球的交点称为二分点,即 图1 天球及太阳的视运动。

图2 地心赤道面坐标系。 春分点和秋分点。黄道面和赤道面的夹角约为23o27′。黄道面上有 两点距赤道面最远,位于北半球的称为夏至点,位于南半球的称为冬至点。当太阳在夏至点时,它直射北回归线;当太阳在冬至点时,它直射南回归线。 地心赤道面坐标系 以地心为原点可以建立一个坐标系,X 和Y 轴在赤道面上,X 轴指向春分点,Z 轴为地球自转轴,指向北极。这个坐标系不随地球自转而转动,称为地心赤道面坐标系,如图2 所示。由于岁差(precession)的缘故,春分点会往西移动,故地心赤道面坐标也不是惯性坐标系。不过由于卫星绕地运动的周期远小于岁差的周期,因此讨论卫星轨道时,可将地心赤道面坐标系当做惯性坐标,在实用上可令X 轴指向某一年(如1950 年)的春分方向。 近地点坐标系 描述卫星在轨道面上运动最方便的坐标系是近地点坐标系xω ,

yω ,zω ,如图3 所示。这个坐标系原点在地心(即焦点)上,xω和yω 轴在轨道面上,xω轴指向近地点,将xω轴沿卫星运动方向转动90°就得到 图3 卫星的椭圆轨道,υ为真近点角。 yω 轴,zω轴则和xω , yω轴形成右手坐标系。因为卫星在轨道面上运动,故其zω坐标等于零。 经典轨道要素 要完全描述卫星在轨道上的运动,除了初始时间外,需要6 个参数,这些称为经典轨道要素(classical orbital elements)。这些是椭圆轨道的半长轴a , 偏心率(eccentricity)e,真近点角(true anomaly)υ ,升交点赤经(right ascension of ascending node)Ω,轨道倾角(orbitalinclination)i以及近地点辐角(argument of perigee)ω。最后三个角度称为经典定向角。半长轴a和偏心率e可以完全决定椭圆形的大小;真近点角υ可决定卫星在椭圆轨道上的位置,一般说来通常都用平近点角(mean anomaly)代替真近点角。至于经典定位角Ω , i ,

人造卫星在空间轨道运行

随着越来越多的人造卫星在空间轨道运行,人类在太空留下了数量惊人的垃圾。这些太空垃圾也称空间碎片,一般指空间轨道上或重返大气层的失效人造物体,包括其残块和组件。由于人类太空活动的不断增加,大量的太空垃圾对运行中的人造卫星、国际空间站和宇航员都带来了很大的威胁。尽管有的空间飘浮碎片很小,但运行速度极快,破坏力惊人,和航天仪器发生撞击后,有可能导致其完全失效。而且,废弃卫星的坠地碎片也不时地威胁着人类的生命和财产安全。如何安全有效地清理太空碎片,成为一个需要解决的问题。 近日,瑞士联邦理工学院瑞士太空中心首开先例,宣布实施一项名为“太空清理一号”的计划,开始着手清除太空垃圾的研究试验,计划于2015年至2016年间发射一颗小型人造卫星,用于清除一颗报废的瑞士卫星。该计划分为发射、接近目标、捕获目标、返回大气层四个阶段。 不过,“太空清理一号”目前面临三个技术难点:首先,“太空清理一号”要完成变轨,进入目标物的轨道。为此,这家瑞士研究中心将使用自产的一台新式微型发动机,对卫星的轨道进行不断调整。然后,“太空清理一号”要不断接近高速移动的目标物。因为太空垃圾不能控制,还可能带有自旋,科学家将在卫星的一端安装机械爪,以抓住目标物。最后,“太空清理一号”在捕获目标物后再变轨,在返回大气层的过程中产生摩擦,通过高温高压使垃圾熔化销毁。 这种要上天清理太空垃圾的“清洁工”,造价十分昂贵。据估计,包括发射在内,这种太空清理卫星的花费是800万欧元,而且,现阶段研发的清理卫星还是一次性的。不过,试验成功后,也许会有能力开发可持续使用、型号更多的太空清理卫星,以提供专业清除太空垃圾的成套系列设备,适应不同商业需求。 目前,对于控制航天飞行器销毁有几种可行的方法,如将废弃的航天器转移至高轨道,或将其引导坠入指定海域等。其他国家的科学家也为解决太空垃圾问题作出过独特的设计,比如,日本科学家计划用一张宽数公里的巨网打捞太空垃圾,然后在引力作用下进入大气层销毁;英国科学家计划研制太阳帆(即一种利用太阳光压力的航天器),借助摄像头侦察、吸住太空垃圾,最后让其坠入大气层销毁。 去年底,美国国家研究委员会一份报告称,地球上空的太空垃圾数量已达“临界点”,太空碰撞事故几率大增,所以,清理太空垃圾是时候了。不过,尽管科学家们原则上提出了很多清理太空垃圾的方法,鉴于技术和成本的因素,付诸实施的目前尚且没有,瑞士的“太空清理一号”也只是奏响序曲

根据轨道根数来计算卫星位置

根据轨道根数来计算卫星位置 一、计算卫星在轨道坐标系中的位置 首先建立一个轨道坐标系,该坐标系的坐标原点位于地心,Y X '''',位于轨道平面上,Z '' 轴和轨道平面的法线矢量N 重合。轨道坐标系是一个右手坐标系。计算步骤如下: 1. 用下式计算平近点角M )(0t t n M -= 0t 为卫星过近地点的时刻;n 为卫星的平均角速度,用下式计算: 3a GM n = )s r a d ( a 为轨道椭圆的长半径,231410986005.3s m GM ?==μ(注:G 引力常数,此M 为地球质量) 2. 解开普勒方程E e M E sin ?+=,计算偏近点角E 解算时采用角度制,o o e e ρ?= (e 离心率) 代入开普勒方程反复迭代,直至i i E E -+1<ε时为止。 (当偏心率很小时,迭代法的收敛速度很快) 3. 计算卫星至地心的距离r )cos 1(E e a r -= 4. 计算真近点角θ 2 tan 112E e e an t -+=θ 5. 计算卫星在轨道坐标系中的坐标 sin cos =''=''=''Z r Y r X θθ 或跳过3、4直接计算:0sin 1sin cos 2=''-==''-=''Z E e a E b Y ae E a X 二、轨道坐标和大地坐标的换算 将上式化算到大地坐标系中去,一是用地心空间直角坐标系(Z Y X ,,)来表示点的位置,二是用经纬度和大地高(H L B ,,)来表示点的位置,只要确定椭球体的参数和定位,(Z Y X ,,)和(H L B ,,)之间就可以换算。 轨道坐标系只需经三次旋转即可和大地坐标系(Z Y X ,,)重合。首先绕Z ''轴反时针旋转一个ω角,使X ''旋至X '(指向升交点)。再绕X '反时针旋转i 角,这样Z ''与Z 重合。最后绕Z 反时针旋转一个(G α-Ω),这两个坐标系就重合了。G α角(P25,图2-1中θ角)是X 轴与春分点X 方向的夹角,即为格林尼治恒星时角G α。于是有 ??????????''''''=???? ??????Z Y X R R R Z Y X 123 其中:

学生手册计算与测定GNSS卫星位置

计算与测定GNSS卫星位置 【任务概述】 利用GNSS卫星进行导航和定位,就是根据已知的卫星轨道参数计 算出卫星瞬时位置,通过观测和数据处理,确定接收机的位置和载体 的运动速度。所以,获取准确的卫星轨道参数,计算出卫星在观测瞬间的位置,是GNSS导航定位的基础。因为GNSS系统坐标系统采 用WGS-84坐标系统。为了计算卫星在WGS-84大地坐标系中的位置,首先需要计算卫星在其轨道平面内的位置。此时定义:原点与地 心M相重合,x轴指向升交点,y轴在轨道平面内垂直于x轴,我们 称其为轨道平面直角坐标系,它是一种过渡性的坐标系。再进行坐标系的转换,将卫星在其轨道的坐标转换到地面直角坐标系下。 【学习目标】 (1)知识目标:①星历文件的获取方法有哪些?②了解星历文件的构成?③明确卫星星历参数,及计算公式推导过程。 (2)技能目标:①如何打开星历文件;②如何读取星历文件,并将参数赋值到变量中;③如何计算卫星位置。 【教学内容】 一、GPS导航原理 GPS卫星导航,就是用GPS卫星发送的导航定位信号引导运载体从 一个地点航行到另一个地点的过程。航行的意思;也就是确定航行体运动到什么地方和向何方向运动的意思。要使飞机、舰船、车辆等运载工具成功地完成所预定的航行任务。除了起始点和目标的位置之外,

主要的就是必须知道航行体所处的即时位置。因为只有确定了即时位置才能考虑怎样到达下一目的地的问题;如果连自己已经到了什么地 方和以后该到什么地方也不知道的话,那就无从谈起完成预定航行任务的问题。由此可见,导航的首要问题就是确定航行体的即时位置。另外,为现代载体提供精确的导航信息,还需要测定载体的瞬时速度,精确的时间,运动裁体的姿态等状态参数,进而“导引”该运动载体准 确地驶向预定的后续位置。由此可见,导航是一种广义的动态定位。GPS卫星所发送的导航定位信号,是一种可供无数用户共享的空间 信息资源;陆地、海洋和空间的广大用户,只要持有一种能够接收、跟踪、变换和测量GPS信号的接收机,就可以全天候和全球性地测量运动栽体的七维状态参数(三维坐标、三维速度、时间)和三维姿态参数;其用途之广,影响之大,是任何其他接收设备望尘莫及的;上至航空 航天,下至渔业、导游、摄影和农业生产,均可利用GPS信号接收机。对于任何某一具体的导航过程,首先必须确定本次航行的起始点、目的点以及航行计划路径(总称之为一条航线)。路径的标定一般是用一系列均匀分布于路径上的坐标点来确定,这些坐标点就叫航路点。起始点、目的点、航路点的位置坐标可以是从地图上量取,也可以是直接测得,总之必须是已知的。 在航行过程中,GPS定位系统能够实时提供给航行体位置信息(坐标),结合计算机中存储的航行路径中各航路点位置信息,可以计算出各种可用来纠正航行偏差、指导正确航行方向的制导参数,如应航迹角、偏航距和待航距离(待航时间)等,图10-1以飞机导航为例,说明各制

人造卫星基本原理资料

人造卫星基本原理

人造卫星的基本原理 参考、摘录自——王冈 曹振国《人造卫星原理》 一、关于椭圆轨道 在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大于地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越“扁长”,直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。 因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏离,和速度方向与当地的地球水平方向间的微小偏差,都会使航天器的轨道不是圆形二是椭圆形,椭圆扁率取决于入轨点的速度大小和方向。 二、卫星运动轨道的几何描述 >11.2km/s-抛物线 >16.7km/s-双曲线

尽管开普勒定律阐明的是行星绕太阳的轨道运动,它们可以用于任意二体系统的运动,如地球和月亮,地球和人造卫星等。 假定地球中心O 在椭圆的一个焦点上 a ——椭圆的半长轴 b ——椭圆的半短轴 c e ——偏心率 a c e = P e ——近地点 A p ——远地点 P ——半通径)1(22 e a a b P -== Y w ——轴与椭圆交点的坐标 f ——真近点角,近地点和远地点之间连线与卫星向径之间的夹角 E ——偏近点角 只要知道了卫星运行的椭圆轨道的几个主要参数:a ,e 等,卫星在椭圆轨道上任一点(r )处的速度就可以计算出来: )12(a r v -=μ 其中2μ=GM (地心万有引力常数) 椭圆轨道上任一点处的向径r 为:)cos 1(E e a r -= 近地点向径:)1(e a r p -= 远地点向径:)1(e a r A += A

天体运动与人造卫星知识点

天体运动与人造卫星知识 点 Prepared on 22 November 2020

天体运动与人造卫星 要点一 宇宙速度的理解与计算 1.第一宇宙速度的推导 方法一:由G Mm R 2=m v 12R 得 v 1= GM R =错误! m/s =×103 m/s 。 方法二:由mg =m v 12 R 得 v 1=gR =错误! m /s =×103 m/s 。 第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2π R g =5 075 s ≈85 min 。 2.宇宙速度与运动轨迹的关系 (1)v 发= km/s 时,卫星绕地球做匀速圆周运动。 (2) km /s <v 发< km/s ,卫星绕地球运动的轨迹为椭圆。 (3) km /s ≤v 发< km/s ,卫星绕太阳做椭圆运动。 (4)v 发≥ km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。 要点二 卫星运行参量的分析与比较 1.四个分析 “四个分析”是指分析人造卫星的加速度、线速度、角速度和周期与轨道半径的关系。 GMm r 2=??????????????ma →a =GM r 2→a ∝1r 2m v 2r →v = GM r →v ∝1r m ω2r →ω= GM r 3→ω∝1r 3m 4π2 T 2r →T =4π2r 3GM →T ∝r 3 越高越慢 2.四个比较

(1)同步卫星的周期、轨道平面、高度、线速度、角速度绕行方向均是固定不变的,常用于无线电通信,故又称通信卫星。 (2)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。 (3)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为 km/s。 (4)赤道上的物体随地球自转而做匀速圆周运动,由万有引力和地面支持力的合力充当向心力(或者说由万有引力的分力充当向心力),它的运动规律不同于卫星,但它的周期、角速度与同步卫星相等。 要点三卫星变轨问题分析 1.变轨原理及过程 人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图4-5-2所示。 图4-5-2 (1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。 (2)在A点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ。 (3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。 2.三个运行物理量的大小比较 (1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点速率分别为v A、v B。在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。 (2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同。 (3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半 径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3 T2=k可知T1<T2<T3。

相关文档
最新文档