buck变换器设计报告

合集下载

BUCK变换器设计

BUCK变换器设计

BUCK变换器设计1设计目的及解决方案1.1问题的提出此次设计的目的是针对给定的特定题目要求,设计一个BUCK变换器DC/DC变换器,使其实现输入电压为DC 28V±10%时,输出电压为DC 12V,输出电流为2A,电压纹波为1%。

1.2设计方案此次设计主要是针对BUCK变换器的主电路进行设计,所选择的全控型器件为P-MOSFET.查阅相关资料,可以使用以脉宽调制器SG3525芯片为主的控制电路来产生PWM控制信号,从而来控制P—MOSFET的通断.然后通过设计以IR2110为主芯片的驱动电路对P-MOSFET进行驱动,电路需要使用两个输出电压恒定为15V的电源来驱动两个芯片工作。

图1。

1 总电路原理框图同时采用电压闭环,将输出电压进行分压处理后将其反馈给控制端,由输出电压与载波信号比较产生PWM信号,达到负反馈稳定控制的目的,得到电路的原理框图1.1所示.2.电路基本结构及降压原理2.1电路基本结构下图1.2所示为BUCK型DC/DC变换器的基本结构,此电路主要由虚线框内的全控性开关管T和续流二极管D以及输出滤波电路LC构成。

对开关管T进行周期性的通、断控制,便能将直流电源的输入电压Vs变换成为电压Vo输出给负载。

图2。

1 Buck变换器的电路结构2.2电路降压原理在一个开关周期T s期间对开关管T施加如图1.1(b)所示的驱动信号V G,在T on期间,V G〉0,开关管T处于通态,若忽略其饱和压降,输出电压Uo等于输入电压;在Toff期间,V G=0,开关管T处于断态,若忽略开关管的漏电流,输出电压为0。

开关管T导通时间与周期T s的比值称为占空比D,即D=T on/T s。

因此Vo=DVs,所以可以通过调节占空比D的大小,便可调节输出直流电压的大小,从而也就达到了降压的目的。

3 BUCK 变换器参数设计3.1 Buck 变换器性能指标输入电压:V in =DC 28V ±10%;输出性能:V out =DC 12V 、I o =2A ;Iout=0.1A 时,电感电流临界连续。

(完整word版)Buck变换器的设计与仿真

(完整word版)Buck变换器的设计与仿真

目录1 Buck变换器技术........................................................................................................................... - 1 -1.1 Buck变换器基本工作原理............................................................................................... - 1 -1.2 Buck变换器工作模态分析............................................................................................... - 2 -1。

3 Buck变化器外特性........................................................................................................ - 3 -2 Buck变换器参数设计.................................................................................................................. - 5 -2.1 Buck变换器性能指标....................................................................................................... - 5 -2。

2 Buck变换器主电路设计................................................................................................ - 5 -2.2。

实验报告-buck变换器

实验报告-buck变换器

计算机仿真技术实验报告仿真技术及应用实验班级:学号:姓名:实验项目实验7 基于Simulink 的直流斩波电路仿真实验 7.1实验目的1) 掌握Simulink 的工作环境及SimPowerSystems 功能模块库的应用; 2) 掌握Simulink 的电力电子电路建模和仿真方法;3) 掌握Simulink 下数学模型的仿真方法;4) 掌握升压、降压斩波电路(Buck Chopper )的工作原理及其工作特点; 5) 掌握PID 控制对系统输出特性的影响。

7.2实验内容与要求7.2.1 实验内容Buck 降压型电路原理图如图6-1所示。

图中,功率管VT 为MOSFET 开关调整组件,其导通与关断由控制脉冲决定;二极管VD 为续流二极管,开关管截止时可保持输出电流连续。

re f V 为输出电压给定参考量;L R 为负载电阻。

系统基本参数为:电源电压)314sin(100)(t t e =;变压器BT 为理想变压器,其变比为1:2=n ;PWM 频率为Hz f PWM 2000=;误差放大器放大倍数为1000=V K ;电阻Ω01.0C R ;整流滤波电容F C μ1000=,PWM 滤波电容F C o μ10=、电感H L 05.0=;负载电阻Ω=10L R 。

系统基本参数见表6.1。

分析Buck 变换器的工作特性。

表6.1 系统基本参数C R(Ω) C(F μ)o C(F μ)L (H )L R(Ω)V KnPWM f(Hz )0.01 1000100.051010002:12000K误差放大器比较器refV 锯齿波+-inu Di ini si 1:2LR oC LC R C)(t e 图6.1 Buck 变换器电路图o u VTBTVD+-ou Li +-L u 6.2.2实验要求1) 在Simulink 仿真环境中,利用SimPowerSystems 库模型建立系统仿真模型; 2) 分析Buck 变换器系统参数的改变对输出电压的影响;3)根据PWM 信号发生器原理构建其Simulink 仿真模型,并封装成子系统。

BUCK变换器设计

BUCK变换器设计

BUCK变换器设计报告一、BUCK变换器原理降压变换器(Buck Converter)就是将直流输入电压变换成相对低的平均直流输出电压。

它的特点是输出电压比输入的电压低,但输出电流比输入电流高。

它主要用于直流稳压电源。

二、BUCK主电路参数计算及器件选择1、BUCK变换器的设计方法利用MATLAB和PSPICE对设计电路进行设计,根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真,再选取合适的闭环控制器进行闭环控制系统的设计,比较开环闭环仿真模型的超调量、调节时间等,选取性能优良的模型进行电路搭建。

2、主电路的设计指标输入电压:标称直流48V,范围43~53V输出电压:直流24V,5A输出电压纹波:100mV电流纹波:0.25A开关频率:250kHz相位裕量:60°幅值裕量:10dB3、BUCK 主电路主电路的相关参数:开关周期:T S =s f 1=4×10-6s占空比:当输入电压为43V 时,D max =0.55814当输入电压为53V 时,D min =0.45283输出电压:V O =24V 输出电流I O =5A纹波电流:Δi L =0.25A纹波电压:ΔV L =100mV电感量计算:由Δi L =2Lv -V o max -in DT S 得: L=L o max -in i 2v -V ΔD min T S=25.022453⨯-×0.4528×4×10-6=1.05×10-4H 电容量计算:由ΔV L =Ci L 8ΔT S 得: C=L L V 8i ΔΔT S =1.0825.0⨯×4×10-6=1.25×10-6F 而实际中,考虑到能量存储以及输入和负载变化的影响,C 的取值一般要大于该计算值,故取值为120μF 。

实际中,电解电容一般都具有等效串联电阻,因此在选择的过程中要注意此电阻的大小对系统性能的影响。

buck变换器设计报告

buck变换器设计报告

BUCK变换器设计报告——电力电子装置及应用课程设计1 设计指标及要求1.1设计指标•输入电压标称直流48V 范围:43V~53V•输出电压:直流24V•输出电流:直流5A•输出电压纹波:100mV•电流纹波:0.25A•开关频率:250kHz•相位裕量:60•幅值裕量:10dB1.2 设计要求•计算主回路的电感和电容值•开关器件选用MOSFET, 计算其电压和电流定额•设计控制器结构和参数•画出整个电路, 给出仿真结果2 BUCK主电路各参数计算图1 利用matlab搭建的BUCK主电路Mosfet2在0.01s时导通,使得负载电阻由9.6变为4.8,也就是说负载由半载到满载,稳态时负载电流上升一倍,负载电压不变,这两种状态的转换的过程的表征系统的性能指标。

2.1 电感值计算当时,,D=0.558 , 求得当时,,D=0.5 , 求得当时,,D=0.453,求得所以,取2.2 电容值的计算代入,得,由于考虑实际中能量存储以及输入和负载变化,一般取C大于该值,取2.3 开关器件电压电流计算2.4 开传递函数的确定其中故开环传递函数为3 系统开环性能3.1 开环传递函数的阶跃响应由MATLAB可以作出系统的开环函数的单位阶跃响应,如下图所示由图可知,系统振荡时间较长,在5ms之后才可以达到稳定值,超调量为66.67%,需要增加校正装置进行校正。

3.2 系统开环输出电压电压、电流响应由MATLAB simulink作出的系统的输出电压、电流响应如下图所示图2 开环电压、电流响应在0.01s时负载由9.6变为4.8,电压振荡后不变,电流增大一倍。

由图可知电压超调量达到70%,电流超调量达到75%。

图3负载变化时电流响应图4负载变化时点响应图3 电流纹波图4 电压纹波电流纹波约为0.002A,电压纹波为0.01V,符合设计的要求,由于器件本身的压降损耗等因素,电压稳态值不等于24V,电流的稳态值也不等于5A。

一种高效率低纹波数字Buck变换器的设计的开题报告

一种高效率低纹波数字Buck变换器的设计的开题报告

一种高效率低纹波数字Buck变换器的设计的开题报告摘要:随着微电子技术和电源技术的不断进步,数字Buck变换器成为了一种最常见的DC-DC转换器。

它可以提供高效率和低纹波的输出电压。

本文介绍了一种高效率低纹波数字Buck变换器的设计。

该设计采用了电感电容滤波的方法来减小纹波,以及负载传输技术来提高效率。

采用了130nm CMOS技术来实现和模拟设计。

仿真结果表明,在1.8V的输入电压下,输出电压为1.0V,负载电流达到50mA时,该数字Buck变换器的效率可以高达92.5%,纹波峰值可以降至1.6mV。

这种设计符合现代电源电子学的趋势,是一种非常有前途的数字Buck变换器设计。

关键词:数字Buck变换器、电感电容滤波、负载传输技术、高效率、低纹波一、研究背景和意义随着电子产品的不断普及和应用,对高效率低纹波电源电子学的需求越来越强烈。

DC-DC转换器作为电源电子学的核心器件之一,已经成为了便携式、高速和高性能电子设备的重要组成部分。

数字Buck变换器作为一种广泛使用的DC-DC转换器,具有高效率、低纹波和调整输出电压等优点,因此备受关注。

数字Buck变换器的工作原理是将输入电压转换为经过电感和开关管控制的电容器间循环充放电而产生的输出电压。

若滤波电路设计不当,则可能会出现输出电压纹波的情况。

因此,现有文献都致力于提高纹波抑制性能。

在实际应用中,也需要优化数字Buck变换器的效率,降低功耗并延长电池寿命。

二、研究内容和方法本文旨在设计一种高效率和低纹波的数字Buck变换器,采用了电感电容滤波的方法来减小纹波,以及负载传输技术来提高效率。

采用了130nm CMOS技术来实现设计。

该设计的具体过程如下:1. 电感选择和滤波电容的确定;2. 经典的数字Buck变换器的设计;3. 采用负载传输技术,并根据实际负载情况调整负载电流;4. 在设计过程中,使用仿真工具进行参数选择和电路验证;5. 通过仿真和实验对该设计进行验证。

buck变换器设计报告

buck变换器设计报告

BUCK变换器设计报告——电力电子装置及应用课程设计1 设计指标及要求设计指标输入电压标称直流48V 范围:43V~53V输出电压:直流24V输出电流:直流5A输出电压纹波:100mV电流纹波:0.25A开关频率:250kHz相位裕量:60°幅值裕量:10dB设计要求计算主回路的电感和电容值开关器件选用MOSFET, 计算其电压和电流定额设计控制器结构和参数画出整个电路, 给出仿真结果2 BUCK主电路各参数计算图1 利用matlab搭建的BUCK主电路Mosfet2在时导通,使得负载电阻由Ω变为Ω,也就是说负载由半载到满载,稳态时负载电流上升一倍,负载电压不变,这两种状态的转换的过程的表征系统的性能指标。

电感值计算当V in=43V时,V o=24V,D= , 求得L=85μH当V in=48V时,V o=24V,D= , 求得L=96μH当V in=53V时,V o=24V,D=,求得L=105μH所以,取L=105μH电容值的计算代入,得C=1.25μF,由于考虑实际中能量存储以及输入和负载变化,一般取C大于该值,取C=120μF开关器件电压电流计算V sw=V in−max=53V开传递函数的确定G vd(s)=1+sR esr C1+s2L(1+R esrR)C+s(LR+R esr C)V inG vd(s)=V in(s)d(s)=V in(1+sωZ)1+s2ω02+s/(Qω0)其中 R esr=50mΩωz=1R esr C=10.05×120/106rad/s=166667 rad/sω0=1√LC(1+R esrR)=1√105106×120106(1+0.054.8)=8863 rad/sQ=√LCLR+R esr C=√120×105×10−6105×10−6/4.8+0.05×120×10−6=4.018故开环传递函数为G vd(s)=48(1+s166667) s288632+s35612+13 系统开环性能开环传递函数的阶跃响应由MATLAB可以作出系统的开环函数的单位阶跃响应,如下图所示由图可知,系统振荡时间较长,在5ms之后才可以达到稳定值,超调量为%,需要增加校正装置进行校正。

BUCK变换器设计报告

BUCK变换器设计报告

BUCK变换器设计报告一、BUCK主电路参数计算及器件选择1、BUCK变换器设计方法利用计算机设计BUCK变换器,首先要选取合适的仿真软件。

本文采用MATLAB和PSIM设计软件进行BUCK变换器的综合设计。

在选取好设计软件之后,先根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真。

如果开环仿真结果不能满足设计要求,再考虑选取合适的闭环控制器进行闭环控制系统的设计。

设计好闭环控制器后,对其进行闭环函数的仿真,选取超调小、调节时间快的闭环控制器搭建模型进行电路仿真。

2、主电路的设计BUCK变换器设计指标输入电压:标称直流电压48 V,范围:43 V~53 V ;输出电压:直流24 V ;输出电流:直流5 A ;输出电压纹波:100 mV ;输出电流纹波:0.25A ;开关频率:250 kHz ;相位裕量:60;幅值裕量:10 dB 。

设计要求计算主回路电感和电容值;开关器件选用MOSFET,计算其电压和电流定额;设计控制器结构和参数;画出整个电路,给出仿真结果。

根据设计指标,采用BUCK电路作为主电路,使用MOSFET元件作为开关元件,这是因为MOSFET的开关速度快,工作频率高,可以满足250khz的开关频率,此外,MOSFET与其他开关器件最显著的不同,是MOSFET具有正温度系数,热稳定性好,可以并联使用,其他开关器件不具有此特性。

(1)BUCK电路的主电路的拓扑图:(2)主电路的基本参数计算:开关周期:Ts=1/f s=4∗10−6s=0.5占空比(不考虑器件管压降):D=v0v in=0.5581V in=43V时,Dmax=v0v inV in=53V时,Dmin=v0=0.4528v in输出电压:V o=24V;输出电流:Io=0.25A;额定负载:R=V o÷Io=4.8Ω纹波电流:△I=0.25A;纹波电压:△V=100mV电感量理论值计算:由:,得:,电容量理论值计算:由:,得考虑到能量储存以及伏在变化的影响,要留有一定的裕度,故取C=120uF.由于电解电容一般都具有等效串联电阻R esr,因此在选择的过程中需要注意此电阻的大小对系统性能的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BUCK变换器设计报告
——电力电子装置及应用课程设计
1 设计指标及要求
1.1设计指标
•输入电压标称直流48V 范围:43V~53V
•输出电压:直流24V
•输出电流:直流5A
•输出电压纹波:100mV
•电流纹波:0.25A
•开关频率:250kHz
•相位裕量:60
•幅值裕量:10dB
1.2 设计要求
•计算主回路的电感和电容值
•开关器件选用MOSFET, 计算其电压和电流定额•设计控制器结构和参数
•画出整个电路, 给出仿真结果
2 BUCK主电路各参数计算
图1 利用matlab搭建的BUCK主电路
Mosfet2在0.01s时导通,使得负载电阻由9.6变为4.8,也就是说负载由半载到满载,稳态时负载电流上升一倍,负载电压不变,这两种状态的转换的过程的表征系统的性能指标。

2.1 电感值计算
当时,,D=0.558 , 求得
当时,,D=0.5 , 求得
当时,,D=0.453,求得
所以,取
2.2 电容值的计算
代入,得,由于考虑实际中能量存储以及输入和负载变化,一般取C大于该值,取
2.3 开关器件电压电流计算
2.4 开传递函数的确定
其中
故开环传递函数为
3 系统开环性能
3.1 开环传递函数的阶跃响应
由MATLAB可以作出系统的开环函数的单位阶跃响应,如下图所示
由图可知,系统振荡时间较长,在5ms之后才可以达到稳定值,超调量为66.67%,需要增加校正装置进行校正。

3.2 系统开环输出电压电压、电流响应
由MATLAB simulink作出的系统的输出电压、电流响应如下图所示
图2 开环电压、电流响应
在0.01s时负载由9.6变为4.8,电压振荡后不变,电流增大一倍。

由图可知电压超调量达到70%,电流超调量达到75%。

图3负载变化时电流响应图4负载变化时点响应
图3 电流纹波图4 电压纹波
电流纹波约为0.002A,电压纹波为0.01V,符合设计的要求,由于器件本身的压降损耗等因素,电压稳态值不等于24V,电流的稳态值也不等于5A。

4 控制系统设计
4.1 控制原理
图5 闭环控制系统原理
取输出输出信号作为反馈信号,经过校正装置来控制MOSFET的导通和断开,在开关周期一定的情况下控制占空比,实现闭环控制。

根据控制信号的不同,有以下两种控制方法:
图6 电压型控制
电压控制型:电压作为反馈信号,经过校正装置与锯齿波比较来控制开关的占空比。

图7 电流型控制
电流峰值控制:用通过功率开关的电流波形替代普通PWM调制电路中的载波信号。

4.2 闭环系统结构图
图8 闭环系统结构图
闭环增益:
调节器增益:
反馈因子:
4.3 调节器类型
积分器PI调节器PID调节器
•积分器:斜率-20db/dec, -90°.
•PI调节器:加入一个零点,局部斜率平坦,并且可提供90°的超前相位。

•PID调节器:加入两个零点,局部斜率上翘,并且可提供180°的超前相位。

4.4 闭环系统各参数确定
采用电压型控制,取输出电压作为反馈量,选用PID调节器进行调节,并且使用K因子法确定各参数的数值。

4.4.1 确定相位裕量
根据设计要求,相位裕量为60,为确保校正成功,取相位裕量为7 0
4.4.2 确定剪切频率
由于PID调节器可以提供180度相位超前
取 。

4.4.3 确定
由开环传递函数可以求得当,即
时,
由于,所以,可得代入传递函数,可得
4.4.4 各电路参数及的确定
由K因子法公式可得
由公式
可得
进而可得
解得 K=27.75
已知 ,K=27.75,,代入解得
表达式为:
代入得
5 系统闭环电路设计
5.1 基于MATLAB的闭环系统
图 MATLAB下系统闭环电路5.1.1 校正后的bode图
MATLAB作出的校正后的系统bode图
图9 校正前后bode图
利用MATLAB SISOTOOL同样可以作出加入PID调节器系统的bode图
图10 MATLAB SISOTOOL作出的bode图
图中方形点为极点,圆形点为零点,由图中可以直接读出
,并可以求得幅值裕量为无穷大,均符合设计要求。

5.1.2 系统的闭闭环单位阶跃响应
图11 闭环传递函数的单位阶跃响应
对比开环传递函数的单位阶跃响应图可知,系统响应速度加快,在0 .5ms时基本达到稳态值,振荡过程大大缩短。

5.1.3 闭环系统输出电压、电流波形
图12 电压响应波形
图13 电流响应波形
图14 负载变化电流响应图15 负载变化电压响应电压电流纹波状况如下图所示
图16电流纹波 图 电压纹波
由图可知电压电流响应都明显快于开环系统,振荡的幅度小,振荡时间短。

电流纹波约为0.002V,电压纹波约为0.01V,均符合设计标准。

5.2 基于psim的闭环电路设计
图基于PSIM的闭环电路图
在48V基础上叠加一个频率为200Hz
6 设计感悟。

相关文档
最新文档