代数与代数基本定理的历史
代数基本定理的几种证明

代数基本定理的几种证明作者:李志国邵泽玲李志新来源:《科技风》2020年第13期摘;要:代数基本定理是数学中最重要最基本的定理之一,不仅仅在代数学中起着重要的基础作用,乃至整个数学研究都有着广泛的应用基础。
本文通过利用拓扑、不动点、代数等理论给出了代数学基本定理的五种不同的证明。
关键词:代数基本定理;不动点定理;同伦;分裂域代数基本定理在代数乃至整个数学中起着基础作用。
最早该定理由德国数学家罗特于1608年提出。
据说,关于代数学基本定理的证明,现有200多种证法。
迄今为止,该定理尚无纯代数方法的证明。
大数学家J.P.塞尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。
美国数学家John Willard Milnor在数学名著《从微分观点看拓扑》一书中给了一个几何直观的证明,但是其中用到了和临界点测度有关的sard定理。
复变函数论中,对代数基本定理的证明是相当优美的,其中用到了很多经典的复变函数的理论结果。
代数基本定理,一般高等代数的教材中都没有给出证明,这是因为它的纯代数方法的种种证明都很复杂。
大多数参考文献中都是利用维尔定理和儒歇定理等复变函数理论来证明代数基本定理。
本文从拓扑学,不动点理论,代数理论等角度分别列举了五种不同的证明方法。
1 代数学基本定理任何一个n次多项式f(z)=anzn+an-1zn-1+…+a1z1+a0,ai∈C,an≠0在复数域C中至少有一个根。
证法一:(代数拓扑方法)视S2=C∪{SymboleB@},f(z)可以延拓为一个连续映射:F:S2=C∪{SymboleB@}→S2=C∪{SymboleB@};F(z)=f(z),z∈C;F(SymboleB@)=SymboleB@。
由此可知,只要证明0∈ImF即可。
定义H:S2×I→S2如下:H(z,t)=anzn+(1-t)(f(z)-anzn),z∈C,SymboleB@,z=SymboleB@。
令F1(z)=anzn,z∈CSymboleB@,z=SymboleB@,则H(z,t)定义了一个F与F1之间的一个同伦。
代数基本定理

代数基本定理代数基本定理是指:每一个非常数的复系数多项式都可以唯一地分解成一次和二次复系数因式的乘积。
它是代数学中的一个基本定理,被认为是十九世纪代数学的最重要成果之一,也是数学中最美丽的定理之一。
代数基本定理最初由欧拉在1748年提出,但其证明要等到1821年时Cauchy才给出。
代数基本定理的历史源远流长,但其证明需要使用现代代数学的一些工具,在欧拉的时代还无法证明。
代数基本定理说的是复系数多项式,其重要性体现在以下三个方面:1. 任何复系数多项式都可以分解成一次和二次因式的乘积,这个分解是唯一的。
2. 这个定理也意味着我们可以将多项式求解的问题转化为寻找其因式的问题,从而简化了问题的复杂度。
3. 代数基本定理是代数学中的核心定理,它不仅可以被推广到更高维度的多项式中,而且它的证明涉及到其他代数学分支的发展。
以下是代数基本定理的正式陈述和证明:假设$f(x)$是一个复系数的不可约多项式,则极有可能是一次或二次的。
具体来说,我们有以下两种情况:第一种情况:$f(x)$是一次多项式,即$f(x)=ax+b$,其中$a$和$b$是复数。
第二种情况:$f(x)$是一个二次多项式,即$f(x)=ax^2+bx+c$,其中$a$,$b$,$c$是复数且$a \eq 0$。
接下来需要证明,任意复系数多项式都可以分解成以上两种不可约多项式的乘积。
具体来说,假设$f(x)$是一个复系数多项式,则:1. 如果$f(x)$是一次多项式,则$f(x)$是一个不可约多项式,即它不能被分解成次数小于它自身的多项式的乘积。
因此$f(x)$就是一次不可约多项式。
2. 如果$f(x)$是一个次数大于一的复系数多项式,则必然存在一个不可约多项式$g(x)$,使得$f(x)=g(x)h(x)$,其中$h(x)$是次数小于$f(x)$的多项式。
因此,我们只需要考虑$g(x)$是否是一次或二次多项式。
如果$g(x)$是一次多项式,则$f(x)$可以写成$f(x)=(ax+b)h(x)$的形式,其中$a$和$b$是复数,$h(x)$是一个次数小于$f(x)$的多项式。
代数学的历史

代数学的历史可以追溯到古代,最早的数学文献中出现了一些初等代数学的内容。
在中国,周朝时期的《九章算术》中就已经包含了初等代数学的知识,如解线性方程组、二次方程等。
在古希腊,欧几里得的《几何原本》中也有一些代数学的知识,如解二次方程等。
随着时间的推移,代数学得到了进一步的发展。
在中世纪,阿拉伯数学家发挥了重要的作用。
花拉子米是阿拉伯数学家中的代表人物,他编写了代数学的著作《还原与对消的科学》,该著作被认为是最早的代数学教科书之一。
此外,阿拉伯数学家还研究了方程的解法,提出了代数基本定理的雏形,发展了多项式的因式分以及代数方程的解法等。
到了欧洲文艺复兴时期,代数学的研究逐渐走向系统化、符号化。
法国数学家韦达(Vieta)是第一个系统地使用字母表示代数式的数学家,他的方法标志着代数进入了一个新的发展阶段。
随后,代数学逐渐分为两个分支:初等代数学和抽象代数学。
初等代数学是更古老的算术的推广和发展,主要研究线性方程、二次方程、分式方程、根式方程等的解法和性质。
在19世纪以前,初等代数学是代数学的主要内容。
而抽象代数学则是在初等代数学的基础上产生和发展起来的,它以集合、映射、运算等概念为基础,强调抽象性和公理化方法,更加注重概念、定理和证明。
在20世纪,代数学得到了进一步的发展和推广。
一些新的代数结构被发现和研究,如群、环、域、模等。
这些代数结构在理论物理、计算机科学、信息理论等领域有着广泛的应用。
此外,随着计算机科学的发展,代数学在计算机算法设计、密码学等领域也得到了广泛的应用。
总之,代数学的历史是一个不断发展和演进的过程。
它从古代的初等代数学逐渐发展成为现代的抽象代数学,并在各个领域得到了广泛的应用。
代数的历史与发展

代数的历史与发展代数学(algebra)是数学中最重要的分支之一。
代数学的历史悠久,它随着人类生活的提高,生产技术的进步,科学和数学本身的需要而产生和发展。
在这个过程中,代数学的研究对象和研究方法发生了重大的变化。
代数学可分为初等代数学和抽象代数学两部分。
初等代数学是更古老的算术的推广和发展,而抽象代数学则是在初等代数学的基础上产生和发展起来的。
代数学的西文名称algebra来源于9世纪阿拉伯数学家花拉子米的重要著作的名称。
该著作名为”ilm al-jabr wa’I muqabalah”,原意是“还原与对消的科学”。
这本书传到欧洲后,简译为algebra。
清初曾传入中国两卷无作者的代数书,被译为《阿尔热巴拉新法》,后改译为《代数学》(李善兰译,1853)。
初等代数学是指19世纪上半叶以前的方程理论,主要研究某一方程(组)是否可解,怎样求出方程所有的根(包括近似根)以及方程的根所具有的各种性质等。
代数之前已有算术,算术是解决日常生活中的各种计算问题,即整数与分数的四则运算。
代数与算术不同,主要区别在于代数要引入未知数,根据问题的条件列方程,然后解方程求未知数的值。
这一类数学问题,早在古埃及的数学纸草书(约公元前1800年)中就有了启示,书中将未知数称为“堆”(一堆东西),并以象形文字表示。
古巴比伦人也知道某些二次方程的解法,在汉穆拉比时代(公元前18世纪)的泥板中,就载有二次方程问题,甚至还有相当于三次方程的问题。
数学史家们曾为此发生过热烈争论:在什么意义下能把巴比伦数学看成代数?古希腊时代,几何学明显地从代数学中分离出来,并在希腊科学中占统治地位,其威力之大,以至于纯算术的或代数的问题都被转译为几何语言:量被理解为长度,两个量之积解释为矩形、面积等。
现在数学中保留的称二次幂为“平方”,三次幂为“立方”,就是来源于此。
古希腊时期流传至今的与代数有关的著作只有丢番图的《算术》。
该书中解决了某些一次、二次方程问题和不定方程问题,出现了缩写符号和应用负数之例。
代数学的创立与发展过程

代数学是一门研究数学结构和运算规则的学科,它的创立和发展可以追溯到古希腊和古印度时期。
以下是代数学的创立和发展过程的简要概述:
1. 古希腊时期,毕达哥拉斯学派发现了数学的基本定理,包括勾股定理和平方差定理等,这些定理为代数学的发展奠定了基础。
2. 古印度时期,阿拉伯数学家将代数学引入欧洲,他们发展了代数学中的一些基本概念,如方程、多项式和因式分解等。
3. 16世纪,意大利数学家卡尔达诺发明了求解三次和四次方程的方法,开创了代数学的新时代。
4. 17世纪,牛顿和莱布尼茨发明了微积分学,为代数学的发展提供了新的工具和方法。
5. 19世纪,群论的发展使代数学得到了更深入的理解,代数学家开始研究代数结构和代数变换等问题。
6. 20世纪,代数学家们开始研究抽象代数学,研究代数结构的一般性质和分类问题。
代数学的发展是一个漫长而丰富多彩的历史过程,代数学家们不断地探索代数结构的本质和规律,并将代数学应用于各种实际问题的解决中。
代数学在数学、物理、工程、计算机科学等领域都有着广泛的应用,是现代科学发展中不可或缺的一部分。
韦达定理

韦达定理韦达定理说明了一元n次方程中根和系数之间的关系。
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
基本介绍英文名称:Vieta's formulas韦达定理证明了一元n次方程中根和系数之间的关系。
这里讲一元二次方程两根之间的关系。
一元二次方程aX^2+bX+C=0﹙a≠0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1*X2=c/a定理内容一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac>0)中,设两个根为x1,x2 则X1+X2= -b/aX1*X2=c/a用韦达定理判断方程的根一元二次方程ax^2+bx+c=0 (a≠0)中,若b^2-4ac<0 则方程没有实数根若b^2-4ac=0 则方程有两个相等的实数根若b^2-4ac>0 则方程有两个不相等的实数根证明结论由一元二次方程求根公式为:X = (-b±√b^2-4ac)/2a (注意:a指二次项系数,b指一次项系数,c指常数,且a≠0)可得X1= (-b+√b^2-4ac)/2a ,X2= (-b-√b^2-4ac)/2a 1. X1﹢X2=(-b+√b^2-4ac)/2a+(-b-√b^2-4ac)/2a所以X1﹢X2=-b/a2. X1X2= [(-b+√b^2-4ac﹚÷2a]×[(-b-√b^2-4ac﹚÷2a]所以X1X2=c/a(补充:X1^2+X2^2=(X1+X2)^2-2X1·X2(扩充)3.X1-X2=(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a 又因为X1.X2的值可以互换,所以则有X1-X2=±【(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a】所以X1-X2=±(√b^2-4ac)/a韦达定理推广的证明设X1,X2,……,xn是一元n次方程∑AiXi =0的n个解。
代数发展史

•对于两鼠穿墙问题,《九章算术》给出的解法便是享誉 古今的“盈不足术”。(回忆一下,这是我们小学时学过 •的)具体解法如下:
• 解:假设两只老鼠打洞2天,则仍差5寸(1寸为0.1 尺),不能把墙打穿,假设打洞3天,就会多 出3尺7寸半,这样一来,便化繁为简,成为 了典型的“盈不足”问题:
两只老鼠相遇的 23.7530.522
3.2 代数运算
• 引入数学符号之后,人们开始对于方程,方程组的叙 述做到了简约而不简单,而这个极大的简化也正式将 代数运算推上了历史的舞台。
• 而各种算术中的运算法则在代数运算中的通用性更是 大大的加速了人们对于方程求解这一类在日常生活和 科学研究中占据重要地位的数学问题的研究,最终导 致了新的数学学科的发现。
• 今有垣厚五尺,两鼠对穿,大鼠日一尺, 小鼠亦日一尺,大鼠日自倍,小鼠日自半, 问几何日相逢?各穿几尺?
• 用今天的办法,设大鼠和小鼠在x日后相逢: • 我们得出这样的一个用数列求和的等式:
1 2 4 2 x 1 1 1 1 5 24 2 x
1.1.3 求解过程
• 由数列求和公式得:
代数发展史
整体脉络
• 1.算术与数的进制 • 2.数的表示与数的扩充 • 3.数学符号与代数运算 • 4.方程求解与抽象代数
1.1 算术
• 高斯说:“算术给予我们一个用之不竭、 充满乐趣的宝库。”
• 中国古代的政治制度,很大程度决定了 中国数学中“算”占据了最主要的地位, 所以毋庸置疑的是,中国古代数学对于 算术的重视程度和取得的成就都是世界 上数一数二的,而传承下来的著作,解 决掉的难题和让人拍案叫绝的计算方法 仍是当今数学界的瑰宝。
• 在这其中,丢番图,以及我们熟知的韦达,笛卡尔都做了 巨大的贡献,他们将繁琐的文字表达方式改进为使用 x,y,z代表未知量,用a,b,c代表已知量。
高斯代数基本定理

高斯代数基本定理高斯代数基本定理(Gauss's Fundamental Theorem of Algebra)是现代代数学中的一个重要定理,它揭示了复数域上代数方程的根的存在性。
该定理由德国数学家卡尔·弗里德里希·高斯于1799年首次提出,并在1828年发表。
在代数学中,一个代数方程是形如f(x) = 0的方程,其中f(x)是一个多项式函数,而x是未知数。
高斯代数基本定理指出,对于任何次数大于等于1的复系数多项式方程,总存在至少一个复数根。
具体来说,高斯代数基本定理可以表述为:任何一个次数大于等于1的复系数多项式方程f(x) = 0,在复数域上总有解。
换句话说,复数域上的代数方程总能够被复数根解决。
为了更好地理解高斯代数基本定理,我们可以通过一个简单的例子来说明。
考虑方程x^2 + 1 = 0,其中x是未知数。
根据高斯代数基本定理,我们知道这个方程在复数域上必定有解。
实际上,这个方程的解是x = ±i,其中i是虚数单位。
高斯代数基本定理的证明并不简单,它需要使用复数域的性质和代数学的基本概念。
高斯通过将复数域扩展为复平面,并利用复数的极坐标形式来证明了这个定理。
他的证明是基于代数学中的重要定理之一,即代数基本定理(Fundamental Theorem of Algebra),它指出任何一个次数大于等于1的复系数多项式方程在复数域上至少有一个复数根。
高斯代数基本定理的重要性不仅在于它解决了复数域上的代数方程,还在于它为代数学的发展奠定了基础。
通过这个定理,我们能够更深入地研究多项式方程的性质和解的特征。
它在代数学、数论、几何学等领域都有广泛的应用。
除了在理论研究中的应用,高斯代数基本定理还在实际问题中发挥着重要作用。
例如,在工程和科学领域中,我们经常需要解决各种复杂的方程和模型。
高斯代数基本定理提供了一种有效的方法来确定方程的解的存在性,并为我们提供了解决问题的思路和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数与代数基本定理的历史
代数与代数基本定理的历史
1.关于代数的故事
在十九世纪以前,代数被理解为关于方程的科学。
十九世纪,法国数学家伽罗华(Evaristr Galois)开创群论以后,代数不再以方程为中心,而是以各种代数结构为中心。
作为中学数学课程的代数,其中心内容就是方程理论。
代数的发展是和方程分不开的。
代数对于算术来说,是一个巨大的进步,代数和算术的主要区别说在于前者引入了未知量,根据问题
,然后解方程求出未知量,我们举一个例子:一个乘以3,再除以5,等于的条件列同方程
60,求这个数。
算术求法(公元1200年左右伊斯兰教的数学家们就是这样解的:既然这个数的3/5是60,那么它的1/5就是20一个数的1/5是20那么这个数是20的5倍,即100。
代数解法:设某数为x ,则可见代数解法与算术思路不同。
各有自己的一套规则,代数解法比较简单明了。
古埃及人、巴比伦人在一些实际计算问题已使用过代数的方法。
据说,1858年苏格兰有一位古董收藏家兰德在非洲的
尼罗河边买了一卷公元前1600年左右遗留下来的古埃及的纸莎草卷,他惊奇地发现,这卷草卷中有一些含有未知数的数学问题(当然都是用象形文字表示的)。
例如有一个问题翻译成数学语言是:
“啊哈,它的全部,它的1/7,其和等于19。
”
如果用x表示这个问题中的求知数,就得到方程,解这个方程,得到。
令人惊奇的是,虽然古埃及人没有我们今天所使用的方程的表示和解法,却成功得到解决了这个答数。
我国古代的代数研究在世界上一直处于领先地位,在经典数学著作《九章算术》中,除了方程外,还有开平方、开立方、正负数的不同表示法和正负
数的加减法则等代数的最基本问题,到宋、元时代,我国对代数的研究达到了高峰。
贾宪等的高次方程数值解方法,秦九
及其韶的联立一次同余式解法,李治的列方程一般方法,朱世杰的多元高次方程组解法,有限级数求和的“招差法公式”,都早于欧洲几百年。
“代数学”这个名称,在我国是1859年正式开始使用的,来自拉丁文(Algebra),它又是从阿拉伯文变来的,其中有一段曲折的历史。
公元825年左右,花拉子模的数学家阿尔——花拉子模写了一本书《Kitabaljabr-W’al-mugabala》意思是“整理”和“对比”,这本书的阿拉伯文版已经失传,但12世纪的一册拉丁文译本却流传到今,在这个译本中,把“aljabr”译成拉丁语“Aljebra”,并作为一门学科,它的课题最首要的就是用字母表示的式子的变形和解方程的规则方程。
我国清代数学李善兰,1859年编译西方代数时,把“Algebra”译成了“代数学”。
从些,“代数”这个名词便一直在我国沿用下来。
2.代数基本定理
任何n(n>0)次多项式在复数域中至少有一个根。
一元一次方程有且只有一个根,一元二次方程在复数域中有且只有两个根,因此,人们自然研究一元n次方程在复数域中有几个根。
此外,当初的积分运算中采用部分分式法也引起了与此有关的问题:是不是任何一个实系数多项式都能分解成一次因式的积,或分解成实系数的一次因式和二次因式的积,这样的分解,关键证明代数基本定理。
代数基本定理的第一个证明是法国数学家达朗贝尔给出的,但他的证明是首先默认了数学分析中一条明显的引理:定义在有限闭区间上的连续函数一定在某一点取得最小值,而这个引理在达朗贝尔的研究100年以后才得到证明。
接着,欧拉也给出了一个证明,但有缺陷,拉格朗日于1772年又重新证明了代数基本定理,后经高斯分析,发现他的证法中把实数的尚未证明其真实性的各种性质应用了,所以该证明仍然是很不严格的。
1799年,高斯在他的博士论文中第一个严格证明了代数基本定理,其基
本思路如下:设f (z)为n次实系数多项式,记z = x + yi (x, y为实数),考察方程:f (x + yi) = u (x, y) + v (x, y)i = 0即u (x, y) = 0与v (x, y) = 0分别表示oxy坐标平面上的两条曲线,于是通过对曲线作定性的研究,他证明了这两条曲线必有一个交点,从而得出u (a, b) = v (a,
b) = 0即f (a + bi) = 0,故此便是代数方程f (z)的一个根。
这个论证具有高度的创造性,但
从现代的标准来看,依然是不严格的,因为他依靠了曲线的图形,证明它们必然相交,而这些图形是比较复杂的。
高斯后来又给出了另外三个证明方法,第二个证法中,不依靠几何的论据,但是却应用了当时未经证明的命题:设多项式p (x) 在x的两个不同的值之间没有零点,则它在这两个值处不可能改变符号。
高斯在71岁时还公布了第四个证法,在这个证法中,他容许多项式的系数是复数。
应指出,在许多证法中,这个定理都不是在最一般的情况下证明的,都是假定了多项式中的文字系数表示实数,但整个定理却包括复系数的情
代数基本定理已作为其他定理的推论。
代数基本定理在代数乃至况。
复变函数论发展后,
整个数学中起着基础作用。
代数学基本定理(Fundamental Theorem of Algebra)是说每个次数不小于1的复系数多项式在复数域中至少有一复根。
这个定理实际上表述了复数域的代数完备性这一事实。
高斯运用含参量积分的结论贡献了一个首创的代数学基本定理的证明;而利用复变函数论中的结论证明起来比较简洁;卢丁(Rudin)在他那本著名的《数学分析原理》中给出了一个看上去更清晰的证明,但其间用到很多专属于他那本著作的定理,要看懂此定理的证明,至少要先研读50页的前文,而全书不过300页具体的证明就不赘述了,自己去查参考文献吧,如果你真的感兴趣的话。
参考文献:
菲赫金哥尔茨 "微积分学教程" ?14.2 [512] 代数学基本定理的高斯证明高
教出版社 Walter Rudin "Principles of Mathematical Analysis" Theorem 8.8 机械工业出版社
Courant, R. and Robbins, H. "The Fundamental Theorem of Algebra." ?2.5.4 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 101-103, 1996.
S. G. "The Fundamental Theorem of Algebra." ?1.1.7 and 3.1.4 in Handbook of Complex Krantz,
Variables. Boston, MA: Birkhäuser, pp. 7 and 32-33, 1999.。