线性变换与二阶矩阵 复习课件 PPT

合集下载

高考数学总复习 第1节 线性变换与二阶矩阵课件 苏教版选修4-2

高考数学总复习 第1节 线性变换与二阶矩阵课件 苏教版选修4-2

1 矩阵称为切变变换矩阵.以 0
k 把平面上的点(x, 1
y)沿 x 轴方向平移|ky|个单位, 当 ky>0 时沿 x 轴正方向移动, 当 ky<0 时沿 x 轴负方向移动,当 ky=0 时原地不动.
【基础自测】
1 -1 对应的变换作用下得到的点的坐 1. 点 A(3, -6)在矩阵 1 0 2
a11 a21
a12 b11 b12 a22b21 b22 a11×b12+a12×b22 . a21×b12+a22×b22
a11×b11+a12×b21 = a ×b +a ×b 21 11 22 21
(4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律 即(AB)C=A(BC), AB≠BA, 由 AB=AC 不一定能推出 B=C. 一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数 相等时才能进行乘法运算.
a11 (2)二阶矩阵 a21 a11×x0+a12×y0 a ×x +a ×y . 21 0 22 0
x0 a11 a12 x0 a12 与列向量 和乘法规则: = a22 y0 a21 a22y0
(3)两个二阶矩阵相乘的结果仍然是一个矩阵, 其乘法法则如下:
1 M1= 0 1 0 ,M2= 0 1 0 0 ,M3= 0 0
0 确定的投影变换.需要注意 1
的是投影变换是映射,但不是一一映射. (6)由矩阵
1 M= 0
k 1 或 1 k
0 确定的变换称为切变变换,对应的 1
1 k 为例,矩阵 1 0
第 1节
线性变换与二阶矩阵
【知识梳理】 1.矩阵的相关概念 (1)由 4 个数
a a,b,c,d 排成的正方形数表 c

人教版高中数学选修四教学课件-几类特殊线性变换及其二阶矩阵

人教版高中数学选修四教学课件-几类特殊线性变换及其二阶矩阵

������'-������ 1
11
∴ ������'-������ = - 3 , ∴ ������'-������ = - 3 ������' + 3 ������,
������' = 3������'.
������' = 3������'.
13
1

������'
=
10 3
������
+
10 9
题型一 题型二 题型三 题型四 题型五 题型六
题型四
投影变换
【例4】 在直角坐标系xOy内,求关于直线y=3x的投影变换对应 的二阶矩阵.
分析:根据投影变换的定义,在关于直线l的投影变换下,点P与它 的像P'应满足PP'⊥l,且点P'在直线l上.
题型一 题型二 题型三 题型四 题型五 题型六
解:设平面内任一点P(x,y)在关于直线y=3x的投影变换下的对应 点为P'(x',y'),则有PP'与直线y=3x垂直,且点P'在直线PP'上,
题型一 题型二 题型三 题型四 题型五 题型六
题型三
伸缩变换

【例
3】在直角坐标系
xOy
内,将每个点的横坐标变为原来的
1 2
,
纵坐标变为原来的 2 倍, 求点������(1,2)在该变换作用下的像������′.
分析:可根据伸缩变换的坐标变换公式或对应的矩阵求解.
解:设点 M 在该变换作用下的像为 M'(x',y'),
答案:B
题型一 题型二 题型三 题型四 题型五 题型六

线性变换与二阶矩阵PPT课件

线性变换与二阶矩阵PPT课件

二阶矩阵的逆
总结词
二阶矩阵的逆是一个特殊的矩阵,它与原矩阵相乘等于单位矩阵。
详细描述
二阶矩阵的逆是一个重要的概念,它是一个与原矩阵互为逆元的特殊矩阵。如果一个二阶矩阵与其逆矩阵相乘等 于单位矩阵,则这个逆矩阵是存在的。求逆矩阵的方法有多种,如高斯消元法、伴随矩阵法等。在某些情况下, 如行列式值为零时,矩阵可能没有逆矩阵。
平移矩阵与平移操作
• 平移矩阵:平移矩阵也是二阶矩阵的一种,用于 表示平移操作。其一般形式为
平移矩阵与平移操作
```
| 0 1 ty |
| 1 0 tx |
平移矩阵与平移操作
```
其中,tx和ty分别表示在x轴和y轴方
平移操作:平移操作是指通过平移矩阵
向上的平移距离。
对向量进行变换,使向量在指定的方向
03
线性变换与二阶矩阵的关系
线性变换的矩阵表示
线性变换是数学中的一种重要概念,它描述了一个向量空间 中的向量通过一个线性映射变为另一个向量空间的过程。在 矩阵表示中,线性变换可以用一个矩阵来表示,该矩阵的行 和列分别对应于输入和输出空间的基向量。
线性变换的矩阵表示具有一些重要的性质,例如矩阵乘法对 应于线性变换的复合,矩阵的转置对应于线性变换的共轭, 以及矩阵的逆对应于线性变换的逆。
二阶矩阵与线性变换的转换
二阶矩阵是数学中一种常见的矩阵类型,它由四个数字组成,可以用来表示一个 线性变换。通过选择适当的基向量,可以将一个线性变换转换为二阶矩阵,反之 亦然。
二阶矩阵与线性变换的转换关系是线性的,即对于任意两个线性变换A和B,以及任 意标量k,有kA=AkB=BkA。
二阶矩阵在几何变换中的应用
通过矩阵变换,可以改变向量的长度、方向和位置,从而实现二维空间中的几何变 换。

高三数学一轮复习第1课时二阶矩阵与变换课件文新人教A版选修

高三数学一轮复习第1课时二阶矩阵与变换课件文新人教A版选修
- 1 于 y 轴对称对应的矩阵为 A= 0
0 1 0 A=_______ 1 .
0 ,关于 y= 1
x 对称对应的矩阵为
0 (3)伸缩变换对应的二阶矩阵 ,表示 k2 k1 倍,纵坐标 将每个点的横坐标变为原来的 ____ k2 倍,k1,k2 均为非零常数. 变为原来的____ (4)投影变换: 关于 x 轴的(正)投影变换对应的矩 1 0 0 . 阵为 A=________ 0 (5)沿与 x 轴平行的方向平移 ky 个单位的切变变
1 k 0 1 . 换为________
k 1 A= 0
3.线性变换的基本性质 λx x λy (1)设向量 α= ,则 λα=______. y x1+ x2 x x 1 2 y1+ y2 . (2)设向量 α= ,β= ,则 α+β=_______ y1 y2 (3)A 是一个二阶矩阵,α、β 是平面上的任意两 个向量,λ 是一个任意实数,则 A(λα)=_____ λAα , Aα+Aβ . A(α+β)=__________ (4) 二阶矩阵对应的变换 ( 线性变换 ) 把平面上的
2 且 MN= - 2
0 . 0 (1)求实数 a,b,c,d 的值; 用下的像的方程.
1 M= b
c a 2 , N = , 1 0 d
(2)求直线 y=3x 在矩阵 M 所对应的线性变换作
解析:
方法一:
c+ 0= 2, 2+ ad= 0, (1)由题设得 bc+ 0=- 2, 2b+ d= 0. a=-1, b=-1, 解得 c= 2, d= 2.
所以 a=1, c=0.

1 2 a+ b 2 M = 得, = ,所以 1 2 c+ d 2 1 M= 0 1 2 M = 0

高中数学第一讲线性变换与二阶矩阵(二)一些重要线性变换对单位正方形区域的作用课件新人教A版选修4-2

高中数学第一讲线性变换与二阶矩阵(二)一些重要线性变换对单位正方形区域的作用课件新人教A版选修4-2

2、子空间的“交空间”与“和空间”
讨论:设W 1 V,W2 V,且都是子空间,则 W1W2和W1W2是否仍然是子空间? 1. (1) 交空间
交集: W1W2={ W1 而且 W 2}Vn(F) W1W2是子空间,被称为“交空间”
(2)和空间
W1W2 W1+W2
和的集合:W1+W2={=X1+X2X1W1,X2W2}
内容: 线性空间的一般概念 重点:空间结构和其中的数量关系 线性变换 重点:其中的矩阵处理方法
特点: 研究代数结构——具有线性运算的集合。 看重的不是研究对象本身,而是对象之间的结构关系。 研究的关注点:对象之间数量关系的矩阵处理。 学习特点:具有抽象性和一般性。
1.1 线性空间(Linear Spaces)
•C[a,b]={f(x):f(x)在[a,b]上连续}
运算:函数的加法和数乘
•Example: V=R+,F=R, a b=ab, a=a
不是线性空间的集合
V={X=(x1,x2,1)T:xi R}
运算:向量加法和数乘向量 要证明一个集合不是线性空间,定义中有很多漏 洞可以攻击。
线性空间的一般性的观点:
一. 集合与映射 1. 集合 2. 集合:作为整体看的一堆东西. 3. 集合的元素:组成集合的事物.
设S表示集合,a表示S的元素,记为a∈S 读为a属于S;用记号 aS 表示a 不属于S.
集合的表示:(1 ) 列举法
2
(2) 特征性质法 Maa具有的性质
例如 P ( x ,y )x 2 y 1
定义形式和向量空间Rn中的定义一样。 有关性质与定理和Rn中的结果一样。
因此,要研究线性空间,只需要研究它的最 大线性无关组----即为基(basis)

高中数学 第一讲 线性变换与二阶矩阵 1.1.2 变换、矩

高中数学 第一讲 线性变换与二阶矩阵 1.1.2 变换、矩

������ = 2������ + 1,
从而有 ������-������ = ������ + 1, ������ + ������ = -������,
������ = 2������ + 1,
解得
a=-1,b=-1,c=
1 5
,
������
=

25.
反思两个矩阵相等,它们相应位置的对应元素分别相等.
(二)变换、矩阵的相等
1.理解并掌握变换相等与二阶矩阵相等的概念. 2.会利用变换、矩阵的相等解决简单问题.
12
1.变换相等 一般地,设σ,ρ是同一个直角坐标平面内的两个线性变换.如果对 平面内的任意一点P,都有σ(P)=ρ(P),则称这两个线性变换相等,简 记为σ=ρ. 知识拓展根据与α角终边相同的角为2kπ+α(k∈Z),它们的三角函 数值一定相等,可知旋转变换Rα一定与旋转变换R2kπ+α(k∈Z)相等, 即有Rα=R2kπ+α.
cos������
=
cos
π 12
,
sin������
=
sin
π 12
,
∴α=
π 12
+
2������π,
������∈Z.
题型一 题型二 题型三
反思对于两个相等的旋转变换 Rα 与 Rβ,其二阶矩阵
������������������α -������������������α
������������������β -������������������β
A.−
2π 3
B.
4π 3
C.

4π 3
D.

线性变换、二阶矩阵及其乘法.ppt

线性变换、二阶矩阵及其乘法.ppt

4.运用旋转矩阵,求直线2x+y-1=0绕原点逆时针旋转 45°后所得的直线方程.
解:旋转矩阵 直线2x+y-1=0上任意一点(x0,y0)旋转变换后为(x0′,y0′),
直线2x+y-1=0绕原点逆时针旋转45°后所得的直线
方程是
2x 2 y 2 x 2 y 1 0,
2
2
矩阵. 2.二阶矩阵与二元一次方程组 (1)能用变换与映射的观点认识解线性方程组的意
义.
(2)会用系数矩阵的逆矩阵解线性方程组. (3)理解线性方程组解的存在性、唯一性.
解线性 方程组, 如求逆 矩阵, 另外特 征值与
3.变换的不变量
特征向
(1)掌握矩阵特征值与特征向量的定义,理解特征向 量的求
量的意义.
解:(1)由题设条件, 变换:
即有 解得
代入曲线C的方程为y′2-x′2=2, 所以将曲线C绕坐标原点逆时针旋转45°后,得到的曲线C′ 的方程是y2-x2=2. (2)由(1)知,只需求曲线y2-x2=2的焦点及渐近线,由于a2 =b2=2,故c=2,又焦点在y轴上,从而其焦点为(0,2),(0, -2),渐近线方程为y=±x.
1.旋转变换
直线坐标系xOy内的每个点绕原点O按逆时针方向旋
转α角的旋转变换的坐标变换公式是
对应的二阶矩阵为

2.反射变换 平面上任意一点P对应到它关于直线l的对称点P′的线 性变换叫做关于直线l的反射.
3.伸缩变换 在直角坐标系xOy内将每个点的横坐标变为原来的k1 倍,纵坐标变为原来的k2倍,其中k1,k2为非零常数, 这样的几何变换为伸缩变换.
解:(MN)α= M(Nα)= 所以(MN)α=M(Nα). 又因为MN=
NM=

高中数学 第一讲 线性变换与二阶矩阵 1.2 二阶矩阵与平面向量的乘法课件 新人教A版选修42

高中数学 第一讲 线性变换与二阶矩阵 1.2 二阶矩阵与平面向量的乘法课件 新人教A版选修42

=
5 14
,
3
������2 + 1
5
答案:2
1234 5
-2 3
4
1.矩阵 A=
与向量������ =
的乘积为( )
2 -4
-1
-10
14
A.
B.
16
-18
-11
12
4 5
ab 解析:矩阵与向量的乘积法则为
-2 3 所以Aα=
cd
4
-11
=
.
2 -4 -1
12
答案:C
x
y
y
123
名师点拨二阶矩阵与平面向量的乘法实现了用二阶矩阵和平面 向量的乘积表示线性变换的目的,可以用二阶矩阵求出平面内的任 意一点在线性变换作用下的像的坐标.
123
【做一做 3】
线性变换
������' = ������ + 2������, ������' = 3������ + 4������
ax + by
=
,
y
cx + dy
1234 5
10
2.曲线 y= ������(������≥0)在矩阵
0 -1 对应的变换作用下所得的曲线方程为( ) A.y= ������(������≥0) B.y=− ������(������≥0) C.y=x2(x≥0) D.y=-x2(x≥0)
1234 5
-1 × 3 + 4 × 2
5
Bα=
=
=
.
35 2
3×3+5×2
19
10
反思与单位矩阵
相乘,向量 α 保持不变.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档