八年级数学上册 第十二章 全等三角形 12.1 全等三角形同步训练 (新版)新人教版
「精选」八年级数学上册第十二章全等三角形12.1全等三角形同步训练新版新人教版-精选下载

第十二章全等三角形12.1__全等三角形__[学生用书P23]1.如图12-1-4所示,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )图12-1-4A.20° B.30°C.35° D.40°2.如图12-1-5所示,△ABC≌△CDA,则下列结论错误的是( )图12-1-5A.∠1=∠2 B.AC=CAC.∠D=∠B D.AC=BC3.如图12-1-6,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5 B.4 C.3 D.2图12-1-64.[2016·成都]如图12-1-7,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=__ _.图12-1-75.如图12-1-8,△AOC≌△BOD,试证明AC∥BD.图12-1-86.如图12-1-9,已知△ABC≌△DCB.(1)分别写出它们的对应角和对应边;(2)请说明∠1=∠2的理由.图12-1-97.[2016春·沈丘县期末]如图12-1-10,已知△ACE≌△DBF,CE=BF,AE=DF,AD=8,BC=2.图12-1-10(1)求AC的长度;(2)求证:CE∥BF.8.[2016·南安期末]如图12-1-11,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.(1)当DE=8,BC=5时,线段AE的长为__ __.(2)已知∠D=35°,∠C=60°.①求∠DBC的度数;②求∠AFD的度数.图12-1-11参考答案【知识管理】1.完全重合2.完全重合顶点边角全等于对应顶点3.相等相等【归类探究】例1AC的对应边是DE,AB的对应边是DF,CB的对应边是EF;∠A与∠D,∠C与∠DEF,∠ABC 与∠F是对应角.例2 A【当堂测评】1.B 2.C 3.61°15【分层作业】1.B 2.D 3.A 4.120° 5.略6.(1)对应角是∠A和∠D,∠1和∠2,∠ABC和∠DCB,对应边是AB和DC,AC和DB,BC和CB;(2)理由:全等三角形的对应角相等.7.(1)AC=5 (2)略8.(1)3 (2)∠DBC=25°;∠AFD=130°.。
新人教版八年级上12.1《全等三角形》同步练习及答案【6】

全等三角形同步练习及答案一、选择题1、下列判断不正确的是( ) .(A)形状相同的图形是全等图形(B)能够完全重合的两个三角形全等(C)全等图形的形状和大小都相同(D)全等三角形的对应角相等2、已知△ABC≌△DEF,BC=EF=6cm,△A BC的面积为18,则EF边上的高的长是[ ].A.3cm B.4cm C.5cm D.6cm3、下列各组图形中,是全等形的是()A、两个含60°角的直角三角形B、腰对应相等的两个等腰直角三角形C、边长为3和4的两个等腰三角形D、一个钝角相等的两个等腰三角形4、如图2,△ABC≌△EFD,那么下列说法错误的是()A、 FC=BDB、EF ABC、AC DED、CD=ED5、下列各组图形中,是全等形的是 ( )A、两个含60°角的直角三角形B、腰对应相等的两个等腰直角三角形C、边长为3和4的两个等腰三角形D、一个钝角相等的两个等腰三角形6、如图:,则∠D的度数为().A. B. C. D.7、如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8、如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A.80° B.70° C.60° D.50°9、若△ABC≌△DEF,点A和点D,点B和点E是对应点。
如果AB=7cm,BC=6cm,AC=5cm,则EF的长为()A. 4cmB. 5 cmC.6 cmD.7 cm10、边长都为整数的△ABC≌△DEF ,AB与DE是对应边, AB=2 ,BC=4 ,若△DEF 的周长为偶数,则 DF的取值为()(A). 3 (B). 4 (C). 5 (D). 3或4或5二、填空题11、由同一张底片冲洗出来的五寸照片和七寸照片 _____ 全等图形(填“是”或“不是”).12、已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法1:直接法.计算三角形一边的长,并求出该边上的高.方法2:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(-1,4),B(2,2),C(4,-1),请你选择一种方法计算△ABC的面积,你的答案是S△ABC =.13、已知△ABC≌△DEF,且∠A=90°,AB=6,AC=8,BC=10,△DEF中最大边长是,最大角是度.14、已知如图1,△ABC≌△FED,且BC=DE.则∠A=__________,AD=_______.FE=_______15、如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=________cm。
全等三角形(练习卷)人教版数学八年级上册

12.1 全等三角形(练习卷)人教新版八年级上册数学一.选择题(共12小题)1.如图,△ABE≌△ACD,∠A=60°,∠B=25°,则∠BOC的度数为()A.85°B.95°C.110°D.120°2.下列图形中与如图图形全等的是()A.B.C.D.3.如图,点D、E分别在△ABC的边AB、AC上,且△DEF≌△DEA,若∠BDF﹣∠CEF =60°,则∠A的度数为()A.30°B.32°C.35°D.40°4.如图,△ABC≌△AEF,AB和AE,AC和AF分别是对应边,那么∠EAC等于()A.∠ACB B.∠BAF C.∠F D.∠CAF5.如图,已知△ABC≌△CDA,下面四个结论中,不正确的是()A.△ABC和△CDA的面积相等B.△ABC和△CDA的周长相等C.∠B+∠ACB=∠D+∠ACD D.AD∥BC,且AD=CB6.如图为6个边长相等的正方形的组合图形,则∠1+∠3﹣∠2=()A.30°B.45°C.60°D.135°7.如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC 与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s8.已知△ABC的三边的长分别为3,5,7,△DEF的三边的长分别为3,7,2x﹣1,若这两个三角形全等,则x的值是()A.3B.5C.﹣3D.﹣59.如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.∠ABD=∠CBD B.△ABD和△CDB的周长相等C.AD=BC D.△ABD和△CDB的面积相等10.如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为()A.70°B.50°C.60°D.以上都有可能11.如图两个直角三角形,若△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直12.如图,已知△ABC≌△DBC,E为线段CD上一点,则()A.∠BED>∠ACB B.∠BED=∠ACB C.∠BED<∠ACB D.不确定二.填空题(共5小题)13.如图,△ABE≌△ADC≌△ABC,若:∠1=130°,则∠α的度数为.14.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.15.一个三角形的三边为2、7、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.16.直角坐标系中,点A(0,0),B(2,0),C(0,2),若有一三角形与△ABC全等,且有一条边与BC重合,那么这个三角形的另一个顶点坐标是.17.如图,点A、D、C、B在同一条直线上,△ADF≌△BCE,DF与CE交于点M,∠B =32°,∠F=28°,则∠DMC的度数为.三.解答题(共4小题)18.已知:△ABC≌△EDC.连接BE,交AC于F,点H是CE上的点,且CH=CF,连接DH交BE于K.求证:∠DKF=∠ACB.19.如图,△ABC≌△DEF,∠A=33°,∠E=57°,CE=5cm.(1)求线段BF的长;(2)试判断DF与BE的位置关系,并说明理由.20.如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,若AD=DC=2.4,BC=4.1.(1)若∠ABE=162°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.21.如图,点A、B、C、D在同一条直线上,点E、F是直线.AD上方的点,连接AE、CE、BF、DF,若△ACE≌△FDB,FD=3,AD=8.(1)判断直线CE与DF是否平行?并说明理由;(2)求CD的长;(3)若∠E=26°,∠F=53°,求∠ACE的度数.。
2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章三角形全等的判定》同步练习题附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在△ACD与△ABD中∠C=∠B,再添加下列哪个条件,能判定△ADC≌△ADB()A.AC=AB B.AC⊥CD C.DA平分∠BDC D.CD=BD2.如图,一块玻璃碎成三片,小智只带了第③块去玻璃店,就能配一块一模一样的玻璃,你能用三角形的知识解释,这是为什么?()A.ASA B.AAS C.SAS D.SSSBC若ΔABC的面积3.如图,AE垂直于∠ABC的平分线于点D,交BC于点E,CE=13为12,则ΔCDE的面积是()A.2B.3C.4D.64.工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分別与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≅△MOC,共依据是()A.SSS B.SAS C.ASA D.AAS5.如图,在△ABC中∠C=90°,D是AC上一点,DE⊥AB于点E,BE=BC连接BD,若AC=8cm,则AD+DE等于()A.6cm B.7cm C.8cm D.10cm6.如图,为了测出池塘两端A,B间的距离,小铱在地面上取一个可以直接到达A点和B点的点O,连接AO并延长到C,使OC=OA;连接BO并延长到D,使OD=OB,连接CD并和测量出它的长度,小铱认为CD的长度就是A,B间的距离,她是根据△OAB≌△OCD来判断的AB=CD,那么判定这两个三角形全等的依据是().A.SSS B.SAS C.ASA D.AAS7.“又是一年三月三”.在校内劳动课上,小明所在小组的同学们设计了如图所示的风筝框架.已知∠B=∠E,AB=DE,BF=EC,△ABC的周长为24cm,FC=3cm制作该风筝框架需用材料的总长度至少为()A.44cm B.45cm C.46cm D.48cm8.如图,AB⊥BC,EC⊥BC,AD⊥DE,AD=DE,AB=3,BC=8,则CE长为()A.4 B.5 C.8 D.10二、填空题9.如下图,已知AC=AB,要使△ABE≌△ACD.则需添加一个条件.10.数学实践活动课中,老师布置了“测量小口圆柱形瓶底部内径”的探究任务,某学习小组设计了如下方案:如图,用螺丝钉将两根小棒AC,BD的中点O固定,现测得C,D之间的距离为75mm,那么小口圆柱形瓶底部的内径AB=mm.11.如图,在Rt△ABC中∠BAC=90°,AB=AC分别过点B、C作经过点A的直线的垂线段BD、CE,若BD=5厘米,CE=8厘米,则DE的长为.12.如图,△ABC中,AD是中线AC=3,AB=5则AD的取值范围是.13.如图,在四边形ABEF中,AB=4,EF=6,点C是BE上一点,连接AC、CF,若AC=CF,∠B=∠E=∠ACF,则BE的长为.三、解答题14.图1是郝老师制作的风筝,图2是风筝骨架的示意图,其中AB=AC,BD=CD,∠C=23°.求∠B的度数.15.如图,已知在△ABC中,D、E是BC上两点,且∠ADE=∠AED,∠BAD=∠EAC,求证:AB=AC.16.如图,C是AB上一点,点D,E分别在AB两侧AD∥BE,且AD=BC,BE=AC求证:CD=EC.17.如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,求∠ABO度数.18.课间,小明拿着老师的直角三角尺玩,不小心掉到两堆砖块之间,如图所示,已知∠ACB= 90°,AC=BC,AD⊥DE,BE⊥DE.(1)试说明:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a(每块砖的厚度相同)参考答案1.C2.A3.A4.A5.C6.B7.B8.B9.∠C=∠B (答案不唯一)10.7511.13厘米12.1<AD <413.1014.解:在△ABD 和△ACD 中{AB =AC AD =AD BD =CD ∴△ABD ≌△ACD(SSS) ∴∠B =∠C ∵∠C =23° ∴∠B =23°.15.证明:∵∠ADE =∠AED∴AD =AE ,∠ADB =∠AEC在△ABD 与△ACE 中{∠BAD =∠EAC AD =AE ∠ADB =∠AEC∴△ABD ≌△ACE(ASA)∴AB =AC16.证明:∵AD ∥BE∴∠A =∠B在△ADC 和△BCE 中{AD =BC∠A =∠B AC =BE∴△DAC ≌△CBE∴CD =CE ;17.解:∵OM ⊥AB ,ON ⊥BC ∴∠OMB =∠ONB =90°在Rt △OMB 和Rt △ONB 中{OM =ON OB =OB∴Rt △OMB ≌Rt △ONB(HL)∴∠OBM =∠OBN∵∠ABC =30°∴∠ABO =15°.18.(1)解:∵∠ACB =90°∴∠ACD +∠BCE =90°∵AD ⊥DE∴∠ACD +∠DAC =90°∴∠BCE =∠DAC在△ADC 与△CEB 中{∠ADC =∠BEC =90°∠BCE =∠DACAC =BC∴△ADC ≌△CEB(AAS);(2)解:∵△ADC ≌△CEB∴DC =BE ,AD =CE∴DE =DC +CE =BE +AD =35cm ∵一共有7块砖∴每块砖块的厚度a 为:35÷7=5cm .。
人教版八年级数学上册第12章12.1全等三角形知识水平测试题含答案

人教版八年级数学上册第12章知识水平测试题含答案12.1 全等三角形一.选择题1.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°6.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°7.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CA C.AB=AD D.∠B=∠D 8.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D9.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°10.如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°二.填空题11.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.13.如图,△ABC≌△DEF,则EF=.14.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.三.解答题15.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB 和∠DGB的度数.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,AD=DC=2.5,BC=4.(1)求∠CBE的度数.(2)求△CDP与△BEP的周长和.18.如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA =OB;(2)AB∥CD.19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.20.如图所示,已知△ABC≌△FED,AF=8,BE=2.(1)求证:AC∥DF.(2)求AB的长.21.如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.22.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB∥DE.23.如图,△ABF≌△CDE,∠B和∠D是对应角,AF和CE是对应边.(1)写出△ABF和△CDE的其他对应角和对应边;(2)若∠B=30°,∠DCF=40°,求∠EFC的度数;(3)若BD=10,EF=2,求BF的长.参考答案一.选择题1.解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠F AC=∠EAB≠∠F AB,故②错误;EF=BC,故③正确;∠EAB=∠F AC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.2.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,故选:B.4.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.解:∵△ABC≌△AED,∴∠AED=∠B,AE=AB,∠BAC=∠EAD,∴∠1=∠BAE=40°,∴△ABE中,∠B==70°,∴∠AED=70°,故选:A.6.解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:B.7.解:∵△ABC≌△CDA,BC=DA∴AB=CD,∠1=∠2,AC=CA,∠B=∠D,∴A,B,D是正确的,C、AB=AD是错误的.故选:C.8.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D ∴第三个选项∠ACB=∠ECD是错的.故选:C.9.解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=70°﹣35°,=35°.故选:B.10.解:∵,△ABC≌△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.二.填空题11.解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.12.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.13.解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.14.解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=(180°﹣∠BAD)=70°,故答案为:70°.三.解答题15.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=.∴∠DFB=∠F AB+∠B=∠F AC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.16.解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.17.解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°,即∠CBE的度数为66°;(2)∵△ABC≌△DBE,∴DE=AC=AD+DC=5,BE=BC=4,∴△CDP与△BEP的周长和=DC+DP+PC+BP+PE+BE=DC+DE+BC+BE=2.5+5+4+4=15.5.18.证明:(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.(2)∵△ABC≌△BAD,∴AC=BD,又∵OA=OB,∴AC﹣OA=BD﹣OB,即:OC=OD,∴∠OCD=∠ODC,∵∠AOB=∠COD,∠CAB=,∠ACD=,∴∠CAB=∠ACD,∴AB∥CD.19.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.20.证明:(1)∵△ABC≌△FED,∴∠A=∠F.∴AC∥DF.(2)∵△ABC≌△FED,∴AB=EF.∴AB﹣EB=EF﹣EB.∴AE=BF.∵AF=8,BE=2∴AE+BF=8﹣2=6∴AE=3∴AB=AE+BE=3+2=521.解:∵△OAD≌△OBC,∴∠C=∠D,∠OBC=∠OAD,∵∠0=65°,∴∠OBC=180°﹣65°﹣∠C=115°﹣∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360°,∴65°+115°﹣∠C+135°+115°﹣∠C=360°,解得∠C=35°.22.解:(1)∵∠A=85°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=8﹣2=6;(2)证明:∵△ABC≌△DEF,∴∠DEF=∠B,∴AB∥DE.23.解:(1)其他对应角为:∠BAF和∠DCE,∠AFB和∠CED;其他对应边为:AB和CD是对应边,BF和DE是对应边;(2)∵△ABF≌△CDE,∠B=30°,∴∠D=∠B=30°,∵∠DCF=40°,∴∠EFC=∠D+∠DCF=30°+40°=70°;(3)∵△ABF≌△CDE,∴BF=DE,∴BF﹣EF=DE﹣EF,∴DF=BE,∵BD=10,EF=2,∴DF=BE=4,∴BF=BE+EF=4+2=6.12.2 全等三角形一、选择题1. 如图,要用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件()A.∠B=∠D B.∠C=∠EC.∠1=∠2 D.∠3=∠42. 如图,已知∠1=∠2,欲证△ABD≌△ACD,还需从下列条件中补选一个,则错误的选项是()A .∠ADB =∠ADC B .∠B =∠CC .DB =DCD .AB =AC3. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .24. 如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠DD .BF =EC5. 如图所示,在△ABC 和△ABD 中,∠C=∠D=90°,要利用“HL”判定Rt △ABC ≌Rt △ABD成立,还需要添加的条件是 ( )A.∠BAC=∠BADB.BC=BD或AC=ADC.∠ABC=∠ABDD.AC=BD6. 如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对7. 如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c9. 观察图中的尺规作图痕迹,下列说法错误的是()A.∠DAE=∠EAC B.∠C=∠EACC.AE∥BC D.∠DAE=∠B10. 如图,AB⊥BC,BE⊥AC,垂足分别为B,E,∠1=∠2,AD=AB,则下列结论正确的是()A.∠1=∠EFDB.BE=ECC.BF=CDD.FD∥BC二、填空题11. 要测量河岸相对两点A ,B 之间的距离,已知AB 垂直于河岸BF ,先在BF上取两点C ,D ,使CD =CB ,再过点D 作BF 的垂线段DE ,使点A ,C ,E 在一条直线上,如图,测出DE =20米,则AB 的长是________米.12. 如图K -10-10,CA =CD ,AB =DE ,BC =EC ,AC 与DE 相交于点F ,ED与AB 相交于点G .若∠ACD =40°,则∠AGD =________°.13. 如图,小明和小丽为了测量池塘两端A ,B 两点之间的距离,先取一个可以直接到达点A 和点B 的点C ,沿AC 方向走到点D 处,使CD =AC ;再用同样的方法确定点E ,使CE =BC .若量得DE 的长为60米,则池塘两端A ,B 两点之间的距离是______米.14. 如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若30A∠=︒,则BCDABDSS=△△__________.15. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.三、解答题16. 如图,AB=AD,BC=DC,点E在AC上.求证:(1)AC平分∠BAD;(2)BE=DE.17. 已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB =OC. (1)如图①,若点O 在边BC 上,求证:AB =AC;(2)如图②,若点O 在△ABC 的内部,求证:AB =AC ;(3)若点O 在△ABC 的外部,AB =AC 成立吗?请画图表示.图① 图②18. (2019•桂林)如图,AB AD BC DC ==,,点E 在AC 上.(1)求证:AC 平分BAD ∠;.(2)求证:BE DE19. 如图,点A,E,F,B在直线l上,AE=BF,AC∥BD,且AC=BD.求证:CF=DE.20. 如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.(1)在同一平面内,△ABC与△ADE按图②所示的方式放置,其中∠B=∠D=90°,AB =AD ,BC 与DE 相交于点F ,请你判断四边形ABFD 是不是筝形,并说明理由;(2)请你结合图①,写出筝形的一个判定方法(定义除外):在四边形ABCD 中,若________________,则四边形ABCD 是筝形.人教版 八年级数学 12.2 全等三角形 针对训练 -答案一、选择题1. 【答案】C [解析] 还需添加条件∠1=∠2.理由:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠DAE. 在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).2. 【答案】C [解析] 当添加条件A 时,可用“ASA”证明△ABD ≌△ACD ;当添加条件B 时,可用“AAS”证明△ABD ≌△ACD ;当添加条件D 时,可用“SAS”证明△ABD ≌△ACD ;当添加条件C 时,不能证明△ABD ≌△ACD.3. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .4. 【答案】C [解析] 选项A 中添加AB =DE 可用“AAS”进行判定,故本选项不符合题意;选项B 中添加AC =DF 可用“AAS”进行判定,故本选项不符合题意;选项C 中添加∠A =∠D 不能判定△ABC ≌△DEF ,故本选项符合题意; 选项D 中添加BF =EC 可得出BC =EF ,然后可用“ASA”进行判定,故本选项不符合题意.故选C.5. 【答案】B [解析] 要添加的条件为BC=BD 或AC=AD.理由:若添加的条件为BC=BD ,在Rt △ABC 和Rt △ABD 中,∴Rt △ABC ≌Rt △ABD (HL);若添加的条件为AC=AD ,在Rt △ABC 和Rt △ABD 中,∴Rt △ABC ≌Rt △ABD (HL).6. 【答案】C [解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎨⎧CF =BE ,BC =CB , ∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF 中, ⎩⎨⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS). ③设BE 与CF 相交于点O.∵BE ⊥AC ,CF ⊥AB ,∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF.∴BF =CE.在△BOF 和△COE 中,⎩⎨⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).7. 【答案】C [解析] A .∠A =∠D ,∠ABC =∠DCB ,BC =BC ,符合“AAS”,即能推出△ABC ≌△DCB ,故本选项不符合题意;B .∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,符合“ASA”,即能推出△ABC ≌△DCB ,故本选项不符合题意;C .∠ABC =∠DCB ,AC =DB ,BC =BC ,不符合全等三角形的判定条件,即不能推出△ABC ≌△DCB ,故本选项符合题意;D .AB =DC ,∠ABC =∠DCB ,BC =CB ,符合“SAS”,即能推出△ABC ≌△DCB ,故本选项不符合题意.故选C.8. 【答案】D [解析] ∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠CED =∠AFB =90°,∠A =∠C.又∵AB =CD ,∴△CED ≌△AFB.∴AF =CE =a ,DE =BF =b ,DF =DE -EF =b -c.∴AD =AF +DF =a +b -c.故选D.9. 【答案】A[解析] 根据图中尺规作图的痕迹,可得∠DAE=∠B,故D选项正确,∴AE∥BC,故C选项正确.∴∠EAC=∠C,故B选项正确.∵∠DAE=∠B,∠EAC=∠C,而∠C与∠B的大小关系不确定,所以∠DAE 与∠EAC的大小关系不确定.故选A.10. 【答案】D[解析] 在△AFD和△AFB中,∴△AFD≌△AFB.∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°.∴∠ADF=∠ABF=∠C.∴FD∥BC.二、填空题11. 【答案】2012. 【答案】40[解析] 在△ABC和△DEC中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,∴△ABC ≌△DEC(SSS).∴∠A =∠D.又∵∠AFG =∠DFC ,∴∠AGD =∠ACD =40°.13. 【答案】60 [解析] 在△ACB 和△DCE 中,⎩⎨⎧AC =DC ,∠ACB =∠DCE ,BC =EC ,∴△ACB ≌△DCE(SAS).∴DE =AB.∵DE =60米,∴AB =60米.14. 【答案】12【解析】由作法得BD 平分ABC ∠,∵90C =︒∠,30A ∠=︒,∴60ABC ∠=︒,∴30ABD CBD ∠=∠=︒,∴DA DB =,在Rt BCD △中,2BD CD =,∴2AD CD =, ∴12BCD ABD S S =△△.故答案为:12.15. 【答案】3 [解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°.∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE.∵AE =AC -CE ,BC =2 cm ,EF =5 cm ,∴AE =5-2=3(cm).三、解答题16. 【答案】证明:(1)在△ABC 与△ADC 中,⎩⎨⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC ,即AC 平分∠BAD.(2)由(1)知∠BAE =∠DAE.在△BAE 与△DAE 中,⎩⎨⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE(SAS).∴BE =DE.17. 【答案】(1)证明:如图①,过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF ,OB =OC ,解图①∴Rt △OEB ≌Rt △OFC ,∴∠B =∠C ,从而AB =AC.(2)证明:如图②,过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF.在Rt △OEB 和Rt △OFC 中,∵OE =OF ,OB =OC ,解图②∴Rt△OEB≌Rt△OFC.∴∠OBE=∠OCF,又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACB.∴AB=AC.(3)解:不一定成立.(注:当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC,如示例图③)解图③18. 【答案】(1)在ABC △与ADC △中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩,∴ABC ADC △≌△,∴BAC DAC ∠=∠,即AC 平分BAD ∠.(2)由(1)BAE DAE ∠=∠,在BAE △与DAE △中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴BAE DAE △≌△,∴BE DE =.19. 【答案】证明:∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE.∵AC ∥BD ,∴∠CAF =∠DBE.在△ACF 和△BDE 中,⎩⎨⎧AC =BD ,∠CAF =∠DBE ,AF =BE ,∴△ACF ≌△BDE(SAS).∴CF =DE.20. 【答案】解:(1)四边形ABFD 是筝形.理由:连接AF.在Rt △AFB 和Rt △AFD 中,⎩⎨⎧AF =AF ,AB =AD , ∴Rt △AFB ≌Rt △AFD(HL).∴BF =DF.又∵AB =AD ,∴四边形ABFD 是筝形.(2)答案不唯一,如AD =CD ,∠ADB =∠CDB12.3角平分线的性质一.选择题1.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =20,且BD :DC =3:2,则点D 到AB 边的距离为( )A .8B .12C .10D .152.如图已知OC 平分∠AOB ,P 是距离是OC 上一点,PH ⊥OB 于点H ,若PH =5,则点 P 到射线OA 的距离是( )A.6B.5C.4D.33.如图,四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=8,BD=13,BC=12,则四边形ABCD的面积为()A.30B.40C.50D.604.如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE =3,则△ABE的面积等于()A.15B.12C.10D.145.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为()A.1B.2C.3D.46.如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB =∠C,点P是边BC上的一动点,则DP的最小值是()A.1B.1.5C.2D.2.57.如图,AD∥BC,BG,AG分别平分∠ABC与∠BAD,GH⊥AB,GH=5,则AD与BC 之间的距离是()A.5B.8C.10D.158.下列关于几何画图的语句,正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b9.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=5,AB=12,则△ABD的面积是()A.15B.30C.45D.6010.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM ∥AB ,BE 和MN 分别平分∠ABC 和∠EMC .下列结论中不正确的是( )A .∠MBE =∠MEBB .MN ∥BEC .S △BEM =S △BEND .∠MBN =∠MNB二.填空题 11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =5cm ,BD :DC =3:2,则点D 到AB 的距离为 .12.如图点D 是△ABC 的两外角平分线的交点,下列说法:①AD =CD ;②AB =AC ;③D 到AB 、BC 所在直线的距离相等;@点D 在∠B 的平分线上;其中正确的说法的序号是 .13.已知如图,OP平分∠MON,P A⊥ON于点A,P A=4,点Q是射线OM上的一个动点,则线段PQ的最小值是.14.在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是点.15.如图,已知△ABC的周长是16.MB和MC分别平分∠ABC和∠ACB.过点M作BC 的垂线交BC于点D,且MD=4.则△ABC的面积是.三.解答题16.如图,直线AC分别与射线DE交于A,与射线BF交于C,连接AB,连接DC,∠1+∠2=180°,AD=BC.若DC平分∠ACF,证明AB平分∠EAC.17.如图,三角形ABC中,点D在AC上.(1)请你过点D做DE平行BC,交AB于E.如果点E在∠C的平分线上,∠C=44°,那么∠DEC=.18.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.19.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.参考答案与试题解析一.选择题1.【解答】解:∵BC=20,BD:DC=3:2,∴CD=8,∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=8.故选:A.2.【解答】解:作PQ⊥OA于Q,如图,∵OC为∠AOB的平分线,PH⊥OB,PQ⊥OA,∴PQ=PH=5,即点P到射线OA的距离为5.故选:B.3.【解答】解:过D 作DE ⊥AB ,交BA 的延长线于E ,则∠E =∠C =90°,∵∠BCD =90°,BD 平分∠ABC ,∴DE =DC ,在Rt △BCD 中,由勾股定理得:CD ===5, ∴DE =5,在Rt △BED 中,由勾股定理得:BE ===12, ∵AB =8,∴AE =BE ﹣AB =12﹣8=4,∴四边形ABCD 的面积S =S △BCD +S △BED ﹣S △AED=+﹣ =+﹣=50,故选:C . 4.【解答】解:过点E 作EF ⊥AB 于点F ,如图:∵BD是AC边上的高,∴ED⊥AC,又∵AE平分∠CAB,DE=3,∴EF=3,∵AB=8,∴△ABE的面积为:8×3÷2=12.故选:B.5.【解答】解:过O作OD⊥AC于D,OE⊥AB于E,∵AO平分∠CAB,OB平分∠ABC,∴OD=OE=OM,∵在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,=ACBC=×ABOE+ACOD+BCOM,∴S△ABC∴=+OM+,∴OM=2,故选:B.6.【解答】解:过点D作DE⊥BC于E,则DE即为DP的最小值,∵∠BAD=∠BDC=90°,∠ADB=∠C,∴∠ABD=∠CBD,∵∠ABD=∠CBD,DA⊥AB,DE⊥BC,∴DE=AD=2,故选:C.7.【解答】解:作GE⊥AD于E,EG的延长线交BC于F,如图,则∠DEG=90°,∵AD∥BC,∴∠BFG=∠DEG=90°,∴EF⊥BC,∵BG,AG分别平分∠ABC与∠BAD,∴GE=GH=5,GF=GH=5,∴EF=5+5=10,即AD与BC之间的距离为10.故选:C.8.【解答】解:A.延长射线AB到点C,使BC=2AB,因为射线不能延长,所以A选项错误,不符合题意;B.因为直线不能反向延长,所以B选项错误,不符合题意;C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角.C选项正确,符号题意;D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b或=a﹣b.所以D选项错误,不符合题意.故选:C.9.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,∴DC⊥AC,∵DE⊥AB,DC⊥AC,∴DE=DC=5,∴△ABD的面积=×AB×DE=×12×5=30,故选:B.10.【解答】解:∵EM∥AB,BE和MN分别平分∠ABC和∠EMC,∴∠MEB=∠ABE,∠ABC=∠EMC,∠ABE=∠MBE,∠EMN=∠NMC,∴∠MEB=∠MBE(故A正确),∠EBM=∠NMC,∴MN∥BE(故B正确),∴MN和BE之间的距离处处相等,∴S△BEM =S△BEN(故C正确),∵∠MNB=∠EBN,而∠EBN和∠MBN的关系不知,∴∠MBN和∠MNB的关系无法确定,故D错误,故选:D.二.填空题11.【解答】解:作DE⊥AB于E,如图,∵BC=5cm,BD:DC=3:2,∴BD=3,CD=2,∵AD是△ABC的角平分线,∴DC=DE=2,即点D到AB的距离为2.故答案为2.12.【解答】解:AD与CD不能确定相等,AB与AC也不能确定相等,所以①②错误;作DE⊥BA于E,DF⊥BC于F,DH⊥AC于H,如图,∵AD平分∠EAC,∴DE=DH,同理可得DH=DF,∴DE=DF,即D到AB、BC所在直线的距离相等,所以③正确;∴点D在∠B的平分线上;所以④正确.故答案为③④.13.【解答】解:当PQ⊥OM时,PQ有最小值.∵OP平分∠MON,P A⊥ON于点A,P A=4,∴PQ =P A =4,故答案为4.14.【解答】解:点P 、Q 、M 、N 中在∠AOB 的平分线上是Q 点.故答案为Q .15.【解答】解:连接AM ,过M 作ME 于E ,MF ⊥AC 于F , ∵MD ⊥BC ,MB 和MC 分别平分∠ABC 和∠ACB ,MD =4,∴ME =MD =4,MF =MD =4,∵△ABC 的周长是16,∴AB +BC +AC =16,∴△ABC 的面积S =S △ABM +S △BCM +S △ACM=+==2AB +2BC +2AC=2(AB +BC +AC )=2×16=32,故答案为:32.三.解答题16.【解答】证明:∠1+∠2=180°,∠1+∠ACB=180°,∴∠2=∠ACB,∴AD∥BC,又∵AD=BC,∴四边形ABCD为平行四边形,∴DC∥AB,∴∠DCF=∠B,∠DCA=∠BAC,∵DC平分∠ACF,∴∠DCF=∠DCA,∴∠B=∠BAC,∵AD∥BC,∴∠EAB=∠B,∴∠BAC=∠EAB,即AB平分∠EAC.17.【解答】解:(1)如图1所示:作∠ADE=∠C交AB于E,DE即为所求;(2)如图2所示:∵DE∥BC,∴∠DEC=∠BCE,∵EC平分∠ACB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DC=DE,∴△DEC是等腰三角形,∴∠DEC=∠C=22°;故答案为:22°.18.【解答】解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;。
人教版八年级数学上册第12章 12.1《全等三角形》同步练习及(含答案)(2).doc

人教版八年级上册12.1《全等三角形》同步练习含答案一、填空题1.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI______全等,如果△ABC 和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI______全等.(填“一定”或“不一定”或“一定不”)2.如图1,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=______.3.△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.4.如图2,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”.5.如图3,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是______.6.如图4,AC,BD相交于点O,AC=BD,AB=CD,写出图中两对相等的角______.7.如图5,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.8.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:______.9.如图6,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则的面积为______.二、选择题1.如图7,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.B.C.△APE≌△APF D.2.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③3.如图8, AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等5.如图9,,,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40°D.∠C=30°6.已知:如图10,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形()A.5对B.4对C.3对D.2对7.将一张长方形纸片按如图11所示的方式折叠,为折痕,则的度数为()A.60°B.75°C.90°D.95°8.根据下列已知条件,能惟一画出△ABC的是()A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6三、解答题1.请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC的长.(结果精确到1mm,不要求写画法).2.已知:如图12,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,.求证:(1);(2).3.如图13,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取;②在BC上取;③量出DE的长a米,FG的长b米.如果,则说明∠B和∠C是相等的.他的这种做法合理吗?为什么?4.填空,完成下列证明过程.如图14,中,∠B=∠C,D,E,F分别在,,上,且,求证:.证明:∵∠DEC=∠B+∠BDE(),又∵∠DEF=∠B(已知),∴∠______=∠______(等式性质).在△EBD与△FCE中,∠______=∠______(已证),______=______(已知),∠B=∠C(已知),∴( ).∴ED=EF( ).5.如图15,O为码头,A,B两个灯塔与码头的距离相等,OA,OB为海岸线,一轮船从码头开出,计划沿∠A OB的平分线航行,航行途中,测得轮船与灯塔A,B的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.6.如图16,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设的度数为x,∠的度数为,那么∠1,∠2的度数分别是多少?(用含有x或y 的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.参考答案一、1.一定,一定不2.50°3.40°4.HL 5.略(答案不惟一)6.略(答案不惟一) 7.5 8.正确9.8二、1.D 2.C 3.D 4.C 5.C 6.A 7.C 8.C三、1.略.2.证明:(1)在和△CDE中,∴△ABF≌△CDE(HL).∴.(2)由(1)知∠ACD=∠CAB,∴AB∥CD.3.合理.因为他这样做相当于是利用“SSS”证明了△BED≌△CGF,所以可得∠B=∠C.4.三角形的一个外角等于与它不相邻两个内角的和,BDE,CEF,BDE,CEF,BD,CE,ASA,全等三角形对应边相等.5.此时轮船没有偏离航线.画图及说理略.6.(1)△EAD≌△,其中∠EAD=∠,;(2);(3)规律为:∠1+∠2=2∠A.。
最新人教版八年级数学上册第12章同步测试题及答案
最新人教版八年级数学上册第12章同步测试题及答案第十二章全等三角形12.1 全等三角形基础巩固1.下列说法不正确的是( ).A.形状相同的两个图形是全等形B.大小不同的两个图形不是全等形C.形状、大小都相同的两个三角形是全等三角形D.能够完全重合的两个图形是全等形2.如图所示,△ABD≌△BAC,B,C和A,D分别是对应顶点,如果AB=4 cm,BD=3 cm,AD=5 cm,那么BC的长是( ).(第2题图)A.5 cm B.4 cmC.3 cm D.无法确定3.如图所示,△ABC≌△ADC,∠ABC=70°,则∠ADC的度数是( ).(第3题图)A.70°B.45°C.30°D.35°4.如图所示,△ABC与△DBE是全等三角形,即△ABC≌△DBE,那么图中相等的角有( ).(第4题图)A.1对B.2对C.3对D.4对5.如图所示,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有( ).(第5题图)A.1组B.2组C.3组D.4组6.(1)已知:如图,△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.(第6题图)(2)由对应边找对应角,由对应角找对应边有什么规律?能力提升7.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( ).(第7题图)A.PO B.PQC.MO D.MQ8.如图所示,△ADF≌△CBE,且点E,B,D,F在一条直线上.判断AD与BC的位置关系,并加以说明.(第8题图)9.某人想把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请你在下图中,帮他沿着虚线画出四种不同的分法.(第9题图)参考答案1.A 分析:选项A中,形状相同的两个图形,大小不一定相同,所以不一定是全等形.选项B,C,D均正确,只要两个图形形状、大小相同,放在一起能够完全重合,它们一定是全等形.全等三角形是全等形的特殊情形.2.A 分析:因为△ABD≌△BAC,所以BC=AD=5 cm.3.A 分析:因为△ABC≌△ADC,所以∠ADC=∠ABC=70°.4.D 分析:因为△ABC≌△DBE,所以根据全等三角形的对应角相等,得∠A=∠D,∠C=∠E,∠ABC=∠DBE.又由∠ABC=∠DBE,得∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE.5.D 分析:由全等三角形的对应边相等得三组对应边相等,即AB=DE,AC=DF,BC=EF.又由BC=EF,得BC-CF=EF-CF,即BF=EC.6.解:(1)AB与AC,AE与AD,BE与CD是对应边,∠BAE与∠CAD是对应角.(2)对应边所对的角是对应角,对应边所夹的角是对应角,对应角所对的边是对应边,对应角所夹的边是对应边.7.B 分析:因为△PQO≌△NMO,根据“全等三角形对应边相等”得PQ=NM,所以测出其长度的线段是PQ.8.解:AD与BC的位置关系是:AD∥BC.(第8题答图)理由如下:如图,因为△ADF≌△CBE,所以∠1=∠2,∠F=∠E.又点E,B,D,F在一条直线上,所以∠3=∠1+∠F,∠4=∠2+∠E,即∠3=∠4.所以AD∥BC.9.解:如图所示(答案不唯一).(第9题答图)12.2 三角形全等的判定基础巩固1.如图,在△ABC中,AB=AC,BE=CE,则直接利用“SSS”可判定( ).(第1题图)A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对2.如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,请你再补充一个条件,能直接运用“SAS”判定△ABC≌△DEF,则这个条件是( ).(第2题图)A.∠ACB=∠DEF B.BE=CFC.AC=DF D.∠A=∠F3.如图,请看以下两个推理过程:(第3题图)①∵∠D=∠B,∠E=∠C,DE=BC,∴△ADE≌△ABC(AAS);②∵∠DAE=∠BAC,∠E=∠C,DE=BC,∴△ADE≌△ABC(AAS).则以下判断正确的(包括判定三角形全等的依据)是( ).A.①对②错 B.①错②对C.①②都对 D.①②都错4.如图是跷跷板的示意图,支柱OC与地面垂直,点O是横板AB的中点,AB可以绕着点O上下转动,当A端落地时,∠OAC=20°,横板上下可转动的最大角(即∠A′OA)是( ).(第4题图)A.80° B.60° C.40° D.20°5.(条件开放题)如图,在△ABC和△EFD中,当BD=FC,AB=EF时,添加条件__________,就可得到△ABC≌△EFD(只需填写一个你认为正确的条件).(第5题图)6.(实际应用题)如图是一个三角形测平架,已知AB=AC,在BC的中点D挂一个重锤DE,让其自然下垂,调整架身,使点A恰好在重锤线上,这时AD和BC的位置关系为__________.(第6题图)7.如图,AC⊥BD,垂足为点B,点E为BD上一点,BC=BE,∠C=∠AEB,AB=6 cm,则图中长度为6 cm的线段还有__________.(第7题图)8.如图,为了固定门框,木匠师傅把两根同样长的木条BE,CF两端分别固定在门框上,且AB=CD,则木条与门框围成的两个三角形(图中阴影部分)__________全等(填“一定”“不一定”或“一定不”).(第8题图)9.如图是小华用半透明的纸制作的四边形风筝.制好后用量角器测量发现,无论支架AB与CD有多长,只要满足DA=DB,CA=CB,则∠CAD与∠CBD始终相等.请你帮他说明其中的道理.(第9题图)能力提升10.如图是一块三角形模具,阴影部分已破损.(第10题图)(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A′B′C′?请简要说明理由.(2)作出模具△A′B′C′的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).11.(一题多变题)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E,AD=CE.(1)若B,C在DE的同侧(如图①)且AD=CE,求证:AB⊥AC.(2)若B,C在DE的两侧(如图②),其他条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.(第11题图)参考答案1.C 分析:因为AB=AC,BE=CE,由图形知AE=AE,则直接利用“SSS”可判定△ABE≌△ACE.故选C. 2.B 分析:若添加BE=CF,可得BE+EC=CF+EC,即BC=EF.又因为AB=DE,∠B=∠DEF,所以能直接运用“SAS”判定△ABC≌△DEF.故选B.3.B 分析:①中的判定根据为ASA,不是AAS,①错误;②是正确的.故选B.4.C 分析:因为点O是横板AB的中点,AB可以绕着点O上下转动,所以OB′=OA,OC=OC.由HL得Rt △OAC≌Rt△OB′C,所以∠OB′C=∠OAC=20°.所以∠A′OA=40°.故选C.5.∠B=∠F(或CA=DE) 分析:用“SAS”证全等可添加∠B=∠F;用“SSS”证全等可添加CA=DE. 6.垂直分析:由“边边边”可得△ADB≌△ADC,得∠ADB=∠ADC.又因为∠ADB+∠ADC=180°,所以∠ADB=∠ADC=90°.因此AD和BC垂直.7.BD 分析:由AC⊥BD,垂足为点B,BC=BE,∠C=∠AEB,得△ABE≌△DBC,所以BD=AB=6 cm.8.一定分析:由“HL”可证得△ABE≌△DCF.9.解:在△CAD和△CBD中,∵,,, DA DB CA CB CD CD=⎧⎪=⎨⎪=⎩∴△CAD≌△CBD(SSS).∴∠CAD=∠CBD.10.解:(1)只要度量残留的三角形模具片的∠B,∠C的度数和边BC的长即可.根据“ASA”可证明△ABC ≌△A′B′C′.(2)图略.11.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠CEA=90°,∠BAD+∠ABD=90°.在Rt△ADB和Rt△CEA中,∵,, AB CA AD CE=⎧⎨=⎩∴Rt△ADB≌Rt△CEA(HL).∴∠ABD=∠CAE.∴∠BAD+∠CAE=90°.∴∠BAC=180°-(∠BAD+∠CAE)=90°. ∴AB⊥AC.(2)解:仍有AB⊥AC.∵BD⊥DE,CE⊥DE,∴∠ADB=∠CEA=90°,∠BAD+∠ABD=90°.在Rt△ADB和Rt△CEA中,∵,, AB CA AD CE=⎧⎨=⎩∴Rt△ADB≌Rt△CEA(HL).∴∠ABD=∠CAE.∴∠BAD+∠CAE=90°.∴∠BAC=90°.∴AB⊥AC.12.3 角的平分线的性质1. 如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF相交于点D,有以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.其中正确的是( )(第1题图)A. ①B. ②C. ①②D. ①②③2. 如图所示的是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )(第2题图)A. △ABC 的三条中线的交点上B. △ABC 三条角平分线的交点上C. △ABC 三边的中垂线的交点上D. △ABC三条高所在直线的交点上3. 如图所示,M,N分别是OA,OB边上的点,点P在射线OC上,则下列条件中不能说明OC平分∠AOB的是( )(第3题图)A. PM⊥OA,PN⊥OB,PM=PNB. PM=PN,OM=ONC. PM⊥OA,PN⊥OB,OM=OND. PM=PN,∠PMO=∠PNO4. 如图所示,已知BE=CF,BF⊥AC于点F,CE⊥AB于点E,BF和CE相交于点D,下列说法中错误的是( )(第4题图)A. AD是∠BAC的平分线B. DE=DFC. BD=CDD. BD=DF5. 如图,BD是∠ABC的平分线,P是BD上的一点,PE⊥BA于点E,PE=4 cm,则点P到边BC的距离为_________cm.(第5题图)6. 三角形中的角平分线的性质与一个角的平分线的性质相同.如图,在△ABC中,AD是∠BAC的平分线,且BD=CD,DE,DF分别垂直于AB,AC,垂足为E,F.请你结合条件认真研究,然后写出三个正确的结论.(第6题图)7. 如图所示,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE与BD相交于点C.求证:AC=BC.(第7题图)8. 如图所示,PA=PB,∠1+∠2=180°.求证:OP平分∠AOB.(第8题图)参考答案1.D2.B3.D4.D5. 46.解:答案不唯一,如:(1)△BDE≌△CDF;(2)BE=CF;(3)∠B=∠C.证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,又∵BD=CD,∴Rt△BDE≌Rt△CDF,∴BE=CF,∠B=∠C.7.证明:∵∠1=∠2,BD⊥OA,AE⊥OB,∴CD=CE.∵CD⊥OA,CE⊥OB,∴∠ADC=∠BEC=90°.在△ADC与△BEC中,∠ADC=∠BEC,CD=CE, ∠3=∠4.∴△ADC≌△BEC.∴AC=BC.8.证明:过点P作PE⊥AO,PF⊥BO,垂足分别为E,F,则∠AEP=∠BFP=90°.∵∠1+∠2=180°,∠2+∠PBF=180°,∴∠1=∠PBF.在△APE与△BPF中,∠1=∠PBF,∠AEP=∠BFP,PA=PB,∴△APE≌△BPF,∴PE=PF.∴点P在∠AOB的平分线上,即OP平分∠AOB.。
8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)
8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△ABE≌△CDF.2.如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二全等三角形的判定与性质4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A6B.4 C.23D.55.【2013·襄阳】如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.NMEDB CA6.【2012·泸州】如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E﹨A在直线DC的同侧,连接AE.求证:AE∥BC.专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°8.有一座小山,现要在小山A﹨B的两端开一条隧道,施工队要知道A﹨B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A﹨B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边﹨直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E,C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠ABE=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒ (2)以DC BD =为例进行证明: ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB .又∠ABD=∠CBE ,BE=BD , ∴△ADB ≌△CEB . (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,M∵△AEB由△ADC旋转而得,∴△AEB≌△ADC.∴∠3=∠1,∠6=∠C.∵AB=AC,AD⊥BC,∴∠2=∠1,∠7=∠C.∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM=∠ABN.又∵AB=AB,∴△AMB≌△ANB.∴AM=AN.6.证明:∵△ABC和△EDC是等边三角形,∴∠BCA=∠DCE=60°.∴∠BCA-∠ACD=∠DCE-∠ACD,即∠BCD=∠ACE.在△DBC和△EAC中,BC=AC,∠BCD=∠ACE,DC=EC,∴△DBC≌△EAC(SAS).∴∠DBC=∠EAC.又∵∠DBC=∠ACB=60°,∴∠ACB=∠EAC.∴AE∥BC.7.B 解析:∵滑梯﹨墙﹨地面正好构成直角三角形,又∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF.∴∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.故选B.8.解:在△ABC和△CED中,AC=CD,∠ACB=∠ECD,EC=BC,∴△ABC≌△CED.∴AB=ED.即量出DE的长,就是A﹨B两端的距离.9.解:对.理由:∵AC ⊥AB,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACB AC AC CAB CAB =⎧⎪=⎨⎪=⎩∠∠′,,∠∠′, ∴△ABC ≌△AB′C (ASA ). ∴AB′=AB .。
八年级数学上册《第十二章 全等三角形》同步训练题及答案(人教版)
八年级数学上册《第十二章全等三角形》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列图形是全等图形的是()A.B.C.D.2.下列说法错误的是()A.如果两个图形全等,那么它们的形状和大小一定相同;B.图形全等,只与形状,大小有关,而与它们的位置无关;C.全等图形的面积相等,面积相等的两个图形是全等图形;D.全等三角形的对应边相等,对应角相等.3.如图,某人不小心将一块正五边形玻璃打碎成四块,若想到玻璃店配一块与原来一样大小的五边形玻璃,那么最省事的方法应该带玻璃碎片()A.①B.①②C.①③D.①③④4.已知△ABC≌△DEF,且△DEF的面积为18,BC=6,则BC边上的高等于()A.13 B.3 C.4 D.65.如图,△ABC≌△A'B'C',则∠C的度数是()A.107°B.73°C.56°D.51°6.如图,△ACE≌△DBF,若AD=11cm,BC=5cm,则AB长为()A.6cm B.7cm C.4cm D.3cm7.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAEC.AB=AE D.∠ABC=∠AED8.如图ΔABC≌ΔA′B′C,∠BCB′=30∘则∠ACA′的度数为()A.30∘B.45∘C.60∘D.15∘二、填空题9.如图,△ABC的三个顶点分别在格子的3个顶点上,请你试着再在图中的格子的顶点上找出一个点D,使得△DBC与△ABC全等,这样的三角形有个.10.在平面直角坐标系中,已知A(0,0),B(3,0),C(1,2)若△BAD≌△ABC,则点D的坐标为.11.如图,若△ABC≌△DEF,AC=4,AB=3,EF=5则△ABC的周长为.12.如图,△ACB≌△ADB,△ACB的周长为20,AB=8,则AD+BD=.13.如图,△ ADB≌△ ECB,且点A的对应点是点E,点D的对应点是点C,若∠ CBD=40°,BD ⊥ EC,则∠ D的度数为.三、解答题14.如图,△ABE≌△DCE,点A,C,B在一条直线上,∠AED和∠BEC相等吗?为什么?15.如图所示,A,D,E三点在同一直线上,且△BAD≌△ACE,求证:BD=CE+DE.16.如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P.若∠ABE=160°,∠DBC=30°求∠CBE的度数.17.如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.18.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.参考答案1.B2.C3.A4.D5.B6.D7.B8.A9.310.(2,2)或(2,-2)11.1212.1213.50°14.解:相等;理由:∵△ABE≌△DCE∴∠AEB=∠DEC∴∠DEC-∠AEC=∠AEB-∠AEC即:∠AED=∠BEC.15.证明:∵△BAD≌△ACE∴BD=AE AD=CE∵AE=AD+DE∴BD=CE+DE.16.解:∵△ABC≌△DBE∴∠ABC=∠DBE,即∠ABD+∠DBC=∠DBC+∠CBE ∴∠ABD=∠CBE∵∠ABE=160°∠DBC=30°∴∠ABD+∠DBC+∠CBE=∠ABE=160°∴∠ABD=∠CBE=12(∠ABE−∠DBC)=12(160°−30°)=65°.17.(1)证明:∵△ABD≌△CFD∴∠BAD=∠DCF又∵∠AFE=∠CFD∴∠AEF=∠CDF=90°∴CE⊥AB;(2)解:∵△ABD≌△CFD∴BD=DF∵BC=7,AD=DC=5∴BD=BC﹣CD=2∴AF=AD﹣DF=5﹣2=3.18.(1)解:∵△ABC≌△DEB,DE=10,BC=4∴AB=DE=10,BE=BC=4∴AE=AB﹣BE=6;(2)解:∵△ABC≌△DEB,∠D=30°,∠C=70°∴∠BAC=∠D=30°,∠DBE=∠C=70°∴∠ABC=180°﹣30°﹣70°=80°∴∠DBC=∠ABC﹣∠DBE=10°.。
人教版八年级上册 第12章《全等三角形》 同步练习及答案(12.1-12.2)
第12章《全等三角形》同步练习(§12.1~12.2)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.如图,△ABC ≌△DEF ,A 与D ,B 与E 分别是对应顶点,∠B =32o ,∠A =68o ,AB =13cm ,则∠F =______度,DE =______cm .2.由同一张底片冲洗出来的两张五寸照片的图案全等图形,而由同一张底片冲洗出来的五寸照片和七寸照片 全等图形(填“是”或“不是”).3.如图,△ABC 与△DBC 能够完全重合,则△ABC 与△DBC 是____________,表示为△ABC ____△DBC .4.如图,已知△ABC ≌△BAD ,BC =AD ,写出其他的对应边 和对应角 .5.如图所示,ABC ADE △≌△,BC 的延长线交DA 于F ,交DE 于G ,105ACB AED ∠=∠=o ,15CAD ∠=o ,30B D ∠=∠=o ,则1∠的度数为 .6.如图,已知AB BD ⊥,垂足为B ,ED BD ⊥,垂足为D ,AB CD =,BC DE =,则ACE ∠=___________o .7.如图,已知AF BE =,A B ∠=∠,AC BD =,经分析 ≌ .此时有F ∠= .A B C DE F (第1题) A B C(第3题) A BC OD (第4题)(第5题)(第6题)CEF(第7题)ACODBB A1 2(第8题) (第9题)8.如图所示,AB ,CD 相交于O ,且AO =OB ,观察图形,图中已具备的另一相等的条件是________,联想到SAS ,只需补充条件________,则有△AOC ≌△________. 9.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上________块,其理由是__________. 10.如图,把两根钢条AA ',BB '的中点O 连在一起,可以做成一个测量工件内槽宽的工具(工人把这种工具叫卡钳)只要量出A B ''的长度,就可以知道工件的内径AB 是否符合标准,你能简要说出工人这样测量的道理吗? . 二、选择题(每题3分,共24分)11.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( ) A.①②③④ B.①③④ C.①②④ D.②③④ 12.如果D 是ABC △中BC 边上一点,并且ADB ADC △≌△,则ABC △是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形13.一个正方形的侧面展开图有( )个全等的正方形.A .2个B .3个C .4个D .6个 14.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( )A .1个B .2个C .3个D .4个15.如图,在ABC △和DEF △中,已知AB DE =,BC EF =,根据(SAS )判定ABC DEF △≌△,还需的条件是( )A.A D ∠=∠ B.B E ∠=∠ C.C F ∠=∠ D.以上三个均可以16.下面各条件中,能使△ABC ≌△DEF 的条件的是( )A.AB =DE ,∠A =∠D ,BC =EF B.AB =BC ,∠B =∠E ,DE =EF C .AB =EF ,∠A =∠D ,AC =DF D.BC =EF ,∠C =∠F ,AC =DF 17.如图,AD BC ,相交于点O ,OA OD =,OB OC =.下列结论正确的是( )A .AOB DOC △≌△. B .ABO DOC △≌△ C .A C ∠=∠D .B D ∠=∠(第10题)18.如图,已知AB AC =,AD AE =,BAC DAE ∠=∠.下列结论不正确的有( ).A .BAD CAE ∠=∠B .ABD ACE △≌△C .AB=BCD .BD CE = 三、解答题(共46分)19.(7分)找出下列图形中的全等图形.(1) (2) (3) (4) (5) (6)(7) (8) (9) (10) (11) (12)20.(7分)如图,AB =DC ,AC =DB ,求证AB ∥CD .21.(8分)如图,已知AB ∥DC ,AD ∥BC .证明:(1)AB =CD ;(2)AD =BC .DCBAABOC A EDB CA D(第15题) (第17题) (第18题)22.(8分)如图,点A B C D ,,,在一条直线上,△ABF ≌△DCE ,你能得出哪些结论?(请写出三个以上的结论)23.(8分)如图,点D E ,分别在AB AC ,上,且AD AE =,BDC CEB ∠=∠.求证:BD CE =.24.(8分)如右图,已知DE ⊥AC ,BF ⊥AC ,垂足分别是E 、F ,AE =CF ,DC ∥AB ,(1)试证明:DE =B F ;(2)连接DF 、BE ,猜想DF 与BE 的关系?并证明你的猜想的正确性.DFCBAE参考答案一、填空题1.80,13 2.是 不是 3.全等三角形,≌ 4.AC =BD ,AB =BA ,∠C =∠D ,∠CAB =∠DBA ,∠ABC =∠BAD 5.60度 6.90 7.ADF BCE △≌△,得F E ∠=∠. 8.∠AOC =∠BOD ,OC =OD ,△BOD 9.1,有两边及其夹角对应相等的两个三角形全等 10.此工具是根据三角形全等制作而成的.由O 是AA ',BB '的中点,可得AO A O '=,BO B O '=,又由于AOB ∠与A OB ''∠是对顶角,可知AOB A OB ''∠=∠,于是根据“SAS ”有AOB A OB ''△≌△,从而A B AB ''=,只要量出A B ''的长度,就可以知道工作的内径AB 是否符合标准二、选择题11.A 12.D 13.C 14.A 15.B 16.D 17.A 18.C 三、解答题19.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形 20.略 21.略 22.由△ABF ≌△,DCE 可得到BAF CDE AFB DEC ABF DCE AB DC BF CE AF DE ∠=∠∠=∠∠=∠===,,,,,;AF ED AC BD BF CE =∥,,∥,△AEC ≌△DFB 等 23.略 24.(1)证明 Rt △CDE ≌Rt △AFB ;(2)DF ∥BE 且DF=BE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章全等三角形
12.1__全等三角形__
[学生用书P23]
1.如图12-1-4所示,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )
图12-1-4
A.20° B.30°
C.35° D.40°
2.如图12-1-5所示,△ABC≌△CDA,则下列结论错误的是( )
图12-1-5
A.∠1=∠2 B.AC=CA
C.∠D=∠B D.AC=BC
3.如图12-1-6,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )
A.5 B.4 C.3 D.2
图12-1-6
4.[2016·成都]如图12-1-7,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=__ _.
图12-1-7
5.如图12-1-8,△AOC≌△BOD,试证明AC∥BD.
图12-1-8
6.如图12-1-9,已知△ABC≌△DCB.
(1)分别写出它们的对应角和对应边;
(2)请说明∠1=∠2的理由.
图12-1-9
7.[2016春·沈丘县期末]如图12-1-10,已知△ACE≌△DBF,CE=BF,AE=DF,AD=8,BC=2.
图12-1-10
(1)求AC的长度;
(2)求证:CE∥BF.
8.[2016·南安期末]如图12-1-11,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.
(1)当DE=8,BC=5时,线段AE的长为__ __.
(2)已知∠D=35°,∠C=60°.
①求∠DBC的度数;
②求∠AFD的度数.
图12-1-11
参考答案
【知识管理】
1.完全重合
2.完全重合顶点边角全等于对应顶点
3.相等相等
【归类探究】
例1AC的对应边是DE,AB的对应边是DF,CB的对应边是EF;∠A与∠D,∠C与∠DEF,∠ABC与∠F是对应角.
例2 A
【当堂测评】
1.B 2.C 3.61°15
【分层作业】
1.B 2.D 3.A 4.120° 5.略
6.(1)对应角是∠A和∠D,∠1和∠2,∠ABC和∠DCB,对应边是AB和DC,AC和DB,BC和CB;
(2)理由:全等三角形的对应角相等.
7.(1)AC=5 (2)略
8.(1)3 (2)∠DBC=25°;∠AFD=130°.。