九年级数学上册 期中模拟试卷1 (新版)华东师大版
华东师大新版九年级数学第一学期期中试卷

F EDCBA F E CBA EDCB AOF EDCBA 华东师大新版九年级数学第一学期期中试题班级: _____________ 姓名:一、选择题(2×10=20分)1、 下列式子中,二次根式的个数是( )2A 、1B 、2C 、3D 、4 2、下列二次根式中,最简二次根式是( ) ABCD3a =-,则a 的取值范围是( )A 、0a <B 、0a ≤C 、0a >D 、0a ≥ 4、下列方程是关于x 的一元二次方程的是( )A 、20ax bx c ++= B 、220a x bx c ++=C20bx c ++= D 、22(1)0a x bx c +++=5、已知关于x 的一元二次方程22210a x x a ++-=的一根是0,则它的另一根是( ) A 、1 B 、-1 C 、1或-1 D 、0 6、下列方程中,没有实数根的方程是( )A 、2240x x -+= B 、231260x x --=C 、2250x x += D 、243x x -= 图17、如图1,已知四边形ABCD 是平行四边形, EF//BC ,则图中相似三角形共有( ) A 、1组 B 、2组 C 、3组 D 、4组8、如图2,在三角形ABC 中,E 、F 分别是AB 、AC 边上的点, 图2且有EF//BC ,如果45AC EB =,则ACFC =( )A 、94B 、59C 、54D 、959、已知两个三角形的面积比为4:9,周长是40cm ,则这两个三角形的周长分别是( ) A 、16cm 和24cm B 、1426cm cm 和 C 、1822cm cm 和 D 、2020cm cm 和 10、如图3:AB 是斜靠在墙AC 上的楼梯,梯脚B 点距离墙1.6m ,梯上D 点距墙1.4m ,0.55BD m =,则梯子长为( )A 、3.84mB 、4.00mC 、4.4mD 、4.5m二、填空⨯(38=24分)1、已知3=-2(3-的算术平方根是_________________。
【华东师大版】九年级数学上期中一模试卷(带答案)(1)

20.若 ,则 ________.
三、解答题
21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形, 的顶点均在格点上,在建立平面直角坐标系以后,点A的坐标为 ,点B的坐标为 ,点C的坐标为 .
(1)将 先沿x轴正方向平移7个单位长度,再沿y轴负方向平移1个单位长度得到 ,请在图上画出 并标明相应字母,并写出点 的坐标;
24.某商场新上市一款运动鞋,每双进货价为150元,投入市场后,调研表明:当销售价为200元时,平均每天能售出10双;而当销售价每降低5元时,平均每天就能多售出5双.
(1)商场要想尽快回收成本,并使这款运动鞋的销售利润平均每天均达到675元,那么这款运动鞋的销售价应定为多少元?
(2)请用配方法求:这款运动鞋的销售价定为多少元时,可使商场平均每天获ห้องสมุดไป่ตู้的利润最大?最大利润是多少元?
(2)求多项式 的最小值(写过程).
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
由旋转的性质得到△ABC≌△AEF,再由全等三角形的性质逐项判断即可.
【详解】
∵△ABC绕点A旋转得到△AEF,
∴△ABC≌△AEF,
∴AC=AF,不能确定AC=AE,故①正确,②错误;
∵∠EAF=∠BAC,
A. B. C. D.
3.如图,等边△OAB的边OB在 轴上,点B坐标为(2,0),以点O为旋转中心,把△OAB逆时针转90 ,则旋转后点A的对应点 的坐标是()
A.(-1, )B.( ,-1)C.( )D.(-2,1)
4.如图,将△ABC绕顶点C旋转得到△ ,且点B刚好落在 上,若∠A=35°,∠ =40°,则∠ 等于( )
华东师大版九年级数学上册期中试卷及答案【新版】

华东师大版九年级数学上册期中试卷及答案【新版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 9.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2|18+(﹣12)﹣3=_____.2.分解因式:33a b ab-=___________.3.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数 y =k x (k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为 ,图①中m 的值为 ;(2)求统计的这组销售额数据的平均数、众数和中位数.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、C5、B6、D7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-72、ab(a+b)(a﹣b).3、k<44、425、6、三、解答题(本大题共6小题,共72分)x=1、42、3.3、(1)相切,略;(2)BD=或1,理由见详解.4、(1)理由见详解;(2)25、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案) 1.下列根式是最简二次根式的是( )A B C D 2.下列运算正确的是( )A =BC =D 23= 3.已知关于x 的方程2(1)210a x x -+-=有实数根,则a 的取值范围是( ) A .1a ≠B .2a ≤C .2a ≤且1a ≠D .无法确定4.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是A .12DE BC =B .AD AEAB AC = C .△ADE ∽△ABC D .:1:2ADEABCS S=5.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ). A .20%;B .40%;C .18%;D .36%.6.如图,在△ABC 中,D 、F 分别是AB 、BC 上的点,且DF ∥AC ,若S △BDF :S △DFC =1:4,则S △BDF :S △DCA =( )A .1:16B .1:18C .1:20D .1:247.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,CD 与BE 、AE 分别交于点P 、M .对于下列结论:①BAECAD ∆∆;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A .①②③B .①C .①②D .②③8.在ABC 中,13,cos 2AB AC B ∠===BC 边长为( ) A .7B .8C .7或17D .8或179.如图,在直角BAD 中,延长斜边BD 到点C ,使12DC BD =,连接AC ,若tanB=53,则tan CAD ∠的值( )A B C .13D .1510.已知△ABC ∽△A 1B 1C 1,且∠A =60°,∠B 1=40°,则∠C 1的度数为( ) A .40° B .60°C .80°D .100°二、填空题 11.若23b a =,则a ba b +=-______________. 12.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.13.如图,在一块长为22m 、宽为17m 的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m 2.若设道路宽为xm ,则根据题意可列方程为 .14.如图,在矩形ABCD 中,点E 为AB 的中点,点F 为射线AD 上一动点,A 'EF 与AEF 关于EF 所在直线对称,连接AC ,分别交E A '、EF 于点M 、N ,AB =AD =2.若EMN 与AEF 相似,则AF 的长为_____.三、解答题15.(1)计算: 2|1+-(2)解下列方程①2(2)24x x -=- ②2410x x --=(配方法)16.先化简,再求值:222444(2)11x x x x x x x-+++-+÷--,其中x 满足x 2﹣4x +3=0.17.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为12x x ,,且221210x x +=,求m 的值.18.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?19.如图所示,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF=14DC ,连结EF 并延长交BC 的延长线于点G ,连结BE . (1)求证:△ABE ∽△DEF .(2)若正方形的边长为4,求BG 的长.20.如图,在ABCD 中,AM BC ⊥,AN CD ⊥,垂足分别为M ,N .求证:(1)~AMB AND ∆∆; (2)AM MNAB AC=.21.先阅读理解下面的例题,再按要求解答下列问题: 例题:求代数式y 2+4y +8的最小值.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4,∵(y +2)2≥0,∴(y +2)2+4≥4,∴y 2+4y +8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4-x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15 m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20 m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?22.在△ABC中,AB=8,BC=6,∠B为锐角且cosB=12.(1)求△ABC的面积.(2)求tanC.23.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,则PMPN=,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则PMPN=;(3)如图3,若BDAB=k,BC=m,AC=n,请直接写出PMPN的值.(用k,m,n表示)参考答案1.A【分析】根据最简二次根式的定义,逐一验证排除即可.【详解】A是最简二次根式,故此选项正确;BCD=故选:A.【点睛】本题考查了最简二次根式的定义,熟记最简二次根式的定义是解题的关键.2.C【分析】根据二次根式的加减乘除运算法则进行计算即可.【详解】AB2-C=,故此选项正确; D= 故选:C . 【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算是解题的关键. 3.B 【分析】根据方程2(1)210a x x -+-=有实数根,分情况讨论:方程为关于x 的一次方程时,则1a -=0计算可得;方程为关于x 的二次方程时,10a -≠且0∆≥计算即可得,综合二种情况即可. 【详解】根据题意知,若方程是关于x 的一次方程时,可得1a -=0,解得a =1;若方程为二次方程时,10a -≠且0∆≥,解得2a ≤且1a ≠,综合二种情况可得2a ≤, 故选:B . 【点睛】本题考查了方程的根的判定,分情况讨论的思想,掌握分情况讨论思想是解题的关键. 4.D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AEAB AC=, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D. 5.A 【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20% 故选A . 【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键. 6.C 【分析】根据等高三角形面积的比等于底的比和相似三角形面积的比等于相似比的平方即可解出结果. 【详解】∵S △BDF :S △DFC =1:4, ∴BF :FC=1:4, ∴BF :BC=1:5, ∵DF ∥AC , ∴△BFD ∽△BCA ,∴2125BFD BCASBF SBC ⎛⎫== ⎪⎝⎭, 设S △BFD =k ,则S △DFC =4k ,S △ABC =25k , ∴S △ADC =20k ,∴S △BDF :S △DCA =1:20. 故选C . 【点睛】本题考查了相似三角形的性质,相似三角形面积的比等于相似比的平方,注意各三角形面积之间的关系是解题的关键.7.A【详解】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:,∴AC AD AB AE=∵∠BAC=∠EAD ∴∠BAE=∠CAD ∴△BAE∽△CAD 所以①正确∵△BAE∽△CAD ∴∠BEA=∠CDA ∵∠PME=∠AMD ∴△PME∽△AMD∴MP ME MA MD=∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵∴2CB 2=CP•CM 所以③正确 故选A .点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案. 8.C 【分析】由B 的余弦值得到它的度数,再分情况讨论,画出图象,利用锐角三角函数求出BC 的长. 【详解】解:∵cos B ∠= ∴45B ∠=︒,如图,当ABC 是钝角三角形时,∵AB =,45B ∠=︒, ∴12AD BD ==, ∵13AC =, ∴5CD =,∴1257BC BD CD =-=-=, 如图,当ABC 是锐角三角形时,12517BC BD CD =+=+=.故选:C .【点睛】本题考查解直角三角形,解题的关键是掌握解直角三角形的方法,需要注意进行分类讨论.9.D【分析】延长AD ,过点C 作CE AD ⊥,垂足为E ,由5tan 3B =,即53AD AB =,设5AD x =,则3AB x =,然后可证明CDE BDA ∆∆∽,然后相似三角形的对应边成比例可得:12CE DE CD AB AD BD ===,进而可得32CE x =,52DE x =,从而可求1tan 5EC CAD AE ∠==. 【详解】解:如图,延长AD ,过点C 作CE AD ⊥,垂足为E ,5tan 3B =,即53AD AB =, ∴设5AD x =,则3AB x =,CDE BDA ∠=∠,CED BAD ∠=∠,CDE BDA ∴∆∆∽, ∴12CE DE CD AB AD BD ===, 32CE x ∴=,52DE x =, 152AE x ∴=, 1tan 5EC CAD AE ∴∠==. 故选:D .【点睛】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将CAD ∠放在直角三角形中. 10.C【分析】直接利用相似三角形的性质得出对应角相等进而得出答案.【详解】解:∵△ABC∽△A1B1C1,∴∠A1=∠A=60°,∠B=∠B1=40°,则∠C1=180°﹣60°﹣40°=80°.故选:C.【点睛】此题主要考查了相似三角形的性质,正确得出对应角度数是解题关键.11.5【分析】根据题意,把23ba=化简整理得23b a=,代入所求代数式计算即可.【详解】由题意得,23b a=,代入所求代数式,可得原式=253352133a a aa a a+==-,故答案为:5.【点睛】本题考查了分式的化简求值,整体代换的思想,掌握整体代换的思想是解题的关键.12.12【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案. 【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 13.(22-x )(17-x )=300.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【详解】设道路的宽应为x 米,由题意有(22﹣x )(17﹣x )=300,故答案为(22﹣x )(17﹣x )=300.14.1或3【分析】分两种情形①当EM ⊥AC 时,△EMN ∽△EAF .②当EN ⊥AC 时,△ENM ∽△EAF ,分别求解.【详解】解:①当EM ⊥AC 时,△EMN ∽△EAF ,∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴tan ∠CAB =3BC AB =, ∴∠CAB =30°,∴∠AEM =60°,∴∠AEF =30°,∴AF =AE•tan30°1, ②当EN ⊥AC 时,△ENM ∽△EAF ,由(1)可知,∠CAB =30°,EN ⊥AC∴∠AEN=∠MEN=60°,∵1122AE AB ==⨯= ∴tan tan 60AF AEF AE ∠=︒=,= ∴AF =3,故答案为:1或3.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(1)②3;(2)①12x =,24x =;②12x =22x =【分析】(1)①先把每个二次根式进行化简,化成最简二次根式,然后进行合并计算即可; ②先把每个式子进行化简,利用最简二次根式,二次根式平方的性质,绝对值的性质,化简后进行计算即可;(2)①先去括号,把一元二次方程化简为一般形式,然后利用因式分解法解方程即可; ②利用配方法直接求解一元二次方程即可.【详解】(1)①原式3=-,=②原式21=,3=,故答案为:3;(2)①把原方程化简为:244240x x x -+-+=,2680x x -+=,(2)(4)0x x --=,解得:12x =或24x =,故答案为:12x =或24x =;②原方程可化为:2445x x +=-,2(2)5x -=,2x =解得:12x =22x =故答案为:12x =22x =【点睛】本题考查了二次根式的化简计算,绝对值的性质,二次根式平方的性质,一元二次方程的解法,掌握计算的方法是解题的关键.16.化简结果是12x -+,求值结果是:15-. 【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.【详解】解:原式=2224(2)(1)1(112)⎛⎫-+---⋅ ⎪--⎝⎭-+x x x x x x x x =222243211(2)-+-+--⋅-+x x x x x x x =2211(2)+-⋅-+x x x x =12x -+, ∵x 满足x 2﹣4x +3=0,∴(x -3)(x -1)=0,∴x 1=3,x 2=1,当x =3时,原式=﹣132+=15-; 当x =1时,分母等于0,原式无意义.∴分式的值为15-. 故答案为:化简结果是12x -+,求值结果是:15-. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元二次方程的能力.17.(1)证明见详解.(2)m 的值为3或1-.【分析】(1)根据240b ac =->,即可证明方程有两个不相等的实数根(2)根据根与系数的关系,通过变形计算即可求出答案.【详解】解:(1)证明:∵22[(22)]4(2)m m m ∆=----=2248448m m m m -+-+=40>∴该方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得:1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=,即22(22)2(2)10m m m ---=,化简,得2230m m --=,解得13m =,21m =-,∴m 的值为3或1-.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型.18.解:设购买了x 件这种服装,根据题意得:()802x 10x 1200⎡⎤--=⎣⎦,解得:x 1=20,x 2=30.当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去.答:她购买了30件这种服装.【详解】试题分析:根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.19.(1)见解析;(2)BG=BC+CG=10.【分析】(1)利用正方形的性质,可得∠A =∠D ,根据已知可得AE :AB =DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE ∽△DEF ;(2)根据相似三角形的预备定理得到△EDF ∽△GCF ,再根据相似的性质即可求得CG 的长,那么BG 的长也就不难得到.【详解】(1)证明:∵ABCD 为正方形,∴AD =AB =DC =BC ,∠A =∠D =90 °.∵AE =ED ,∴AE :AB =1:2.∵DF =14DC , ∴DF :DE =1:2,∴AE :AB =DF :DE ,∴△ABE ∽△DEF ;(2)解:∵ABCD 为正方形,∴ED ∥BG ,∴△EDF ∽△GCF ,∴ED :CG =DF :CF .又∵DF =14DC ,正方形的边长为4, ∴ED =2,CG =6,∴BG =BC+CG =10.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.20.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质得B D ∠=∠,AD BC =,再由AM BC ⊥,AN CD ⊥得到90AMB AND ∠=∠=︒,然后根据相似三角形的判定方法即可得到结论;(2)由~AMB AND ∆∆得到AM AB AN AD=,再证明出B MAN ∠=∠,利用AD BC =,从而证明出~AMN BAC ∆∆即可得出结论.【详解】解:(1)四边形ABCD 为平行四边形,B D ∴∠=∠,AD BC =,AM BC ⊥,AN CD ⊥,90AMB AND ∴∠=∠=︒,~AMB AND ∴∆∆;(2)~AMB AND ∆∆,AM AB AN AD∴=, 而AD BC =, AM AB AN BC∴=①, //AD BC , 90DAM AMB ∴∠=∠=︒,90MAN DAN ∠=︒-∠,而90D DAN ∠=︒-∠,MAN D ∴∠=∠,而D B ∠=∠,B MAN ∴∠=∠②,由①②得,~AMN BAC ∆∆,AM MN AB AC∴=. 【点睛】本题考查了平行四边行的性质应用,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.21.(1)154;(2)5;(3)当x =5m 时,花园的面积最大,最大面积是50m 2. 【详解】试题分析:(1)、将原式进行配方,然后根据非负数的性质得出最小值;(2)、将原式进行配方,然后根据非负数的性质得出最大值;(2)、根据题意得出代数式,然后进行配方得出最值.试题解析:(1)、m 2+m+4=(m+)2+, ∵(m+)2≥0, ∴(m+)2+≥,则m 2+m+4的最小值是; (2)、4﹣x 2+2x=﹣(x ﹣1)2+5, ∵﹣(x ﹣1)2≤0, ∴﹣(x ﹣1)2+5≤5,则4﹣x 2+2x 的最大值为5;(3)、由题意,得花园的面积是x (20﹣2x )=﹣2x 2+20x ,∵﹣2x 2+20x=﹣2(x ﹣5)2+50=﹣2(x ﹣5)2≤0, ∴﹣2(x ﹣5)2+50≤50,∴﹣2x 2+20x 的最大值是50,此时x=5, 则当x=5m 时,花园的面积最大,最大面积是50m 2.考点:一元二次方程的应用22.(1)(2)【分析】(1)如图,过点A 作AH ⊥BC 于H .解直角三角形求出AH 即可解决问题.(2)解直角三角形求出AH ,CH 即可解决问题.【详解】(1)如图,过点A 作AH ⊥BC 于H .∵cosB=12, ∴∠B=60°,∴BH=AB•cosB=812⨯=4,AH=•8AB sinB ==,∴S △ABC=12•BC•AH=12×6× (2)在Rt △ACH 中,∵∠AHC=90°,AH=CH=BC ﹣BH=7﹣4=2,∴tanC 2AH CH ===. 【点睛】本题考查了解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(1)1,证明见解析;(2)n m;(3)()1kn k m - . 【分析】(1)如图1中,作PG ⊥AC 于G ,PH ⊥BC 于H ,只需证明△PHM ∽△PGN ,根据相似三角形对应边成比例即可得;(2)如图2中,作PG ⊥AC 于G ,PH ⊥BC 于H 通过证明△PHM ∽△PGN ,可得PM PH PN PG =,再根据△PHC ∽△ACB ,PG=HC ,即可得PM n PN m=; (3)如图3中,作PG ⊥AC 于G ,PH ⊥BC 于H ,DT ⊥AC 于T ,DK ⊥BC 于K ,易证△PMH ∽△PGN ,可得PM PH PN PG =,由1·21·2ACD BCD AC DT S AD S BD BC DK==,得出()1DK kn DT k m =-,再根据DT ∥PG ,DK ∥PH ,可得PH CPPGDK CD DT ==,从而可推导得出()1PHDK knPG DT k m ==-,据此问题得以解决.【详解】(1)如图1中,作PG ⊥AC 于G ,PH ⊥BC 于H ,∵AC=BC ,∠ACB=90°,且D 为AB 的中点,∴CD 平分∠ACB ,∵PG ⊥AC 于G ,PH ⊥BC 于H ,∴PG=PH ,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG ,∵∠PHM=∠PGN=90°,∴△PHM ∽△PGN ,∴PM PHPN PG ==1,故答案为:1;(2)如图2中,作PG ⊥AC 于G ,PH ⊥BC 于H ,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG ,∵∠PHM=∠PGN=90°,∴△PHM ∽△PGN , ∴PMPHPN PG =,∵PG=HC , ∴C PMPHPN H =∵D 为AB 中点,∴DC=DB ,∴∠DBC=∠DCB ,∴△PHC ∽△ACB , ∴PHACHC BC =, ∴HC PMPHACnPN BC m === 故答案为:nm ;(3)如图3中,作PG ⊥AC 于G ,PH ⊥BC 于H ,DT ⊥AC 于T ,DK ⊥BC 于K ,同(2)可得△PMH ∽△PGN , ∴PMPHPN PG =, ∵1·21·2ACD BCD AC DTSAD S BDBC DK ==,∴()1DK kn DT k m=-, ∵DT ∥PG ,DK ∥PH , ∴PH CP PG DK CD DT==, ∴()1PH DK kn PG DT k m==-, ∴()1PM kn PN k m=-. 【点睛】本题考查了相似三角形的综合题,涉及相似三角形的判定与性质、角平分线的性质定理、三角形的面积等,解题的关键是灵活运用所知识、添加辅助线构造直角三角形解决问题.。
华东师大版九年级数学上册期中试卷及答案1套

华东师大版九年级数学上册期中试卷及答案1套班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.下列图形中,是中心对称图形的是( )A .B .C .D .9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED于点G、F,若FG=4,ED=8,求EB+DC=________.5.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.3.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、C5、B6、A7、D8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、2x(x﹣1)(x﹣2).3、24、125、1 36、三、解答题(本大题共6小题,共72分)1、4x2、(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)y=﹣x2+2x+3;(2)P (97,127);(3)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.4、(1)DE与⊙O相切,理由略;(2)阴影部分的面积为2π﹣2.5、(1)50;(2)见解析;(3)16.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
华师大版九年级上册数学期中考试试卷含答案

华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列式子是最简二次根式的是( )A BC D2.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .±B .C .2或3 D3.已知∠A 是锐角,且满足3tanA 0,则∠A 的大小为( )A .30°B .45°C .60°D .无法确定 4.如图,太阳光线与水平线成70°角,窗子高AB =2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC ,使光线不能直接射入室内,则遮阳板DC 的长度至少是( )A .2tan 70︒米B .2sin70°米C . 2.2tan 70︒米D .2.2cos70°米 5.若关于x 的一元二次方程260x x k -+=通过配方法可以化成2()(0)x m n n +=的形式,则k 的值不可能是( )A .3B .6C .9D .106.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有 A .500(12)320x -= B .2500(1)320x -=C .250032010x ⎛⎫= ⎪⎝⎭D .2500132010x ⎛⎫-= ⎪⎝⎭ 7.如图,已知△ABC ,任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,使OD =13AO ,OE =13BO ,OF =13CO ,得△DEF ,有下列说法: ①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 是相似图形;③△DEF 与△ABC 的周长比为1:3;④△DEF 与△ABC 的面积比为1:6.则正确的个数是( )A .1B .2C .3D .48.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =25°,则∠EPF 的度数是( )A .100°B .120°C .130°D .150°9.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a10.如图,在平面直角坐标系中,点A 坐标为(2,),作AB ⊥x 轴于点B ,连接AO ,绕原点B 将△AOB 逆时针旋转60°得到△CBD ,则点C 的坐标为( )A .(﹣1)B .(﹣2)C .,1)D .2)二、填空题11=________________. 12.一元二次方程3(x ﹣5)2=2(x ﹣5)的解是_____.13.如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC 与阻力臂BC 之比为51:,要使这块石头滚动,至少要将杠杆的A 端向下压_____cm .14.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.15.如图,已知▱ABCD 中,AB =16,AD =10,sinA =35,点M 为AB 边上一动点,过点M 作MN ⊥AB ,交AD 边于点N ,将∠A 沿直线MN 翻折,点A 落在线段AB 上的点E 处,当△CDE 为直角三角形时,AM 的长为_____.三、解答题16.计算或解方程(1﹣2cos30°+(12-)﹣2﹣|1|(2)解方程:3x 2x ﹣1=017.已知:关于x的方程x2+2x+k2﹣1=0.(1)试说明无论取何值时,方程总有两个不相等的实数根.(2)如果方程有一个根为3,试求2k2+12k+2019的值.18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标.19.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,AB=米,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡200AC=米后,斜坡AB改造为斜坡CD,其坡坡度为1:;将斜坡AB的高度AE降低20度为1:4.求斜坡CD的长.(结果保留根号)20.如图,某旅游景点要在长、宽分别为40m、24m的矩形水池的正中央建立一个与矩形的各边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的14,若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽21.在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD的中点.(1)求证:△ADQ∽△QCP;(2)若PQ=3,求AP的长.22.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从B向A方向运动,Q到达A点后,P点也停止运动,设点P,Q运动的时间为t秒.(1)求P点停止运动时,BP的长;(2)P,Q两点在运动过程中,点E是Q点关于直线AC的对称点,是否存在时间t,使四边形PQCE为菱形?若存在,求出此时t的值;若不存在,请说明理由.(3)P,Q两点在运动过程中,求使△APQ与△ABC相似的时间t的值.23.(操作发现)如图(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD =45°,连接AC,BD交于点M.①AC与BD之间的数量关系为;②∠AMB的度数为;(类比探究)如图(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算ACBD的值及∠AMB的度数;(实际应用)如图(3),是一个由两个都含有30°角的大小不同的直角三角板ABC、DCE 组成的图形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直线上,CE=1,BC,求点A、D之间的距离.参考答案1.C【分析】根据最简二次根式即可求出答案.解:(A)原式=A不选;(B B不选;(D D不选;故选:C.【点睛】本题考查了二次根式的化简,正确掌握二次根式的化简是解题的关键.2.A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程2-+=有两个相等的实根,230x kx∴△=k2-4×2×3=k2-24=0,解得:k=±故选A.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.3.A【分析】直接利用特殊角的三角函数值进而计算得出答案.【详解】解:∵3tanA0,∴tanA=,3∴∠A=30°.【点睛】此题主要考查三角函数,解题的关键是熟知特殊角的三角函数值.4.C【分析】由已知条件易求DB 的长,在光线、遮阳板和窗户构成的直角三角形中,80°角的正切值=窗户高:遮阳板的宽,据此即可解答.【详解】解:∵DA =0.2米,AB =2米,∴DB =DA+AB =2.2米,∵光线与地面成70°角,∴∠BCD =70°.又∵tan ∠BCD =DBDC ,∴DC =DB tan BCD ∠= 2.2tan 70︒m .故选:C .【点睛】此题主要考查三角函数的应用,解题的关键是熟知正切的定义.5.D【分析】方程配方得到结果,即可作出判断.【详解】解:方程260x x k -+=,变形得:26x x k -=-,配方得:2699x x k -+=-,即2(3)9x k -=-,90k ∴-,即9k ,则k 的值不可能是10,故选D .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.6.C【分析】设该店春装原本打x 折,根据原价及经过两次打折后的价格,可得出关于x 的一元二次方程,此题得解.【详解】解:设该店春装原本打x 折,依题意,得:500(10x )2=320. 故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.C【分析】直接利用位似图形的性质以及相似图形的性质分别分析得出答案.【详解】解:∵任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,OD =13AO ,OE =13BO ,OF =13CO , ∴△DEF 与△ABC 的相似比为:1:3,∴①△ABC 与△DEF 是位似图形,正确;②△ABC 与△DEF 是相似图形,正确;③△DEF 与△ABC 的周长比为1:3,正确;④△DEF 与△ABC 的面积比为1:9,故此选项错误.故选:C .【点睛】此题主要考查位似图形的性质,解题的关键是熟知位似的特点.8.C【解析】【分析】根据三角形中位线定理得到PE=12 AD ,PF=12BC ,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】解:∵P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,∴PE=12AD ,PF=12BC , ∵AD=BC ,∴PE=PF ,∴∠PFE=∠PEF=25°,∴∠EPF=130°,故选:C .【点睛】本题考查三角形中位线定理,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.9.C【分析】根据相似三角形的判定定理得到ACDBCA ∆∆,再由相似三角形的性质得到答案. 【详解】∵CAD B ∠=∠,ACD BCA ∠=∠,∴ACD BCA ∆∆, ∴2ACD BCA S AC S AB ∆∆⎛⎫= ⎪⎝⎭,即14BCAa S ∆=, 解得,BCA ∆的面积为4a ,∴ABD ∆的面积为:43a a a -=,故选C .【点睛】本题考查相似三角形的判定定理和性质,解题的关键是熟练掌握相似三角形的判定定理和性质.10.A【分析】首先证明∠AOB =60°,∠CBE =30°,求出CE ,EB 即可解决问题.【详解】解:过点C 作CE ⊥x 轴于点E ,∵A (2,),∴OB =2,AB =∴Rt △ABO 中,tan ∠AOB∴∠AOB =60°,又∵△CBD 是由△ABO 绕点B 逆时针旋转60°得到,∴BC =AB =∠CBE =30°,∴CE =12BC BE =3,∴OE =1,∴点C 的坐标为(﹣1,故选:A .【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.11.【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】原式=故答案为:【点睛】本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.5或173【分析】根据因式分解法即可求出答案.【详解】解:∵3(x ﹣5)2=2(x ﹣5),∴3(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)[3(x ﹣5)﹣2]=0,∴x =5或x =173; 故答案为5或173 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.13.50.【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A 向下压的长度.【详解】解:如图;AM BN 、都与水平线垂直,即//AM BN ;易知:ACM BCN ∽;AC AM BC BN∴=, 杠杆的动力臂AC 与阻力臂BC 之比为51:, 51AM BN ∴=,即5AM BN =; ∴当10BN cm ≥时,50AM cm ≥;故要使这块石头滚动,至少要将杠杆的端点A 向下压50cm .故答案为50.【点睛】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.14.2【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF 的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.15.4或8【解析】【分析】①当∠CDE=90°,如图1,根据折叠的性质得到MN⊥AB,AM=EM,得到AN=DN=1 2AD=5,设MN=3x,AN=5x=5,于是得到AM=4;②当∠DEC=90°,如图2,过D作DH⊥AB于H,根据相似三角形的性质得到DE CDHE DE=,由sinA=35,AD=10,得到DH=6,AH=8,设HE=x,根据勾股定理求出x的值,继而求得AE的值,从而得到AM的值,即可得到结论.【详解】当△CDE为直角三角形时,①当∠CDE=90°,如图1,∵在▱ABCD中,AB∥CD,∴DE⊥AB,∵将∠A沿直线MN翻折,点A落在线段AB上的点E处,∴MN⊥AB,AM=EM,∴MN∥DE,∴AN=DN=12AD=5,∵sinA=35 MNAN=,∴设MN=3x,AN=5x=5,∴MN=3,∴AM=4;②当∠DEC=90°,如图2,过D作DH⊥AB于H,∵AB∥CD,∴∠HDC=90°,∴∠HDC+∠CDE =∠CDE+∠DCE =90°,∴∠HDE =∠DCE ,∴△DHE ∽△CED , ∴DE CD HE DE=, ∵sinA =35,AD =10, ∴DH =6,∴AH =8,设HE =x ,∴DE =∵DH 2+HE 2=DE 2,∴62+x 2=16x ,∴x =8﹣x =不合题意舍去),∴AE =AH+HE =16﹣,∴AM =12AE =8,综上所述,AM 的长为4或8,故答案为4或8.【点睛】本题考查了翻折变换(折叠问题),平行四边形的性质,解直角三角形,相似三角形的判定和性质,正确的作出辅助线是解题的关键.16.(1)5;(2)x 1,x 2【分析】(1)根据特殊锐角三角函数的值以及负整数指数幂的意义即可求出答案;(2)根据公式法即可求出答案.【详解】解:(1)原式=﹣1)=5;(2)由题意可知:a =3,b ,c =﹣1,∴△=6+12=18,∴x∴x 1=6,x 2=6. 【点睛】此题主要考查实数的运算及一元二次方程的求解,解题的关键是熟知实数的性质及公式法求解方程.17.(1)见解析;(2)2003【分析】(1)计算判别式的值得到△=4,然后根据判别式的意义可判断方程总有两个不相等的实数根;(2)利用一元二次方程根的定义得到k 2+6k =﹣8,再把2k 2+12k+2019变形为2(k 2+6k )+2019,然后利用整体代入的方法计算.【详解】解:(1)∵△=(2k )2﹣4×1×(k 2﹣1)=4k 2﹣4k 2+4=4>0,∴无论k 取何值时,方程总有两个不相等的实数根;(2)把x =3代入x 2+2x+k 2﹣1=0的9+6k+k 2﹣1=0,∴k 2+6k =﹣8,∴2k 2+12k+2019=2(k 2+6k )+2019=﹣16+2019=2003.【点睛】此题主要考查根的判别式及根的定义,解题的关键是熟知根的判别式的应用.18.(1)见解析;(2)(﹣4,2) .【分析】(1)根据网格结构找出点A 、B 、C 以点B 为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A 1BC 1即为所求;(2)如图,△A 2B 2C 2,即为所求,A 2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义.19.斜坡CD 的长是【分析】根据题意和锐角三角函数可以求得AE 的长,进而得到CE 的长,再根据锐角三角函数可以得到ED 的长,最后用勾股定理即可求得CD 的长.【详解】∵90AEB =︒∠,200AB =,坡度为1:,∴tan3ABE ∠==, ∴30ABE ∠=︒,∴11002AE AB ==, ∵20AC =,∴80CE =,∵90CED ∠=︒,斜坡CD 的坡度为1:4, ∴14CE DE =, 即8014ED =, 解得,320ED =,∴CD =米,答:斜坡CD 的长是【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.20.道路的宽为2米【分析】首先假设道路的宽为x 米,根据道路的宽为正方形边长的14,得出正方形的边长以及道路与正方形的面积进而得出答案.【详解】解:设道路的宽为x 米,则可列方程:x (24﹣4x )+x (40﹣4x )+16x 2=16×40×24, 即:x 2+8x ﹣20=0,解得:x 1=2,x 2=﹣10(舍去).答:道路的宽为2米.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系列出方程求解.21.(1)见解析;(2)【分析】(1)在所要求证的两个三角形中,已知的等量条件为:∠D=∠C=90°,若证明两三角形相似,可证两个三角形的对应直角边成比例;(2)证明AQ=2PQ,AQ⊥PQ即可解决问题.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠C=∠D=90°;又∵Q是CD中点,∴CQ=DQ=12 AD;∵BP=3PC,∴CP=14 AD,∴CQAD=CPDQ=12,又∵∠C=∠D=90°,∴△ADQ∽△QCP;(2)由(1)知,△ADQ∽△QCP,CQAD=PQQA=12,∴AQ=2PQ,∵PQ=3,∴AQ=6,∵△ADQ∽△QCP,∴∠AQD=∠QPC,∠DAQ=∠PQC,∴∠PQC+∠DQA=DAQ+AQD=90°,∴AQ⊥QP,∴∠AQP=90°,∴PA【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知正方形的性质及相似三角形的判定定理.22.(1(2)存在,t=3017s时,四边形PQCE是菱形;(3)t的值为3011s或5013s时△APQ与△ABC相似【分析】(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.(3)分两种情形:如图3﹣1中,当∠APQ=90°时,如图3﹣2中,当∠AQP=90°时,分别构建方程即可解决问题.【详解】解:(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB=10,点Q运动到点A时,t=102=5,∴AP=5,PC=1,在Rt△PBC中,PB(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.∵四边形PQCE是菱形,∴PC⊥EQ,PK=KC,∵∠QKC=∠QDC=∠DCK=90°,∴四边形QDCK是矩形,∴DQ=CK,∴35•2t=12(6﹣t),解得t=30 17.∴t=3017s时,四边形PQCE是菱形.(3)如图3﹣1中,当∠APQ=90°时,∵∠APQ=∠C=90°,∴PQ∥BC,∴AQAB=APAC,∴10210t -=6t , ∴t =3011. 如图3﹣2中,当∠AQP =90°时,∵△AQP ∽△ACB , ∴AQ AC =AP AB, ∴1026t -=10t , ∴t =5013, 综上所述,t 的值为3011s 或5013s 时△APQ 与△ABC 相似. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是根据题意分情况讨论,找到对应线段成比例进行求解.23.【操作发现】①AC =BD ;②∠AMB =45°;【类比探究】AC BD =,∠AMB =90°;【实际应用】【分析】操作发现:如图(1),证明△COA ≌△DOB (SAS ),即可解决问题.类比探究:如图(2),证明△COA ∽△ODB ,可得AC CO BD OD==∠MAK =∠OBK ,已解决可解决问题.实际应用:分两种情形解直角三角形求出BE ,再利用相似三角形的性质解决问题即可.【详解】解:操作发现:如图(1)中,设OA 交BD 于K .∵∠AOB =∠COD =45°,∴∠COA =∠DOB ,∵OA =OB ,OC =OD ,∴△COA ≌△DOB (SAS ),∴AC =DB ,∠CAO =∠DBO ,∵∠MKA =∠BKO ,∴∠AMK =∠BOK =45°,故答案为AC =BD ,∠AMB =45°类比探究:如图(2)中,在△OAB 和△OCD 中,∵∠AOB =∠COD =90°,∠OAB =∠OCD =30°,∴∠COA =∠DOB ,OC ,OA , ∴OCOAOD OB =,∴△COA ∽△ODB ,∴ACCOBD OD ==∠MAK =∠OBK ,∵∠AKM =∠BKO ,∴∠AMK =∠BOK =90°.实际应用:如图3﹣1中,作CH ⊥BD 于H ,连接AD .在Rt△DCE中,∵∠DCE=90°,∠CDE=30°,EC=1,∴∠CEH=60°,∵∠CHE=90°,∴∠HCE=30°,∴EH=12EC=12,∴CH在Rt△BCH中,BH92 ==,∴BE=BH﹣EH=4,∵△DCA∽△ECB,∴AD:BE=CD:EC∴AD=如图3﹣2中,连接AD,作CH⊥DE于H.同法可得BH=92,EH=12,∴BE=92+12=5,∵△DCA∽△ECB,∴AD:BE=CD:EC∴AD=【点睛】本题属于相似形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
【华东师大版】九年级数学上期中一模试题(及答案)(1)
一、选择题1.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有()A.B.C.D.2.如图,将△ABC绕点A旋转,得到△AEF,下列结论正确的个数是()①△ABC ≌△AEF;②AC=AE;③∠FAB=∠EAB;④∠EAB=∠FAC.A.1 B.2 C.3 D.43.如图,OAB绕点O逆时针旋转80°到OCD的位置,已知45∠等AOB∠=︒,则AOD 于()A.45°B.35°C.25°D.15°4.下列命题的逆命题是真命题的是()A.等边三角形是等腰三角形B.若22>,则a bac bc>C.成中心对称的两个图形全等D.有两边相等的三角形是等腰三角形5.下列图形是中心对称图形的是()A.B.C.D.6.如图,以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′(点B、C的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为( )A .45°B .60°C .70°D .90°7.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③ 8.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .129.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( )A .0m ≤B .12m <C .102m <<D .12m << 10.将抛物线22y x =先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系式是 ( )A .2(2-1)-3y x =B .22(-1)-3y x =C .2(21)-3y x =+D .22(1)-3y x =+ 11.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++= 12.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1- 13.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8 14.若()()2222230x y x y ++--=,则22x y +的值是( )A .3B .-1C .3或1D .3或-1二、填空题 15.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.16.已知二次函数()20y ax bx c a =++≠的图象如图所示,给出以下结论:①24b ac >;②abc>0;③20a b -=;④80a c +<;⑤930a b c ++>,其中结论正确的是__________.(填正确结论的序号)17.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.18.一元二次方程(x +2)(x ﹣3)=0的解是:_____.19.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积六十步,只云长阔共十六步,问长多阔几何”.意思是:一块矩形田地的面积为60平方步,只知道它的长与宽共16步,根据题意得,设长为x 步,列出方程_______. 20.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.三、解答题21.如图,在平面直角坐标系中有一个直角AOB ,已知90OAC ∠=︒,且点B 的坐为()3,2(1)画出OAB 绕原点O 逆时针旋转90︒后的11OA B ;(2)点1B 关于原点O 对称的点2B 的坐标为________.22.己知,如图,点P 是等边△ABC 内一点,∠APB=112°,如果把△APB 绕点A 旋转,使点 B 与点C 重合,此时点P 落在点P '处,求PP C '∠的度数.23.某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y (件)是售价x (元/件)的一次函数,其售价、销售量的二组对应值如下表: 售价x (元/件)55 65 销售量y (件/天) 90 70(2)由于某种原因,该商品进价提高了a 元/件(a >0),商店售价不低于进价,物价部门规定该商品售价不得超过70元件,该商店在今后的销售中,每天能获得的销售最大利润是960元,求a 的值.24.如图,在平面直角坐标系xOy 中,一次函数y x m =-+的图象过点()1,3A ,且与x 轴交于点B .(1)求m 的值和点B 的坐标;(2)若二次函数2y ax bx =+图象过A ,B 两点,直接写出关于x 的不等式2ax bx x m +>-+的解集.25.解方程:212270x x -+=26.解下列方程:(1)x (x -1)=1-x(2)(x-3) 2 = (2x-1) (x +3)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据轴对称图形和中心对称图形的两个概念对各选项分析判断即可得解.【详解】解:A、既是轴对称又是中心对称图形,故此项正确;B、是轴对称,不是中心对称图形,故此项错误;C、不是轴对称,是中心对称图形,故此项错误;D、是轴对称,不是中心对称图形,故此项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B解析:B【分析】由旋转的性质得到△ABC≌△AEF,再由全等三角形的性质逐项判断即可.【详解】∵△ABC绕点A旋转得到△AEF,∴△ABC≌△AEF,∴AC=AF ,不能确定AC=AE,故①正确,②错误;∵∠EAF=∠BAC,∴∠EAF-∠BAF=∠BAC-∠BAF,∴即∠EAB=∠FAC,但不能确定∠EAB等于∠FAB,故③错误,④正确;综上所述,结论正确的是①④,共2个.故选:B.【点睛】此题考查了旋转的性质.掌握旋转前后的图形全等是解答此题的关键.3.B解析:B【分析】本题旋转中心为点O,旋转方向为逆时针,观察对应点与旋转中心的连线的夹角∠BOD即为旋转角,利用角的和差关系求解.【详解】解:根据旋转的性质可知,D和B为对应点,∠DOB为旋转角,即∠DOB=80°,所以∠AOD=∠DOB-∠AOB=80°-45°=35°.故选:B.【点睛】本题考查旋转两相等的性质:即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.4.D解析:D【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据等腰三角形的性质、不等式的性质、中心对称的性质等进行判断.【详解】A、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误;B、逆命题是:如果a>b,则ac2>bc2,是假命题,故本选项错误;C、逆命题为:全等的两个图形成中心对称,是假命题,故本选项错误;D、逆命题为:等腰三角形是有两边相等的三角形,故本选项正确;故选:D【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,并熟悉课本中的性质定理.5.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,不符合题意,故选项A错误;B、是中心对称图形,符合题意,故选项B正确;C、不是中心对称图形,不符合题意,故选项C错误;D、不是中心对称图形,符合题意,故选项D错误;故选B.【点睛】本题主要考查了中心对称图形的概念,掌握中心对称图形的概念是解题的关键.6.D解析:D【分析】先根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质由AC′∥BB′得∠C′AB′=∠AB′B=30°,然后利用∠CAB′=∠CAC′-∠C′AB′进行计算.【详解】∵以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=12(180°-120°)=30°, ∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选:D .【点睛】此题考查旋转的性质,等腰三角形的性质,三角形内角和定理,平行线的性质,解题关键在于掌握旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.7.B解析:B【分析】先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③.【详解】由图象知,抛物线与x 轴有两个交点,方程ax 2+bx+c=0有两个不相等的实数根,∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <,抛物线与y 轴交于正半轴0c >,对称轴直线为1x =-, ∴102b a-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >,∴420a b c -+>,故③正确.故选:B .【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键8.C解析:C【分析】先根据A 、B 两点的坐标可求出抛物线的对称轴,然后确定顶点坐标为(,0)m ,进而求得m 的值,最后代入即可.【详解】解:∵抛物线26y x x c =++经过(3,)A m n -、(3,)B m n +,∴抛物线对称轴为直线332m m x m -++==, ∵抛物线与x 轴只有一个交点,故顶点为(,0)m , 2()y x m ∴=-.当3x m =+时,239y ==.故答案为C .【点睛】本题主要考查了二次函数的性质、运用二次函数顶点坐标与对称轴的求解等知识点,掌握二次函数的性质是解答本题的关键.9.B解析:B【分析】由235y x =-+图像开口向下,对称轴为y =0知,要使12y y >,需使A 点更靠近对称轴y轴,由此列出关于m 的不等式解之即可 .【详解】解:∵235y x =-+图像开口向下,对称轴为y =0且12y y > ∴1m m <-,下面解此不等式.第一种情况,当m <0时,得1m m -<-,解得m <0;第二种情况,当01m ≤<时,得1m m <-,解得12m <; 第三种情况,当m 1≥时,得1m m <-,解得,无解; 综上所述得12m <. 故选:B .【点睛】此题考查二次函数的图像与性质,比较图像上两点的函数值.其关键是,当二次函数开口向下时,图像上的点越靠近对称轴时,函数值越大;当二次函数开口向上时,图像上的点越靠近对称轴时,函数值越小. 10.B解析:B【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线y =22x 的顶点坐标为(0,0),向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,−3),所以,所得图象的解析式为y =22(1)x - -3.故选:B【点睛】本题考查了函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图象的变化是解题的规律.11.C解析:C【分析】设月平均增长率为x,根据三月及五月的销售量,即可得出关于x的一元二次方程,此题得解.【详解】解:设月平均增长率为x,根据题意得:400(1+x)2=900.故选:C.【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.12.D解析:D【分析】先移项得到x(2﹣x)+(2﹣x)=0,然后利用因式分解法解方程.【详解】解:x(2﹣x)+(2﹣x)=0,(2﹣x)(x+1)=0,2﹣x=0或x+1=0,所以x1=2,x2=﹣1.故选:D.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13.D解析:D【分析】设每轮传染中平均一个人传染了x人,则一轮传染后共有(1+x)人被传染,两轮传染后共有[(1+x)+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x人,由题意,得:(1+x)+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.14.A解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题15.y2<y1<y3【分析】根据二次函数的对称性增减性可以得解【详解】解:由二次函数的解析式可得x=2时y 取得最小值∴最小又由二次函数图象的对称性质可知x=0与x=4的函数值相等∴令x=0时函数值为y 则解析:y 2<y 1<y 3【分析】根据二次函数的对称性、增减性可以得解.【详解】解:由二次函数的解析式可得x=2时y 取得最小值,∴2y 最小,又由二次函数图象的对称性质可知x=0与x=4的函数值相等,∴令x=0时函数值为y ,则1y y =,再由二次函数的增减性质可知x<2时,y 随着x 的增大反而减小,所以由于0>-2,因此x=0时的函数值小于x=-2时的函数值,即3y y <,∴13y y <,∴213y y y <<,故答案为213y y y <<.【点睛】本题考查二次函数的应用,熟练掌握二次函数图象的对称性、增减性及最大最小值的求法是解题关键.16.①②【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后根据对称轴及抛物线与x 轴交点情况进行推理进而对所得结论进行判断即可【详解】解:①由图知:抛物线与x 轴有两个不同的 解析:①②.【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断即可.【详解】解:①由图知:抛物线与x 轴有两个不同的交点,则△=b 2−4ac >0,∴b 2>4ac ,故①正确;②抛物线开口向上,得:a >0;抛物线的对称轴为x =2b a-=1,b =−2a ,故b <0;抛物线交y 轴于负半轴,得:c <0;所以abc >0;故②正确; ③∵抛物线的对称轴为x =2b a-=1,b =−2a ,∴2a +b =0,故③错误; ④根据②可将抛物线的解析式化为:y =ax 2−2ax +c (a≠0); 由函数的图象知:当x =−2时,y >0;即4a−(−4a )+c =8a +c >0,故④错误; ⑤根据抛物线的对称轴方程可知:(−1,0)关于对称轴的对称点是(3,0); 当x =−1时,y <0,所以当x =3时,也有y <0,即9a +3b +c <0;故⑤错误; 所以正确的结论有:①②.故答案为:①②.【点睛】本题主要考查了图象与二次函数系数之间的关系,,掌握二次函数()20y ax bx c a =++≠系数符号与抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数的关系是解题的关键.17.【分析】要求抛物线与x 轴的交点即令y =0解方程即可【详解】令y =0则x2+2x ﹣3=0解得x1=﹣3x2=1则抛物线y =x2+2x ﹣3与x 轴的交点坐标是(﹣30)(10)故答案为:(﹣30)(10)解析:()()3.0,1,0-【分析】要求抛物线与x 轴的交点,即令y =0,解方程即可.【详解】令y=0,则x2+2x﹣3=0,解得x1=﹣3,x2=1.则抛物线y=x2+2x﹣3与x轴的交点坐标是(﹣3,0),(1,0).故答案为:(﹣3,0),(1,0).【点睛】此题考察二次函数与一元二次方程的关系,一元二次方程的解即为二次函数图像与x轴交点的横坐标.18.x1=﹣2x2=3【分析】利用因式分解法把原方程化为x+2=0或x﹣3=0然后解两个一次方程即可【详解】(x+2)(x﹣3)=0x+2=0或x﹣3=0所以x1=﹣2x2=3故答案为x1=﹣2x2=3解析:x1=﹣2,x2=3【分析】利用因式分解法把原方程化为x+2=0或x﹣3=0,然后解两个一次方程即可.【详解】(x+2)(x﹣3)=0,x+2=0或x﹣3=0,所以x1=﹣2,x2=3.故答案为x1=﹣2,x2=3.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).19.x(16-x)=60【分析】由矩形的长与宽之间的关系可得出矩形的宽为(16-x)步再利用矩形的面积公式即可得出关于x的一元二次方程【详解】解:矩形的长为x步则宽为(16-x)步∴x(16-x)=60解析:x(16-x)=60【分析】由矩形的长与宽之间的关系可得出矩形的宽为(16-x)步,再利用矩形的面积公式即可得出关于x的一元二次方程.【详解】解:矩形的长为x步,则宽为(16-x)步,∴x(16-x)=60.故答案为:x(16-x)=60【点睛】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.20.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x 1=4,x 2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x 2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x 1=4,x 2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.三、解答题21.(1)作图见解析;(2)()22,3.B -【分析】(1)利用网格特点和旋转的性质,画出点A 、B 的对称点11,A B ,即可得到11OA B ; (2)先写出1B 点的坐标,然后根据关于原点对称的点的坐标特征写出点2B 的坐标.【详解】解:(1)如图,11OA B 为所作;(2)1B点的坐标为(-2,3),所以点1B关于原点O对称的点2B的坐标为(2,-3).【点睛】本题考查了作图旋转变换,根据旋转的性质,可以作相等的角,在角的边上截取相等的线段,找到对应点,顺次连接得出旋转后的图形.22.52°【分析】根据旋转的性质得到AP'=AP,∠BAP=∠CAP',利用等边三角形的性质及角的和差得到△PAP'是等边三角形,即可求解.【详解】解∶∵△APB≌AP'C,∴∠AP'C=∠APB=112°,且AP'=AP,∠BAP=∠CAP',又∵∠BAP+∠PAC=60°,∴∠CAP'+∠PAC=60°,即∠PAP'=60°,∴△PAP'是等边三角形,∴∠PP'C=∠AP'C-∠AP'P=112°-60°=52°.【点睛】本题考查旋转的性质、等边三角形的判定与性质,掌握旋转的性质是解题的关键.23.(1)60元或者90元;(2)a=4.【分析】(1)设y=kx+b,根据题意可列出方程组,求出k和b,即可得到每天销量y和与售价x之间的关系式.再由总利润=单件利润×销量,即可列出等式,求出x即可.(2)由总利润=单件利润×销量可列出二次函数关系式w=(x-50-a)(-2x+200),再根据二次函数的性质,即可知当x=70时,w最大,即可求出a.【详解】(1)依题意设y=kx+b,则有5590 6570k bk b+=⎧⎨+=⎩,解得:2200 kb=-⎧⎨=⎩,所以y=-2x+200,若某天销售利润为800元,则(x﹣50)(-2x+200)=800,解得:x1=60,x2=90,故该天的售价为60元或者90元;(2)设总利润为w,根据题意得:w =(x -50-a )(-2x +200)=-2x 2+(300+2a )x -10000-200a∵a >0,∴对称轴x =150752a +>. ∵-2<0,∴抛物线的开口向下.∵x ≤70,∴w 随x 的增大而增大,当x =70时,w 最大=960,即960=-2×702+(300+2a )×70-10000-200a ,解得:a =4.【点睛】本题考查二次函数的实际应用.结合总利润=单件利润×销量列出二次函数的关系式是解答本题的关键.24.(1)4m =,B 的坐标为()4,0;(2)14x <<.【分析】(1)将点A 的坐标代入解析式即可求得m 的值,然后令y=0,求得x 的值即为B 点的横坐标;(2)先根据A 、B 两点的坐标求出二次函数的解析式,再画出函数图像,最后直接写出解集即可.【详解】解:(1)∵y x m =-+的图象过点()1,3A , ∴31m =-+,∴4m =.∴4y x =-+.令0y =,得4x =,∴点B 的坐标为()4,0;(2)∵二次函数2y ax bx =+图象过A ,B 两点 ∴23=a+b 0=44a b ⎧⎨+⎩ ,解得:=-14a b ⎧⎨=⎩画出函数图像如图:由函数图像可得不等式2ax bx x m +>-+的解集为:14x <<.【点睛】本题考查了一次函数图像的性质、求二次函数的解析式及利用函数图像确定不等式的解集,掌握数形结合思想是解答本题的关键.25.13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.26.(1)12x 1x -1==,;(2)12x 12x 1=-=,.【分析】(1)根据因式分解法,可得答案;(2)根据因式分解法,可得答案.【详解】解:(1)x (x -1)=1-x方程整理,得,x (x ﹣1)+(x ﹣1)=0,因式分解,得,(x ﹣1)(x +1)=0于是,得,x ﹣1=0或x +1=0,解得x 1=1,x 2=﹣1;(2)(x-3) 2 = (2x-1) (x +3)方程整理,得,x 2+11x ﹣12=0因式分解,得,(x +12)(x ﹣1)=0于是,得,x +12=0或x ﹣1=0,解得x1=﹣12,x2=1.【点睛】本题考查了解一元二次方程,因式分解是解题关键.。
【华东师大版】九年级数学上期中模拟试卷附答案
一、选择题1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图,在△ABC中,以C为中心,将△ABC顺时针旋转34°得到△DEC,边ED,AC相交于点F,若∠A=30°,则∠EFC的度数为()A.60°B.64°C.66°D.68°3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕A逆时针转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是 ( )A.2 B.23C.4 D.不能确定5.如图所示的图形中,是中心对称图形的是( )A.B.C .D .6.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 7.如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(﹣2,﹣3),(1,﹣3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为( )A .﹣1B .﹣3C .﹣5D .﹣78.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A . B .C .D .9.抛物线()2512y x =--+的顶点坐标为( )A .()1,2-B .()1,2C .()1,2-D .()2,1 10.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++11.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2± B .2- C .2 D .4 12.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=605013.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( )A .(1)81x x x ++=B .2181x x ++=C .1(1)81x x x +++=D .(1)81x x += 14.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5 二、填空题15.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,桥下的水面宽AB 为6m ,当水位上涨2m 时,水面宽CD 为_____m (结果保留根号).16.如图所示为抛物线223y ax ax =-+,则一元二次方程2230ax ax -+=两根为______.17.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.18.一元二次方程(x +2)(x ﹣3)=0的解是:_____.19.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.20.若()22214x y +-=,则22x y +=________.三、解答题21.如图,在边长为1的正方形组成的网格中,每个正方形的顶点称为格点.已知△ABC 的顶点均在格点上,建立如图所示的平面直角坐标系,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)画出△ABC 关于原点对称的△A 1B 1C 1,并直接写出△A 1B 1C 1各顶点的坐标; (2)将线段AB 绕点A 顺时针旋转90 °后得到AB 2,画出旋转后的图形,并直接写出点B 2的坐标;(3)△A 1B 1C 1的面积为 .22.实践与探究已知:△ABC 和△DOE 都是等腰三角形,∠CAB=∠DOE=90°,点O 是BC 的中点,发现结论:(1)如图1,当OE 经过点A ,OD 经过点C 时,线段AE 和CD 的数量关系是 ,位置关系是 .(2)在图1的基础上,将△DOE 绕点O 顺时针旋转α(090α︒<<︒)得到图2,则问题(1)中的结论是否成立?请说明理由.(3)如图3在(2)的基础上,当AE=CE 时,请求出α的度数.(4)在(2)的基础上,△DOE 在旋转的过程中设AC 与OE 相交于点F ,当△OFC 为等腰三角形时,请直接写出α的度数.23.在“万众创业、大众创新”的新时代下,大学毕业生小张响应国家号召,开办了家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:售价每下降1元每月要多卖20件,为了获得更大的利润且让利给顾客,现将饰品售价降价x(元/件)(且x为整数),每月饰品销量为y(件),月利润为w(元).(1)写出y与x之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润等于6000元时,应如何确定销售价格.24.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系202600y x=+.(1)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(2)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?25.商店销售某种商品,每件成本为30元.经市场调研,售价为40元时,可销售200件;售价每增加2元,销售量将减少20件.如果这种商品全部销售完,该商店可盈利2250元,那么该商品每件售价多少元?26.解方程:(1)x2+10x+9=0;(2)x23=14.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B解析:B【分析】由旋转性质得到∠D和∠DCF的度数,再由外角性质得到∠EFC的度数即可.【详解】解:由旋转的性质可得:∠D=∠A=30°,∠DCF=34°,∴∠EFC=∠A+∠DCF=30°+34°=64°;故选:B.【点睛】本题考查旋转的性质以及三角形的外角性质,熟练掌握旋转的性质是解本题的关键.3.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图形重合.4.B解析:B【分析】B=°,当DQ⊥CQ时,DQ的长最小,再根据根据旋转的性质,即可得到∠ACQ=∠60勾股定理,即可得到DQ的最小值.解:由旋转可得∠ACQ=∠60B=°.因为点D是AC的中点,所以CD=4.当DQ⊥CQ时,DQ的长最小,此时∠CDQ=30︒.所以122CQ CD==,DQ==所以DQ的最小值是故选B.【点睛】本题主要考查了旋转的性质,旋转前后的图形全等,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.5.D解析:D【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选D.【点睛】本题考查中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.C解析:C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.解析:C 【分析】当图象顶点在点B时,点N的横坐标的最大值为4,求出a=13;当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,求出x值,即可求解.【详解】当图象顶点在点B时,点N的横坐标的最大值为4,则此时抛物线的表达式为:y=a(x﹣1)2﹣3,把点N的坐标代入得:0=a(4﹣1)2﹣3,解得:a=13,当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,则x=﹣5或1,即点M的横坐标的最小值为﹣5,故选:C.【点睛】本题考查的是二次函数与x轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.8.B解析:B【分析】根据两个函数图象与y轴交于同一点可排除选项A,再根据抛物线的开口方向和对应一次函数的增减性即可做出选择.【详解】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故A不符合题意;当a>0时,二次函数y=ax2+bx+c的图象开口向上,一次函数y=ax+c中y值随x值的增大而增大,故D不符合题意;当a<0时,二次函数y=ax2+bx+c的图象开口向上,一次函数y=ax+c中y值随x值的增大而减小,故C不符合题意.故选:B.【点睛】本题考查二次函数及一次函数的图象与性质,熟练掌握两个函数图象与系数的关系是解答的关键.解析:B【分析】由于给的是二次函数顶点式的表达式,可直接写出顶点坐标.【详解】解:∵y=-5(x-1)2+2,∴此函数的顶点坐标是(1,2).故选:B .【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数顶点式的表示方法. 10.C解析:C【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键. 11.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键. 12.D解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x,依题意,得:5000(1+x)2=6050.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.13.C解析:C【分析】平均一人传染了x人,根据有一人患病,第一轮有(x+1)人患病,第二轮共有x+1+(x+1)x人,即81人患病,由此列方程求解.【详解】解:设每轮传染中平均一个人传染了x个人,根据题意得,x+1+(x+1)x=81故选:C.【点睛】本题考查了一元二次方程的应用,关键是得到两轮传染数量关系,从而可列方程求解.14.D解析:D【分析】利用直接开平方法求解即可.【详解】解:∵(x﹣3)2﹣4=0,∴(x﹣3)2=4,则x﹣3=2或x﹣3=﹣2,解得x1=5,x2=1,故选:D.【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题15.2【分析】首先求出B点纵坐标进而得出D点纵坐标即可求出D点横坐标进而得出CD的长【详解】解:由题意可得:当AB=6m则B点横坐标为3故此时y=﹣×32=﹣3当水位上涨2m时此时D点纵坐标为:﹣3+2解析:【分析】首先求出B点纵坐标,进而得出D点纵坐标,即可求出D点横坐标,进而得出CD的长.【详解】解:由题意可得:当AB =6m ,则B 点横坐标为3,故此时y =﹣13×32=﹣3, 当水位上涨2m 时,此时D 点纵坐标为:﹣3+2=﹣1,则﹣1=﹣13x 2,解得:x =故当水位上涨2m 时,水面宽CD 为.故答案为:【点睛】此题主要考查了二次函数的应用,求出D 点横坐标是解题关键.16.【分析】先求得对称轴再根据抛物线的对称性求得抛物线与x 轴的另一个交点的坐标即可求解【详解】抛物线的对称轴由图象得抛物线与轴的一个交点的坐标为(30)∴抛物线与轴的另一个交点的坐标为(-10)∴元二次解析:11x =-,23x =【分析】先求得对称轴1x =,再根据抛物线的对称性求得抛物线与x 轴的另一个交点的坐标,即可求解.【详解】 抛物线的对称轴212a x a-=-=, 由图象得抛物线与x 轴的一个交点的坐标为(3,0),∴抛物线与x 轴的另一个交点的坐标为(-1,0),∴元二次方程2230ax ax -+=两根为1213x x =-=,.故答案为:1213x x =-=,.【点睛】本题考查了二次函数的性质,抛物线与x 轴的交点,理解方程20ax bx c ++=的根就是函数2y ax bx c =++(0a ≠)的图象与x 轴的交点的横坐标是解题的关键. 17.【分析】要求抛物线与x 轴的交点即令y =0解方程即可【详解】令y =0则x2+2x ﹣3=0解得x1=﹣3x2=1则抛物线y =x2+2x ﹣3与x 轴的交点坐标是(﹣30)(10)故答案为:(﹣30)(10)解析:()()3.0,1,0-【分析】要求抛物线与x 轴的交点,即令y =0,解方程即可.【详解】令y=0,则x2+2x﹣3=0,解得x1=﹣3,x2=1.则抛物线y=x2+2x﹣3与x轴的交点坐标是(﹣3,0),(1,0).故答案为:(﹣3,0),(1,0).【点睛】此题考察二次函数与一元二次方程的关系,一元二次方程的解即为二次函数图像与x轴交点的横坐标.18.x1=﹣2x2=3【分析】利用因式分解法把原方程化为x+2=0或x﹣3=0然后解两个一次方程即可【详解】(x+2)(x﹣3)=0x+2=0或x﹣3=0所以x1=﹣2x2=3故答案为x1=﹣2x2=3解析:x1=﹣2,x2=3【分析】利用因式分解法把原方程化为x+2=0或x﹣3=0,然后解两个一次方程即可.【详解】(x+2)(x﹣3)=0,x+2=0或x﹣3=0,所以x1=﹣2,x2=3.故答案为x1=﹣2,x2=3.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).19.2021【分析】把x=a代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a代入已知方程,并求得a2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0,得a2+a+1=0,解得a2+a=-1,所以2020-a2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.20.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.三、解答题21.(1)图见解析;A 1(-1,-1),B 1(-4,-2),C 1(-3,-4);(2)B 2(2,-2);(3)3.5【分析】(1)先找到A 、B 、C 关于原点对称的A 1、B 1、C 1,再连线即可;(2)根据网格结构点A 、B ,找出将线段AB 绕点A 顺时针旋转90°的对应点B 2,然后连接A B 2,写出坐标即可;(3)△A 1B 1C 1的面积即为三角形ABC 的面积,利用“割补法”即可求得.【详解】解:(1)如图所示,△A 1B 1C 1即为所求:A 1(-1,-1),B 1(-4,-2),C 1(-3,-4);(2)如图所示,A1B2即为所求:B2(2,-2);(3)S△ABC=11133232113222⨯-⨯⨯-⨯⨯-⨯⨯=3.5,∴△A1B1C1的面积= S△ABC=3.5,故填:3.5.【点睛】本题考查了坐标与图形变化−旋转与对称,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22.(1)AE=CD AE⊥CD;(2)成立,理由见解析;(3)45°;(4)45°或22.5°【分析】(1)证明△AOC是等腰直角三角形即可得到结论;(2)连接AO,延长DC交AE于点M,设OE,MD相交于点N,证明△AOE≌△COD可得AE=CD,证明∠DME=90°可得AE⊥CD;(3)证明OE是AC的垂直平分线即可得到结论;(4)分OF=FC和OC=CF两种情况求解即可.【详解】解:(1)∵△ABC是等腰三角形,∠CAB =90°,∴∠ACB=45°∵点O是BC的中点,∴AO⊥BC∴△AOC是等腰直角三角形,∴AO=CO∵△DOE是等腰三角形,∠DOE=90°,∴EO=DO∴EO-AO=DO-CO即AE=CD∵OE经过点A,OD经过点C,∴AE⊥CD故答案为:AE=CD AE⊥CD(2)(1)中的结论仍然成立理由如下:连接AO,延长DC交AE于点M,设OE,MD相交于点N∵△ABC是等腰直角三角形,O是BC的中点∴AO=CO,AO⊥BC∴∠AOC=∠EOD=90°∴∠AOE=∠COD∵OE=OD∴△AOE≌△COD(SAS)∴AE=CD,∠AEO=∠CDO∵∠CDO+∠OND=90°,且∠OND=∠MNE∴∠AEO+∠MNE=90°∴∠DME=90°∴DM⊥AE即DC⊥AE(3)连接OA,如图3,∵AE=CE,OA=OC∴OE是AC的垂直平分线∴∠AOE=∠COE=45°∴α=45°(4)①若OF=FC时,如图4,∵△ABC是等腰直角三角形,∠BAC=90°,∴∠ACB=45°∴∠FOC=45°∵AO⊥BC∴∠AOC=90°∴∠AOF=90°-45°=45°,即α=45°;②当OC=FC时,如图5,∵△ABC是等腰直角三角形,∠BAC=90°,∴∠ACB=45°∴∠FOC=1804567.52︒-︒=︒ ∵AO ⊥BC∴∠AOC=90°∴∠AOF=90°-67.5°=22.5°,即α=22.5°;综上所述,α的度数为45°或22.5°. 【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.23.(1)y =300+20x ;(2)当售价为57元时,利润最大,最大利润为6120元;(3)将销售价格为55元,才能使每月利润等于6000元.【分析】(1)由售价每下降1元每月要多卖20件,可得y 与x 之间的函数解析式;(2)由月利润=单件利润×数量,可得w 与x 的函数解析式,由二次函数的性质可求解; (3)将w=6000代入解析式,解方程可求解.【详解】(1)由题意可得:30020y x =+;(2)由题意可得:()()2203002020( 2.5)6125w x x x =-+=--+, 由题意可知x 应取整数,当2x =或3元时,w 有最大值,∵让利给顾客,∴3x =,即当售价为57元时,利润最大,∴最大利润为6120元;(3)由题意,令w=6000,即25600020()61252x =--+,解得10x =(舍去),25x =,故将销售价格为55元,才能使每月利润等于6000元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,二次函数的性质,找出正确的函数关系式是本题的关键.24.(1)这种衬衫定价为70元;(2)售价定为65元可获得最大利润,最大利润是19500元【分析】(1)根据“总利润=每件商品的利润×销售量”列出方程并求解,最后根据尽量给客户实惠,对方程的解进行取舍即可;(2)求出w 的函数解析式,将其化为顶点式,然后求出定价的取值,即可得到售价为多少万元时获得最大利润,最大利润是多少.【详解】解:(1)()()5020260024000x x --+=,解得,170x =,2110x =,∵尽量给客户优惠,∴这种衬衫定价为70元;(2)由题意可得,()()()250202600209032000w x x x =--+=--+,∵该衬衫的每件利润不允许高于进货价的30%,每件售价不低于进货价,∴50x ≤,()505030%x -÷≤,解得,5065x ≤≤,∴当65x =时,w 取得最大值,此时19500w =,答:售价定为65元可获得最大利润,最大利润是19500元,【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.25.每件售价为45元【分析】设该商品的单价为x 元,根据题意得到方程,解方程即可求解.【详解】解:设该商品的单价为x 元.根据题意,得()()3020010402250---=⎡⎤⎣⎦x x .解这个方程,得1245x x ==.答:每件售价为45元.【点睛】本题考查一元一次方程的应用,解题的关键是根据利润得到相应的等量关系是解题的关键.26.(1)121,9x x =-=-;(2)12x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =22,即x 1=22,x 2=22-. 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键.。
新华师大版九年级上学期期中数学试卷及参考答案
动,同时动点Q从点B开始在线段BA
上以每秒2个单位的速度向点A移动,
设P、Q移动的时间为t秒.
∴直线
AB
的表达式为
y
x
6;
……………………………………4分
(2)由题意可知:
APt,BQ2t,AQ102t
∵A( 0 , 6 ),B( 8 , 0 )
∴OA6,OB8
(1)求直线AB的表达式;
,
A
P
ABAO10
6
50
解之得:t
……………………9分
13
50
∴AP
A
13
5028
∴OPOAAP6
,
1313
D
28
13
∴P0,
………………………10分
E
30
11
50
13
综上所述,当t
3b1
a
第2页
y3
xy
12.已知,则
_________.
x4
x
13.若b1a40且一元二次方程kxaxb0有实数根,则的取值范
2
k
围是__________.
14.如图(4)所示,在△ABC中,BE平分
则AC的长为_________.
,
ABCDEBC
//
,若
2,2,
ADAE
DE
A
D
E
C
E
D
A
P
B
B
C
图(4)
(B)x2x30
2
2
(C)x2x10
(D)x2x30
2
2
A
6.如图(1)所示,在△ABC中,EF//BC,AB3AE,
华东师大版九年级数学上册期中考试卷(附答案与解析)
华东师大版九年级数学上册期中考试卷(附答案与解析)(满分:120分;考试时长:90分钟)姓名班级学号成绩一.选择题(共8小题,满分24分,每小题3分)1.如图是一个机器的零件,则下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图均不相同2.175亿元用科学记数法表示为()A.1.75×109元B.1.75×1010元C.1.75×1011元D.17.5×109元3.若关于x的不等式(a+2020)x>a+2020的解为x<1,则a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20204.如图,在数轴上对应的点可能是()A.点A B.点B C.点C D.点D5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠C=34°,则∠ABD=()A.66°B.56°C.46°D.36°6.如图,为测量一根与地面垂直的旗杆AH的高度,在距离旗杆底端H10米的B处测得旗杆顶端A的仰角∠ABH=α,则旗杆AH的高度为()A.10sinα米B.10cosα米C.米D.10tanα米7.用尺规作图如图所示,首先以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;再是分别以E,F为圆心,以大于EF长为半径画弧,两弧交于D点,最后作射线AD.下列结论不正确的是()A.AF=DF B.∠BAD=∠CAD C.∠AFD=∠AED D.DE=DF8.如图,平面直角坐标系中,已知A(3,3),B(0,﹣1),将线段AB绕点A顺时针旋转90°得到线段AB′,点B'恰好在反比例函数y=的图象上,则k等于()A.6B.﹣6C.7D.﹣7二.填空题(共6小题,满分18分,每小题3分)9.分解因式:a2b﹣18ab+81b=.10.若关于x的一元二次方程ax2+3x+2=0有两个不相等的实数根,则a的取值范围为.11.幻方的历史悠久,传说最早出现在夏禹时代的“洛书”中,如图是一个三阶幻方(即每行、每列、每条对角线上的三个数之和都相等),则x的值为.12.将等腰直角三角板ABC与量角器按如图方式放置,其中A为半圆形量角器的0刻度线,直角边BC与量角器相切于点D,斜边AB与量角器相交于点E,若量角器在点D的读数为120°,则∠DAE的度数是°.13.如图,正八边形ABCDEFGH内接于⊙O,点P是上的任意一点,则∠CPE的度数为.14.若点A(﹣,y1)、B(,y2)都在二次函数y=﹣x2+2x+m的图象上,则y1y2.三.解答题(共10小题,满分78分)15.先化简,再求值:(x+3)(x﹣3)+x(4﹣x),其中x=.16.某电脑公司现有A,B两种型号的甲品牌电脑和C,D,E三种型号的乙品牌电脑.树人中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)若各种选购方案被选中的可能性相同,请用列表法或画树状图法求C型号电脑被选中的概率;(2)现知树人中学购买甲、乙两种品牌电脑共30台(价格如图所示),恰好用了10万元人民币,其中乙品牌电脑为C型号电脑,请直接写出购买的C型号电脑有台.17.为响应政府“绿色出行”的号召,张老师上班由自驾车改为骑公共自行车.已知张老师家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.张老师用骑公共自行车方式上班比用自驾车的方式上班多用多少小时?18.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,2),B(3,4),C(4,1).(1)请画出与△ABC关于x轴对称的△A1B1C1;(2)△ABC绕O点逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出线段OA 在旋转过程中扫过的图形的面积.19.如图,在△ABC中,AB=AC,AE是中线,点D是AB的中点,连接DE,且BF∥DE,EF∥DB.(1)求证:四边形BDEF是菱形;(2)若AC=3,BC=2,直接写出四边形BDEF的面积.20.现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用表示5月份的方差;用表示3月份的方差,比较大小:;比较3月份与5月份,月份的更稳定.21.盐城市初级中学为了缓解校门口的交通堵塞,倡导学生步行上学.小丽步行从家去学校,图中的线段表示小丽步行的路程s(米)与所用时间t(分钟)之间的函数关系.试根据函数图象回答下列问题:(1)小丽家离学校米;(2)小丽步行的速度是米/分钟;(3)求出m的值.22.(1)如图①,矩形ABCD的对角线相交于点O,点O称为矩形ABCD的几何中心.直线l经过点O,与矩形的边AD,BC分别交于点M,N,请判断线段OM与ON的数量关系,并说明理由;(2)如图②,将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合,请判断直线l是否经过矩形ABCD的几何中心,并说明理由;(3)如图③,在(2)的条件下,AB=6,BC=8,在线段EF上有一点P,若点P到矩形ABCD一边的距离与OP的长都等于a,请直接写出a的所有可能的值.23.问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①=;②直线AE与DF所夹锐角的度数为.(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为.24.如图1,直线y=ax2+4ax+c与x轴交于点A(﹣6,0)和点B,与y轴交于点C,且OC =3OB.(1)直接写出抛物线的解析式及直线AC的解析式;(2)抛物线的顶点为D,E为抛物线在第四象限的一点,直线AE解析式为y=﹣x﹣2,求∠CAE﹣∠CAD的度数.(3)如图2,若点P是抛物线上的一个动点,作PQ⊥y轴垂足为点Q,直线PQ交直线AC于E,再过点E作x轴的垂线垂足为R,线段QR最短时,点P的坐标及QR的最短长度.参考答案与解析一.选择题(共8小题,满分24分,每小题3分)1.解:该几何体的主视图与左视图相同,底层是一个矩形,上层的中间是一个矩形;俯视图是两个同心圆.故选:A.2.解:175亿=175****0000=1.75×1010.故选:B.3.解:∵关于x的不等式(a+2020)x>a+2020的解为x<1∴a+2020<0解得:a<﹣2020.故选:B.4.解:∵1<3<4∴1<<2∴A点符合题意.故选:A.5.解:∵AB为⊙O的直径∴∠ADB=90°∴∠DAB+∠ABD=90°∵∠DAB=∠BCD=34°∴∠ABD=90°﹣34°=56°故选:B.6.解:∵BH=10m,∠ABH=α∴tanα=∴AH=BH•tanα=10tanα(米)故选:D.7.解:由基本作图方法可得:AF=AE,FD=DE在△AFD和△AED中∴△AFD≌△AED(SSS)∴∠BAD=∠CAD,∠AFD=∠AED,故选项B,C,D正确,不合题意;无法得出AF=DF故选项A错误,符合题意.故选:A.8.解:作AC⊥y轴于点C,B′D⊥AC于D,如图所示∵∠BAB′=90°,∠ACB=90°,AB=AB′∴∠BAC+∠ABC=90°,∠BAC+∠B′AD=90°∴∠ABC=∠B′AD∴△ABC≌△B′AD∴AC=B′D,BC=AD∵A(3,3),B(0,﹣1)∴BC=AD=4,AC=B′D=3∴CD=4﹣3=1∴B′(﹣1,6)∵点B'恰好在反比例函数y=的图象上∴k=﹣1×6=﹣6故选:B.二.填空题(共6小题,满分18分,每小题3分)9.解:a2b﹣18ab+81b=b(a2﹣18a+81)=b(a﹣9)2.故答案为:b(a﹣9)2.10.解:根据题意得a≠0且Δ=32﹣4×a×2>0 解得a<且a≠0即a的取值范围为a<且a≠0.故答案为:a<且a≠0.11.解:依题意得:4+3+8=8+5+x解得:x=2.故答案为:2.12.解:如图,连接OD、DF由D为切点可知:OD⊥BC∵AC⊥BC∴OD∥AC由题意可得:∠AOD=120°∴∠DOF=∠CAO=60°∴∠BAO=60°﹣45°=15°∵∠DAO=30°∴∠DAE=∠DAO﹣∠BAO=15°故答案为:15.13.解:连接OD、OC、OE,如图所示:∵八边形ABCDEFGH是正八边形∴∠COD=∠DOE==45°∴∠COE=45°+45°=90°∴∠CPE=∠COE=45°.故答案为:45°.14.解:∵点A(﹣,y1)、B(,y2)都在二次函数y=﹣x2+2x+m的图象上∴y2﹣y1=﹣()2+2×+m﹣[﹣(﹣)2+2×(﹣)+m]=﹣(2﹣)2+2×(2﹣)+(﹣)2+=﹣4+﹣()2+4﹣+()2+=>0∴y1<y2故答案为:<.三.解答题(共10小题,满分78分)15.解:原式=x2﹣9+4x﹣x2=4x﹣9当x=时原式=1﹣9=﹣8.16.解:(1)画树状图得:共有6种等可能的结果,其中C型号电脑被选中的结果有2种∴C型号电脑被选中的概率为=;(2)①选用方案AC时设购买C型号电脑x台,A型号电脑y台由题意得:解得:(不合题意舍去);②选用方案BC时设购买C型号电脑a台,B型号电脑b台由题意得:解得:综上所述,购买的C型号电脑有20台故答案为:20.17.解:设张老师用骑公共自行车方式上班平均每小时行驶x千米,则用自驾车的方式上班平均每小时行驶(x+45)千米依题意得:=4×解得:x=15经检验,x=15是原方程的解,且符合题意∴﹣=﹣=(小时).答:张老师用骑公共自行车方式上班比用自驾车的方式上班多用小时.18.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;∵OA2=12+22=5,∠AOA2=90°∴S==π答:线段OA在旋转过程中扫过的图形是扇形△OAA2,面积是.19.(1)证明:∵BF∥DE,EF∥DB∴四边形BDEF是平行四边形∵AB=AC,AE是中线∴AE⊥BC∴∠AEB=90°∵点D是AB的中点∴DE=AB=BD∴四边形BDEF是菱形;(2)解:∵AE⊥BC,BE=BC=1,AC=3∴AE===2∴△ABE的面积=BE×AE=×1×2=∵点D是AB的中点∴△BDE的面积=△ADE的面积=△ABE的面积∵菱形BDEF的面积=2△BDE的面积∴四边形BDEF的面积=△ABE的面积=.20.解:(1)最低气温14℃的有3天所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃)故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比5月份最低气温波动小所以S32<,3月份更稳定故答案为<,3.21.解:(1)根据题意可知,小丽家离学校1000米故答案为:1000;(2)小丽步行的速度是:1000÷10=100(米/分钟)故答案为:100;(3)m=4×100=400.22.解:(1)线段OM与ON的数量关系为:OM=ON,理由:∵四边形ABCD为矩形∴AO=CO,AD∥BC∴∠MAC=∠NCA.在△AOM和△CON中∴△AOM≌△CON(ASA)∴OM=ON;(2)直线l经过矩形ABCD的几何中心,理由:连接AC,AC交EF于点G,如图∵将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合∴l为AC的垂直平分线∴AG=CG∵矩形ABCD的对角线相交于点O,点O称为矩形ABCD的几何中心∴OA=OC.∴点G与点O重合∴直线l经过矩形ABCD的几何中心O;(3)①当点P到矩形ABCD的边BC的距离与OP的长都等于a时,连接AC,则AC经过EF的中点O,如图∴AC===10∴AO=CO=AC=5.由题意:OE⊥AC∴∠AOE=∠D=90°.∵∠OAE=∠DAC∴△AOE∽△ADC∴∴∴OE=.∴OF=OE=.由题意:PH⊥BC,OP=PH=a∴PF=﹣a.过点O作OM⊥BC于点M,则OM为△ABC的中位线∴OM=AB=3.∵PH⊥BC,OM⊥BC∴PH∥OM∴△FPH∽△FOM∴∴解得:a=.同理可求:②当点P到矩形ABCD的边AD的距离与OP的长都等于a时,a=;③当点P到矩形ABCD的边AB的距离与OP的长都等于a时,PH⊥AB,PH=OP=a 连接AC,则AC经过EF的中点O,过点P作PG⊥BC于点G,过点OP作OM⊥BC于点M,如图由①知:OF=,PF=﹣a,OM为△ABC的中位线∴BM=BC=4.∵将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合∴∠D′=∠D=90°,AD′=CD=AB,DE=D′E,∠FAD′=90°∵∠BAD=90°∴∠BAF=∠D′AE.在△BAF和△D′AE中∴△BAF≌△D′AE(ASA)∴BF=D′E.设D′E=DE=x,则AE=8﹣x在Rt△AED′中∵AE2=D′E2+AD′2∴(8﹣x)2=x2+62解得:x=.∴BF=D′E=.∵PH⊥AB,PG⊥BC,∠B=90°∴四边形PHBG为矩形∴BG=PH=a∴FG=BG﹣BF=a﹣,FM=BM﹣BF=4﹣=.∵PG⊥BC,OM⊥BC∴PG∥OM∴△FPG∽△FOM∴∴解得:a=.同理可求:④当点P到矩形ABCD的边CD的距离与OP的长都等于a时,a=.综上,若点P到矩形ABCD一边的距离与OP的长都等于a,a的所有可能的值为和.23.解:(1)如图1,∵∠ABD=30°,∠DAB=90°,EF⊥BA∴cos∠ABD==如图2,设AB与DF交于点O,AE与DF交于点H∵△BEF绕点B按逆时针方向旋转90°∴∠DBF=∠ABE=90°∴△FBD∽△EBA∴=,∠BDF=∠BAE又∵∠DOB=∠AOF∴∠DBA=∠AHD=30°∴直线AE与DF所夹锐角的度数为30°故答案为:,30°;(2)结论仍然成立理由如下:如图3,设AE与BD交于点O,AE与DF交于点H∵将△BEF绕点B按逆时针方向旋转∴∠ABE=∠DBF又∵=∴△ABE∽△DBF∴=,∠BDF=∠BAE又∵∠DOH=∠AOB∴∠ABD=∠AHD=30°∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G∵AB=2,∠ABD=30°,点E是边AB的中点,∠DAB=90°∴BE=,AD=2,DB=4∵∠EBF=30°,EF⊥BE∴EF=1∵D、E、F三点共线∴∠DEB=∠BEF=90°∴DE===∵∠DEA=30°∴DG=DE=由(2)可得:=∴∴AE=∴△ADE的面积=×AE×DG=××=;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G同理可求:△ADE的面积=×AE×DG=××=;故答案为:或.24.解:(1)∵y=ax2+4ax+c=a(x+2)2﹣4a+c ∴抛物线的对称轴为直线x=﹣2∵A(﹣6,0)∴B(2,0)∴OB=2∴OC=3OB=6∴C(0,6)将B、C两点坐标代入y=ax2+4ax+c∴解得∴抛物线的解析式为y=﹣x2﹣2x+6设直线AC的解析式为y=kx+m∴∴∴直线AC的解析式为y=x+6;(2)∵y=﹣x2﹣2x+6=﹣(x+2)2+8∴顶点D(﹣2,8)过D作DM⊥y轴于M则M(0,8)∵C(0,6)∴DM=CM=2∴∠MCD=45°,CD=2∵OA=OC=6∴∠OCA=45°∴∠ACD=90°,AC=Rt△ACD中,∵直线AE与y轴交点N(0,﹣2)∴ON=2∴tan∠BAE==∴∠CAD=∠BAE∴∠CAE﹣∠CAD=∠CAE﹣∠BAE=∠OAC=45°;(3)∵PQ⊥y轴,ER⊥x轴∴∠OQE=∠ROQ=∠QOR=90°∴四边形OQER为矩形∴QR=OE∴当OE⊥AC时,QR=OE最短∵OA=OC=6∴△AOC为等腰直角三角形,此时E为线段AC的中点∴最短长度QR=OE=AC=3∵E(﹣3,3),PQ⊥y轴∴P点纵坐标也为3∴﹣x2﹣2x+6=3解得∴点P的坐标为(﹣2+,3)或(﹣2﹣,3)∴QR的最短长度为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期中模拟试卷一.选择题(共12小题)1a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2D.a>22.有下列关于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,⑤x3﹣3x+8=0,2﹣5x+7=0,⑦(x﹣2)(x+5)=x2﹣1.其中是一元二次方程的有()A.2 B.3 C.4 D.53)A B4.已知a,b﹣b|的结果等于()A.﹣2a B.﹣2b C.﹣2a﹣b D.25.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣.﹣C.8﹣D.4﹣6.下列二次根式中,是最简二次根式的是()A B C D7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.关于x的一元二次方程(a﹣1)x2+2x+1=0有两个实数根,则a的取值范围为()A.a≤2 B.a<2 C.a≤2且a≠1D.a<2且a≠19.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.810.如图,在正方形ABCD 中,点E,F分别在边BC,DC上,AE、AF分别交BD于点M,N,连接CN、EN,且CN=EN.下列结论:①AN=EN,AN⊥EN;②BE+DF=EF;③∠DFE=2∠AMN;④EF2=2BM2+2DN2;⑤图中只有4对相似三角形.其中正确结论的个数是()A.5 B.4 C.3 D.211.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG 的面积是()A.4.5 B.5 C.5.5 D.612.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,则第2017秒时,点P的坐标是()A.(2016,0)B.(2017,1)C.(2017,﹣1) D.(2018,0)二.填空题(共6小题)13.已知线段a=9,c=4,如果线段b是a、c的比例中项,那么b= .14.如图,点O为四边形ABCD与四边形A1B1C1D1的位似中心,OA1=3OA,若四边形ABCD 的面积为5,则四边形A1B1C1D1的面积为.15.定义新运算“※”,规则:a※b=ab﹣a﹣b,如1※2=1×2﹣1﹣2=﹣1,若x2+x﹣1=0的两根为x1,x2,则x1※x2= .16.要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),计划安排15场比赛,应邀请支球队参加比赛.17.若x1,x2是方程x2+3x+2=0的两个根,那么x12+x22的值等于.18.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花,飞燕草,万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n n n]表示.通过计算求出斐波那契数列中的第1个数为,第2个数为.三.解答题(共8小题)19.(1)计算:(22012(2013﹣2|0.(2)先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=(3﹣π)0,y=2.20.(1)解方程:2x2﹣5x+3=0;(2)化简(x+121.关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.22.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,3),B(﹣4,0),C (1,1).(1)作△ABC关于y轴的对称图形△A1B1C1;(2)以M点为位似中心,在点M的同侧作△ABC关于M点的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.23.如图,CD是△ABC的角平分线,AE⊥CD于E,F是AC的中点,(1)求证:EF∥BC;(2)猜想:∠B、∠DAE、∠EAC三个角之间的关系,并加以证明.24.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.25.东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?26.把两个含有45°角的直角三角板如图1放置,点D在BC上,连接BE、AD,AD的延长线交于BE于点F.(1)问:AD与BE在数量上和位置上分别有何关系?说明理由.(2)若将45°角换成30°如图2,AD与BE在数量和位置上分别有何关系?说明理由.(3)若将图2中两个三角板旋转成图3、图4、图5的位置,则(2)中结论是否仍然成立,选择其中一种图形进行说明.参考答案一.选择题(共12小题)1.则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.2.【解答】解:一元二次方程有②⑥,共2个,故选A.3.故选:A.4.【解答】解:由题意,可得a<0<b,且|a|<1,|b|>2,﹣b|=1﹣a﹣(a+b)+(b﹣1)=1﹣a﹣a﹣b+b﹣1=﹣2a.故选A.5.【解答】解:∵两张正方形纸片的面积分别为16cm2和12cm2,,,∴AB=4cm,BC=()cm,∴空白部分的面积=()×4﹣12﹣16,﹣12﹣16,=(﹣cm2.故选B.6BCD故选C.7.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.8.【解答】解:∵关于x的一元二次方程(a﹣1)x2+2x+1=0有两个实数根,,解得:a≤2且a≠1.故选C.9.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.10.【解答】解:将△ABE绕点A逆时针旋转90°得到△ADH.∵四边形ABCD是中正方形,∴AB=BC=AD,∠BAD=∠ABC=90°,∠ABD=∠CBD=45°,在△BNA和△BNC中,∴△NBA≌△NBC,∴AN=CN,∠BAN=∠BCN,∵EN=CN,∴AN=EN,∠NEC=∠NCE=∠BAN,∵∠NEC+∠BEN=180°,∴∠BAN+∠BEN=180°,∴∠ABC+∠ANE=180°,∴∠ANE=90°,∴AN=NE,AN⊥NE,故①正确,∵∠3=45°,∠1=∠4,∴∠2+∠4=∠2+∠1=45°,∴∠3=∠FAH=45°,∵AF=AF,AE=AH,∴△AFE≌△AFH,∴EF=FH=DF+DH=DF+BE,∠AFH=∠AFE,故②正确,∵∠MAN=∠NDF=45°,∠ANM=∠DNF,∴∠AMN=∠AFD,∴∠DFE=2∠AMN,故③正确,∵∠MAN=∠EAF,∠A MN=∠AFE,∴△AMN∽△AFE,∴,如图2中,将△ABM绕点A逆时针旋转90°得到△ADG,易证△ANG≌△ANM,△GDN是直角三角形,∴MN=GN,∴MN2=DN2+DG2=DN2+BM2,∴EF2=2(DN2+BM2)=2BM2+2DN2,故④正确,图中相似三角形有△ANE∽△BAD~△BCD,△ANM∽△AEF,△ABN∽△FDN,△BEM∽△DAM 等,故⑤错误,故选B.11.【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG 是△ACE的中线,∴△AEF的面积ABE的面积ABD的面积ABC的面积同理可得△AEG的面积△BCE的面积ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=BCE的面积∴△AFG故选:A.12.【解答】解:以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2017=504×4+1,∴第2017秒时,点P的坐标为(2017,1).故选B二.填空题(共6小题)13.【解答】解:若b是a、c的比例中项,即b2=ac.则.故答案为:6.14.【解答】解:∵点O为四边形ABCD与四边形A1B1C1D1的位似中心,OA1=3OA,∴四边形ABCD与四边形A1B1C1D1的相似比为:1:3,∴四边形ABCD与四边形A1B1C1D1的面积比为:1:9,∵四边形ABCD的面积为5,∴四边形A1B1C1D1的面积为:5×9=45.故答案为:45.15.【解答】解:∵x2+x﹣1=0的两根为x1,x2,∴x1+x2=﹣1,x1x2=﹣1,∴x1※x2=x1x2﹣(x1+x2)=0,故答案为:0.16.【解答】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x﹣1=15,,∴x2﹣x﹣30=0,∴x=6或x=﹣5(不合题意,舍去).即应邀请6个球队参加比赛.故答案为:6.17.【解答】解:∵x1、x2是方程x2+3x+2=0的两个实数根,∴x1+x2=﹣3,x1•x2=2,又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2,将x1+x2=﹣3,x1•x2=2,代入得x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2=(﹣3)2﹣2×2 =5.故填空答案:5.18.【解答】解:第1个数,当n=1=1.=1,故答案为:1,1三.解答题(共8小题)19.【解答】解:(1)原式=[(2(]2012•( 11=1;(2)原式=x2﹣y2﹣x2﹣xy+2xy=xy﹣y2,当x=1,y=2时,原式=1×2﹣4=﹣2.20.【解答】解:(1)(2x﹣3)(x﹣1)=0,2x﹣3=0或x﹣1=0,所以x1x2=1;(2)原式=21.【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.22.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.23.【解答】证明:(1)延长AE交BC于H,在△CAE和△CHE中,∴△CAE≌△CHE(ASA),∴E是AH的中点,又F是AC的中点,∴EF是△AHC的中位线,∴EF∥BC;(2)解:∠EAC=∠B+∠DAE.理由如下:由(1)知△CAE≌△CHE,∴∠EAC=∠EHC.又∠AEH=∠B+∠BAH,∴∠EAC=∠B+∠DAE.24.【解答】解:(1)由已知|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0及(c﹣4)2≥0可得:a=2,b=3,c=4;(2×2×3=3,m)=﹣m,∴S四边形ABOP=S△ABO+S△APO=3+(﹣m)=3﹣m(3∵S四边形ABOP=S△ABC∴3﹣m=6,则 m=﹣3,所以存在点P(﹣3S四边形ABOP=S△ABC.25.【解答】解:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(不合题意,舍去).答:该烘焙店生产的是五档次的产品.26.【解答】解:(1)AD=BE;AD⊥BE.由题可得:CE=CD;CB=CA;∠ECD=∠BCA=90°,∴△ECB≌△DCA(SAS),∴AD=BE,∠BEC=∠ADC,(2分)又∠ADC+∠DAC=90°,∴∠BEC+∠DAC=90°,∴∠AFE=90°,即AD⊥BE.(4分)(2);AD⊥BE;证明如下:由题可得:;,ECD=∠BCA=90°,∴△ECB∽△DCA,∴,∠BEC=∠ADC;(6分)又∠ADC+∠DAC=90°,∴∠BEC+∠DAC=90°,∴∠AFE=90°即:AD⊥BE;(8分)(3)结论成立,仍然证△ECB∽△DCA,得到,∠EBC=∠CAD,图3:由∠CPA+∠CAP=90°,得∠BPF+∠CAP=90°,又∠EBC=∠CAD∴∠BPE+∠EBC=90°,∴∠AFB=90°即:AD⊥BE;(12分)图4:由题可知:∠CAD+∠BAF=120°又∠EBC=∠CAD∴∠BAF+∠EBC=120°而∠CBA=30°,∴∠BAF+∠FBA=90°,∴∠AFB=90°即:AD⊥BE图5:由∠CPB+∠EBC=90°,得∠APE+∠EBC=90°,又∠EBC=∠CAD,∴∠CAD+∠APE=90°,∴∠AFB=90°即:AD⊥BE.。