固体物理答案第六章

合集下载

固体物理答案陆栋.pdf

固体物理答案陆栋.pdf

《固体物理学》习题解答( 仅供参考 )参加编辑学生柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章)指导教师黄新堂华中师范大学物理科学与技术学院2003级2006 年 6 月第一章晶体结构1.氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为 a。

解:氯化钠与金刚石型结构都是复式格子。

氯化钠的基元为一个 Na+和一个 Cl-组成的正负离子对。

金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。

由于 NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:⎧⎪a1=a2( j + k)⎪⎪⎨a 2=a2( k + i)⎪⎪⎪a 3=a ( i +j)⎩ 2相应的晶胞基矢都为:⎧a =a i,⎪⎨b =a j,⎪⎩c =a k.2.六角密集结构可取四个原胞基矢a1, a 2,a 3与 a4,如图所示。

试写出O'A1A3、A1 A3 B3 B1、 A2 B2 B5 A5、 A1 A2 A3 A4 A5 A6这四个晶面所属晶面族的晶面指数(h k l m)。

解:(1).对于O'A1A3面,其在四个原胞基矢上的截矩分别为:1,1,- 1 ,1。

所以,其晶面2( )指数为。

(2).对于A1A3B3B1面,其在四个原胞基矢上的截矩分别为:1,1,-12,∞。

所以,其晶面指数为(1120)。

(3).对于A2B2B5A5面,其在四个原胞基矢上的截矩分别为:1,-1,∞,∞。

1所以,其晶面指数为 (1 100)。

(4).对于 A 1 A 2 A 3 A 4 A 5 A 6 面,其在四个原胞基矢上的截矩分别为:∞ ,∞ ,∞ ,1。

所以, 其晶面指数为 (0001) 。

3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方: π6 ;体心立方: 83π;面心立方: 62π ;六角密集: 62π ;金刚石:3π 。

固体物理学_答案(黄昆)

固体物理学_答案(黄昆)

《固体物理学》习题解答黄昆原著韩汝琦改编 (陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率,VcnV x =(1)对于简立方结构:(见教材P2图1-1) a=2r ,V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34ar 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒=n=2, Vc=a 3∴68.083)r 334(r 342ar342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r344ar344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯=(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r338r 348ar348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理基础 习题解答6.7章

固体物理基础 习题解答6.7章

· · · (1)
其中,把 V 在 r Rn 点的附近按 n 作级数展开,并保留到一级相。 原子的热振动采取格波的形式,具体考虑简单格子的情况,只有声学波。并 以弹性波近似代替声学波。原子的位移 n 用如下形式表示
n Ae cos q Rn t
· · · (2)
式中 e 表示振动方向上的单位矢量。 A 为振幅。在各向同性的介质中,存 在横波和纵波,对于横波 e q ,对于纵波 e || q 。弹性波具有恒定的速度,即对 于横波 C=Ct,对于纵波 C=Cl,根据式(1)和式(2) ,立刻可以写出一个格波引 起的整个晶格中的势场变化
40
第 7 章 晶体的导电性 习题
1、晶格散射总是伴随着声子的吸收或发射,因此电子被格波的散射不是完 全的弹性散射,但近似是弹性散射。试就铝的情况说明之。已知铝的费米能级 EF≈12eV,德拜温度ΘD≈428K。 证明: (可参考课外微扰理论的知识以加深理解) 我们知道,与电子和光子的碰撞类似,电子和声子的碰撞也遵守准动量守恒 和能量守恒定律。现在我们以单电子散射(即发生的电子与晶格交换一个声子) 过程来做分析证明。 类比 p119 的式 3-61(光子的情形)可知,有
H Vn n V r Rn A cos q Rn t e V r Rn
n n n






· · · (3)

1 1 Aeit eiqRn e V r Rn Aeit eiqRn e V r Rn 2 n 2 n n n

max =k BD 5.9 1021 0.037eV 0.003EF
略)
(小于百倍, 可直接忽

黄昆版固体物理学课后答案解析答案 (2)

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

固体物理答案第六章1

固体物理答案第六章1

相互作用试根据紧束缚近似的结果,求出能量 E k 的表达式, 并计算相应的电子速度 v k 和有效质量各个分量 m ij 。

解:若只计及最近邻的相互作用,用紧束缚近似法处理晶体中
s态电子的能量 ,其结果是
最近邻 E k E 0 A e i 2k Rn Rs J sn Rn
6.3 设晶格势场对电子的作用力为 FL ,电子受到的外场力为
Fe ,证明:
Fe m m Fe FL

证明: 因为 p mv 为电子的动量, 所以有
dv m F总 Fe FL dt
另一方面,加速度
(1)
dv dv dk a dt dk dt
(2)
1 dE dk 而速度 v 代入(2)式,并应用关系式 h Fe h dk dt
1 4 2 a 2 J 2 cos2akx cosakx cos 3ak y 2 m xx h


1 12 2 a 2 J cosakx cos 3ak y 2 m yy h
1 1 4 3 2 a 2 J sinak x sin 3ak y 2 m xy m yx h
Emax E0 A 2J
这就是能带顶的数值,故能带宽度
E Emax Emin 4J
在能带底附近,k值很小,sin ka ka , (2)式可写成
h2 k 2 2 E k Emin 4J ka Emin * 2mb
此处
* mb
h2 8 J 2 a 2
因此,无外场时,晶体中总电流为零。
6.5 应用紧束缚方法于一维单原子链,如只计及最近邻原子间
的相互作用,
(1)证明其s态电子的能带为

黄昆固体物理课后习题答案6

黄昆固体物理课后习题答案6

第六章 自由电子论和电子的输运性质思 考 题1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率[解答]金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目1/)(+=-T k E E B F e g n ,g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数11)(/)(+=-T k E E B F e E f是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率.2.绝对零度时, 价电子与晶格是否交换能量[解答]晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数11/-=T k i B i e n ω .从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量.3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的[解答]自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近.4.晶体膨胀时, 费密能级如何变化[解答]费密能级3/2220)3(2πn m E F=,其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低.5.为什么温度升高, 费密能反而降低[解答]当0≠T 时, 有一半量子态被电子所占据的能级即是费密能级. 温度升高, 费密面附近的电子从格波获取的能量就越大, 跃迁到费密面以外的电子就越多, 原来有一半量子态被电子所占据的能级上的电子就少于一半, 有一半量子态被电子所占据的能级必定降低. 也就是说, 温度升高, 费密能反而降低.6.为什么价电子的浓度越大, 价电子的平均动能就越大[解答]由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子浓度的关系.价电子的浓度越大价电子的平均动能就越大, 这是金属中的价电子遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电子不可能都处于最低能级上, 而是在费密球中均匀分布. 由式3/120)3(πn k F =可知, 价电子的浓度越大费密球的半径就越大,高能量的电子就越多, 价电子的平均动能就越大. 这一点从和式看得更清楚. 电子的平均动能E 正比与费密能0F E , 而费密能又正比与电子浓度3/2n :()3/22232πn m E F =,()3/2220310353πn m E E F ==.所以价电子的浓度越大, 价电子的平均动能就越大.7.对比热和电导有贡献的仅是费密面附近的电子, 二者有何本质上的联系[解答]对比热有贡献的电子是其能态可以变化的电子. 能态能够发生变化的电子仅是费密面附近的电子. 因为, 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的电子, 这些电子吸收声子后能跃迁到费密面附近或以外的空状态上.对电导有贡献的电子, 即是对电流有贡献的电子, 它们是能态能够发生变化的电子. 由式)(00ε⋅∂∂+=v τe E f f f可知, 加电场后,电子分布发生了偏移. 正是这偏移 )(0ε⋅∂∂v τe E f部分才对电流和电导有贡献. 这偏移部分是能态发生变化的电子产生的. 而能态能够发生变化的电子仅是费密面附近的电子, 这些电子能从外场中获取能量, 跃迁到费密面附近或以外的空状态上. 而费密球内部离费密面远的状态全被电子占拒, 这些电子从外场中获取的能量不足以使其跃迁到费密面附近或以外的空状态上. 对电流和电导有贡献的电子仅是费密面附近电子的结论从式x k S x x E S v e j F ετπ∇=⎰d 4222和立方结构金属的电导率 E S v e k S x F ∇=⎰d 4222τπσ 看得更清楚. 以上两式的积分仅限于费密面, 说明对电导有贡献的只能是费密面附近的电子.总之, 仅仅是费密面附近的电子对比热和电导有贡献, 二者本质上的联系是: 对比热和电导有贡献的电子是其能态能够发生变化的电子, 只有费密面附近的电子才能从外界获取能量发生能态跃迁.8.在常温下, 两金属接触后, 从一种金属跑到另一种金属的电子, 其能量一定要达到或超过费密能与脱出功之和吗[解答]电子的能量如果达到或超过费密能与脱出功之和, 该电子将成为脱离金属的热发射电子. 在常温下, 两金属接触后, 从一种金属跑到另一种金属的电子, 其能量通常远低于费密能与脱出功之和. 假设接触前金属1和2的价电子的费密能分别为1F E 和2F E , 且1F E >2F E , 接触平衡后电势分别为1V 和2V . 则两金属接触后, 金属1中能量高于11eV E F -的电子将跑到金属2中. 由于1V 大于0, 所以在常温下, 两金属接触后, 从金属1跑到金属2的电子, 其能量只小于等于金属1的费密能.9.两块同种金属, 温度不同, 接触后, 温度未达到相等前, 是否存在电势差 为什么[解答]两块同种金属, 温度分别为1T 和2T , 且1T >2T . 在这种情况下, 温度为1T 的金属高于0F E 的电子数目, 多于温度为2T 的金属高于0F E 的电子数目. 两块金属接触后, 系统的能量要取最小值, 温度为1T 的金属高于0F E 的部分电子将流向温度为2T 的金属. 温度未达到相等前, 这种流动一直持续. 期间, 温度为1T 的金属失去电子, 带正电; 温度为2T 的金属得到电子, 带负电, 二者出现电势差.10.如果不存在碰撞机制, 在外电场下, 金属中电子的分布函数如何变化[解答]如果不存在碰撞机制, 当有外电场ε后, 电子波矢的时间变化率 εe t -=d d k .上式说明, 不论电子的波矢取何值, 所有价电子在波矢空间的漂移速度都相同. 如果没有外电场ε时, 电子的分布是一个费密球, 当有外电场ε后, 费密球将沿与电场相反的方向匀速刚性漂移, 电子分布函数永远达不到一个稳定分布.11.为什么价电子的浓度越高, 电导率越高[解答]电导σ是金属通流能力的量度. 通流能力取决于单位时间内通过截面积的电子数(参见思考题18). 但并不是所有价电子对导电都有贡献, 对导电有贡献的是费密面附近的电子. 费密球越大, 对导电有贡献的电子数目就越多. 费密球的大小取决于费密半径3/12)3(πn k F =.可见电子浓度n 越高, 费密球越大, 对导电有贡献的电子数目就越多, 该金属的电导率就越高.12.电子散射几率与声子浓度有何关系 电子的平均散射角与声子的平均动量有何关系[解答]设波矢为k 的电子在单位时间内与声子的碰撞几率为),',(θΘk k , 则),',(θΘk k 即为电子在单位时间内与声子的碰撞次数. 如果把电子和声子分别看成单原子气体, 按照经典统计理论, 单位时间内一个电子与声子的碰撞次数正比与声子的浓度.若只考虑正常散射过程, 电子的平均散射角θ与声子的平均波矢q 的关系为由于F k k k ==', 所以F F k q k q 222sin==θ.在常温下, 由于q <<k , 上式可化成 F F k q k q ==θ.由上式可见, 在常温下, 电子的平均散射角与声子的平均动量q 成正比. 13.低温下, 固体比热与3T 成正比, 电阻率与5T 成正比, 2T 之差是何原因[解答]按照德拜模型, 由式可知, 在甚低温下, 固体的比热 34)(512D B V T Nk C Θπ=.而声子的浓度⎰⎰-=-=m B m B T k p T k ce v e D V n ωωωωωωπωω0/2320/1d 231d )(1 ,作变量变换 T k x B ω =,得到甚低温下 333232T v Ak n p Bπ=, 其中 ⎰∞-=021d x e x x A .可见在甚低温下, 固体的比热与声子的浓度成正比.按照§纯金属电阻率的统计模型可知, 纯金属的电阻率与声子的浓度和声子平均动量的平方成正比. 可见, 固体比热与3T 成正比, 电阻率与5T 成正比, 2T 之差是出自声子平均动量的平方上. 这一点可由式得到证明. 由可得声子平均动量的平方286220/240/3321d 1d )(T v v Bk e v e v q s p B T k s T k p D B D B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎰⎰ωωωωωωωω ,其中⎰⎰∞∞--=02031d 1d x x e x x e x x B 。

固体物理答案

第六章6.1 一维周期场中电子的波函数()x k ψ应满足布洛赫定理,若晶格常数为a ,电子的波函数为(1)()x a x k πψsin =(2)()x a i x k πψ3cos=(3)()()∑∞-∞=-=i k a x f x ψ (f 是某个确定的函数)试求电子在这些状态的波矢 解:布洛赫函数为()()x e a x k ika k ψψ=+ (1)x ax aa x aππππsin)sin()(sin-=+=+x ae a x aika ππsin)(sin=+ 1-=∴ika e ,π±=ka ,ak π±=(2)()x a i x a i a x a i ππππ3cos 33cos 3cos-=⎪⎭⎫⎝⎛+=+ 同理,1-=∴ikae,π±=ka ,ak π±=(3)()[]∑∑∞-∞=∞-∞=--=+- a x f a a x f )1(()()∑∑∞-∞=∞-∞=-=-=a x f a x f '' 此处1'-= ,1=ika e ,π20或=ka ,ak π20或= 6.2已知一维晶格中电子的能带可写成()⎪⎭⎫⎝⎛+-=ka ka ma k E 2cos 81cos 8722 ,式中a 是晶格常数,m 是电子的质量,求(1)能带的宽度,(2)电子的平均速度,(3) 在带顶和带底的电子的有效质量解:能带宽度为 m i n m a x E E E -=∆, 由极值条件 ()0=dkk dE , 得0cos sin 21sin 2sin 41sin =-=-ka ka ka ka ka 上式的唯一解是0sin =ka 的解,此式在第一布里渊区内的解为ak π或0=当k =0时,()k E 取极小值min E ,且有()00min ==E E当a k π=时,()k E 取极大值max E ,且有22max 2maa E E=⎪⎭⎫ ⎝⎛=π 由以上的可得能带宽度为22minmax 2ma E E E =-=∆(2)电子的平均速度为()⎪⎭⎫⎝⎛-==ka ka ma dk k dE v 2sin 41sin 1(3)带顶和带底电子的有效质量分别为 m ka ka m k E m a k ak ak 322cos 21cos 122-=⎪⎭⎫ ⎝⎛-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂=±=-±=±=*πππ12200201cos cos 222k k mm ka ka m E k -*==⎡⎤⎢⎥⎛⎫==-=⎢⎥ ⎪∂⎝⎭⎢⎥⎢⎥∂⎣⎦6.2 一维周期势场为()()[]⎪⎩⎪⎨⎧-≤≤+-+≤≤---=bna x b a n b na x b na na x b mW x V )1(021222当当,其中b a 4= ,W 为常数,求此晶体第一及第二禁带宽度解:据自由电子近似得知禁带宽度的表示式为 n g V E 2= ,其中n V 是周期势场()x V 傅立叶级数的系数,该系数为:()dx e x V a V nx ai a a n π22/2/1--⎰=求得,第一禁带宽度为()dx e x V a V E xa i a a g π22/2/11221--⎰==[]dx e x b mW bnx a i bb π22222412--⎰-=[]dx x b x b mW bbb ⎪⎭⎫⎝⎛-=⎰-2cos 2412222π3228πb mW =第二禁带宽度为()dx e x V a V E xa i a a g π42/2/21221--⎰==[]dx e x b mW bx a i bb π--⎰-=2222412[]dx x b x b mW bbb ⎪⎭⎫⎝⎛-=⎰-πcos 2412222222πb mW =6.3 用紧束缚近似计算最近邻近似下一维晶格s 态电子能带,画出()k E ,()k m *与波矢的关系,证明只有在原点和布里渊区边界附近,有效质量才和波矢无关。

黄昆版固体物理学课后答案解析答案 (3)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

固体物理答案第六章

第六章自由电子论和电子的输运性质习题1. 一金属体积为V ,电子总数为N ,以自由电子气模型(1)在绝热条件下导出电子气的压强为 其中.5300F NE U = (2)证明电子气体的体积弹性模量【解答】(1)在绝热近似条件下,外场力对电子气作的功W 等于系统内能的增加dU ,即式中P 是电子气的压强.由上式可得由此得到(2将2.证明费米能其中n 作变量变换则有即T k E B F e +1由上式解得3.证明解法二:电子总数由以上两式解得4.由同种金属制做的两金属块,一个施加30个大气压,另一个承受一个大气压,设体积弹性模量为21110m N ,电子浓度为328105m ⨯,计算两金属块间的接触电势差.【解答】两种金属在同一环境下,它们的费密能相同,之间是没有接触电势差的.但当体积发生变化,两金属的导电电子浓度不同,它们之间将出现接触电势差.设压强为0时金属的费密能为F E ,金属1受到一个大气压后,费密能为1F E ,金属2受到30个大气压后,费密能为2F E ,则由《固体物理教程》(6.25)式可知,金属1与金属2间的接触电势差由上边第3题可知由《固体物理教程》(2.10)式可知,固体的体积变化V ∆与体积弹性模量K 和压强P 的关系为所以两金属的接触电势差将代入两金属的接触电势差式子,得5.若磁场强度B 沿z 轴,电流密度沿x 轴,金属中电子受到的碰撞阻力为P P ,/τ-是电子的动量,试从运动方程出发,求金属的霍尔系数.【解答】电子受的合力 ()().B v mv B v P dt P d F ⨯+--=⨯+--==ετετ(1) 由于电子受的阻力与它的速度成正比,所以电场力与阻力平衡时的速度是最高平均速度,此时电子的加速度变为0,(1)式化成().B v me v ⨯+-=ετ(2) 因为电流的方向沿x 轴,平衡后,电子沿z 轴方向和y 轴的速度分量为0.因此,由(2)式得,x x m e v ετ-=(3)0=y ε=图6.3x j =和(5R H 得到 R H 其中l 令则(W 式中F τ是费密面上的电子的平均自由时间.电子的平均自由时间F τ和平均速度F v 与平均自由程l的关系是而平均速度由下式求得于是得到 ()2102223F B mE T k nl k π=.7.设沿xy 平面施加一电场,沿z 轴加一磁场,试证,在一级近似下,磁场不改变电子的分布函数,并用经典力学解释这一现象. 【解答】在只有磁场和电场情况下,《固体物理教程》(6.47)式化成由上式可解得考虑到外界磁场和电场对电子的作用远小于原子对电子的作用,必有f k ∇0f k ∇≈.于是有相当好的近似所以 可见在一级近似下,磁场对分布函数并无贡献.由经典理论可知,电子在磁场中运动受到一洛伦兹力B v e ⨯-,该力与电子的运动方向v 垂直,它只改变电子的运动方向,并不增加电子的能量,即不改变电子的能态.也就是说,从经典理论看,磁场不改变电子的分布函数. 8.0f 是平衡态电子分布函数,证明【解答】金属中导电电子处于平衡态时,其分布函数 ()110+=-T k E E B F e f .令则有 9.立方晶系金属,电流密度j 与电场ε和磁场B 的关系是εεβεαεσ2B B B B j -•+⨯+= ,式中 其中10.其中B A >(1(2(1所以 *m F v = A B 于是因为B A >,所以A 金属电子的费米速度大.(2)如果外电场沿x 方向,则x 方向的电场x ε与电流密度x j 的关系(参见《固体物理教程》6.84式)为上式积分沿费米面进行.将上式与比较,可得立方晶系金属的电导率 在费米面是一球面的情况下,上式积分为其中利用了v E k =∇.将关系式代入电导率式得可见B 金属的电导率大.11.求出一维金属中自由电子的能态密度、费米能级、电子的平均动能及一个电子对比热的贡献.【解答】设一维一价金属有N 个导电电子,晶格常数为α.如图6.4所示,在dE E E +-图6.4一维金属中自由电子的能带 能量区间波矢数目为利用自由电子的能量于波矢的关系可得dE E E +-能量区间的量子态数目由此得到能态密度其中=E F E ,所以能量E 图6.5其中能量其中平均一个电子所具有的能量利用分布积分,得到利用《固体物理教程》(6.7)和(6.10)两式得平均一个电子对热容量的贡献为13.证明热发射电子垂直于金属表面运动的平均动能为T k B ,平行于表面运动的平均动能也是T k B .【解答】当无外加电场,温度也不太高时,金属中的价电子是不会脱离金属的,因为金属中的价电子被原子实紧紧的吸引着,电子处于深度为0E 一势阱中.如图6.6所示,要使最低能级上的电子逃离金属,它至少要从外界获得0E 的能量.要使费米面上的电子逃离金属,它至少要从外界获得()F E E -=0ϕ的能量.为方便计,取一单位体积的金属.在k 空间内k d范围内的电子数目图6.6深度为0E 势阱其中转换成速度空间,则在v d v v+→区间内的电子数目 式中利用了关系对于能脱离金属的热发射电子,其能量E 必满足()ϕ>-F E E 对大多数金属来说,T k B >>ϕ,所以必有 式中已取于是设金属表面垂直于z 轴,热发射电子沿z 轴方向脱离金属,则要求而速度分量v 利用积分公式得到利用积分公式得到 0E 因为在v 利用积分公式14.其中(0F E N 式中于是由此可得(),100F F E N E =--- 15.每个原子占据的体积为3a ,绝对零度时价电子的费密半径为计算每个原子电子数目.【解答】由《固体物理教程》(6.4)式可知,在绝对零度时导电电子的费密半径现在已知一金属导电电子的费密半径所以,该金属中导电电子的密度 3a 是一个原子占据的体积,由此可知,该金属的原子具有两个价电子.16.求出绝对零度时费密能0F E 、电子浓度n 、能态密度()0F E N及电子比热e V C 与费密半径0F k 的关系. 【解答】绝对零度时电子的费密半径电子浓度n 与费密半径的关系是 由《固体物理教程》(6.3)式可得到绝对零度时电子的费密能与费密半径的关系为由《固体物理教程》(5.103)式可知,自由电子的能态密度是由此可得由《固体物理教程》(6.13)式可知平均一个电子对热容量的贡献为因为所以一个电子的热容与费密半径的关系为17.【解答】F k 将漂移速度将代入上式,近的少数电子由于n <<'18.则A 由上式的到齐次方程的通解为 τt e B - .电子漂移速度满足的方程的解为 d v =τt e B - ().10t i e i m e ωωττε+-当电子达到稳定态后,上式右端的第一项趋于0.于是d v =().10t ie i m e ωωττε+- 按照经典理论,电流密度j 与漂移速度d v ,电导σ和电场强度ε的关系为j =()().102εωσωτεω=+=-t i d e t i m ne v ne 由上式得其中如果设电场为则有19.求出立方晶系金属的积分1P 、32P P和 【解答】由《固体物理教程》(6.119),(6.120)和(6.123)三式得以上三式中的面积分是在一个等能面上进行,对于等能面是球面的情况,面积分的值E =因为另外21.,方向与温与正向温差电流反向,条件更不可少其实此问题用6.19题的结果也可证明.忽略费密能随温度的变化,则将6.19题的21P P 和代入上式,得22.当金属中存在温度梯度时,电子分布函数()x f 可以看成是平衡分布函数0f 的刚性平移,证明平移量为.【解答】 当金属中存在温度梯度时,导电子的分布函数变成了(参见《固体物理教程》6.116式) 其中v 是电子的平均速度,n 是电子浓度,ε是温差电场.将代入上式得到将上式与下式比较得到上式表明,当金属中存在温度梯度时,导电电子的分布函数()k f 可看成平衡分布函数()k f0在波矢空间里的刚性平移,平移量为。

固体物理1-6章习题及答案


立方元素晶体的衍射规律. 18. 金刚石和硅、锗的几何结构因子有何异同?
[解答] 取几何结构因子的(1.44)表达式
t
Fhkl =
f e i2n (hu j +kvj +lw j ) j
j =1
,
其中 uj,vj,wj 是任一个晶胞内,第 j 个原子的位置矢量在 a, b, c 轴上投影的系数. 金刚石和 硅、锗具有相同的结构, 尽管它们的 a, b, c 大小不相同, 但第 j 个原子的位置矢量在 a, b, c
1 2
0
)(
00
1 2
)(
1 2
1 2
1 2

由(1.45)式可求得衍射强度 Ihkl 与衍射面(hkl)的关系
Ihkl={ f K+ [ 1+cos n (h + k) + cosn (k + l) + cosn (l + h)] +
fCl- [cosnh + cosnk + cosnl + cosn (h + k + l)]}
[解答]
正格子与倒格子互为倒格子. 正格子晶面(h1h2h3)与倒格式 K h = h1 b1 +h2 b2 +h3 b3 垂直,
则倒格晶面(l1l2l3)与正格矢 Rl = l1 a1 + l2 a 2 + l3 a3 正交. 即晶列[l1l2l3]与倒格面(l1l2l3) 垂直. 9. 9. 在结晶学中, 晶胞是按晶体的什么特性选取的?
[解答] 对于面心立方元素晶体, 对应密勒指数(100)的原胞坐标系的面指数可由(1.34)式求得
为 ( 111 ), p’=1. 由 (1.33) 式 可 知 , K h = 2K hkl ; 由 (1.16) 和 (1.18) 两 式 可 知 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章自
由电子论和电子的输运性质习题
1. 一金属体积为V ,电子总数为N ,以自由电子气模型
(1)在绝热条件下导出电子气的压强为 其中.5
300F NE U = (2)证明电子气体的体积弹性模量
【解答】
(1)在绝热近似条件下,外场力对电子气作的功W 等于系统内能的增加dU ,即
式中P 是电子气的压强.由上式可得
由此得到
(2将
2.证明费米能
其中n 作变量变换
则有

T k E B F e +1由上式解得
3.证明
解法二:电子总数
由以上两式解得
4.由同种金属制做的两金属块,一个施加30个大气压,另一个承受一个大气压,设体积弹性模量为21110m N ,电子浓度为328105m ⨯,计算两金属块间的接触电势差.
【解答】两种金属在同一环境下,它们的费密能相同,之间是没有接触电势差的.但当体积发生变化,两金属的导电电子浓度不同,它们之间将出现接触电势差.设压强为0时金属的费密能为F E ,金属1受到一个大气压后,费密能为1F E ,金属2受到30个大气压后,费密能为2F E ,则由《固体物理教程》(6.25)式可知,金属1与金属2间的接触电势差
由上边第3题可知
由《固体物理教程》(2.10)式可知,固体的体积变化
V ∆与体积弹性模量K 和压强P 的关系为
所以
两金属的接触电势差

代入两金属的接触电势差式子,得
5.若磁场强度B 沿z 轴,电流密度沿x 轴,金属中电子受到的碰撞阻力为P P ,/τ-是电子的动量,试从运动方程出发,求金属的霍尔系数.
【解答】
电子受的合力 ()().B v mv B v P dt P d F ⨯+--=⨯+--==ετ
ετ(1) 由于电子受的阻力与它的速度成正比,所以电场力与阻力平衡时的速度是最高平均速度,此时电子的加速度变为0,(1)式化成
().B v m
e v ⨯+-=ετ(2) 因为电流的方向沿x 轴,平衡后,电子沿z 轴方向和y 轴的速度分量为0.因此,由(2)式得
,x x m e v ετ-
=(3)
0=y ε=图6.3x j =和(5R H 得到 R H 其中l 令
则(W 式中F τ是费密面上的电子的平均自由时间.电子的平均自由时间F τ和平均速度F v 与平均自由程l
的关系是
而平均速度由下式求得
于是得到 ()
2102223F B mE T k nl k π=.
7.设沿xy 平面施加一电场,沿z 轴加一磁场,试证,在一级近似下,磁场不改变电子的分布函数,并用经典力学解释这一现象. 【解答】
在只有磁场和电场情况下,《固体物理教程》(6.47)式化成
由上式可解得
考虑到外界磁场和电场对电子的作用远小于原子对电子的作用,必有
f k ∇0f k ∇≈.
于是有相当好的近似
所以 可见在一级近似下,磁场对分布函数并无贡献.由经典理论可知,电子在磁场中运动受到一洛伦兹力B v e ⨯-,该力与电子的运动方向v 垂直,它
只改变电子的运动方向,并不增加电子的能量,即不改变电子的能态.也就是说,从经典理论看,磁场不改变电子的分布函数. 8.0f 是平衡态电子分布函数,证明
【解答】
金属中导电电子处于平衡态时,其分布函数 ()110+=
-T k E E B F e f .

则有 9.立方晶系金属,电流密度j 与电场ε和磁场B 的关系是
εεβεαεσ2B B B B j -•+⨯+= ,
式中 其中
10.其中B A >(1(2(1所以 *m F v = A B 于是
因为B A >,所以A 金属电子的费米速度大.
(2)如果外电场沿x 方向,则x 方向的电场x ε与电流密度x j 的关系(参见《固体物理教程》6.84式)为
上式积分沿费米面进行.将上式与
比较,可得立方晶系金属的电导率 在费米面是一球面的情况下,上式积分为
其中利用了v E k =∇.将关系式
代入电导率式得
可见B 金属的电导率大.
11.求出一维金属中自由电子的能态密度、费米能级、电子的平均动能及一个电子对比热的贡献.
【解答】
设一维一价金属有N 个导电电子,晶格常数为
α.如图6.4所示,在dE E E +-
图6.4一维金属中自由电子的能带 能量区间波矢数目为
利用自由电子的能量于波矢的关系
可得dE E E +-能量区间的量子态数目
由此得到能态密度
其中=E F E ,所以能量E 图6.5其中
能量其中平均一个电子所具有的能量
利用分布积分,得到
利用《固体物理教程》(6.7)和(6.10)两式得
平均一个电子对热容量的贡献为
13.证明热发射电子垂直于金属表面运动的平均动能为T k B ,平行于表面运动的平均动能也是T k B .
【解答】
当无外加电场,温度也不太高时,金属中的价电子是不会脱离金属的,因为金属中的价电子被原子实紧紧的吸引着,电子处于深度为0E 一势阱中.如图6.6所示,要使最低能级上的电子逃离金属,它至少要从外界获得0E 的能量.要使费米面上的电子逃离金属,它至少要从外界获得
()
F E E -=0ϕ的能量.
为方便计,取一单位体积的金属.在k 空间内k d
范围内的电子数目
图6.6深度为0E 势阱
其中
转换成速度空间,则在v d v v
+→区间内的电子数目 式中利用了关系
对于能脱离金属的热发射电子,其能量E 必满足
()ϕ>-F E E 对大多数金属来说,T k B >>ϕ,所以必有 式中已取
于是
设金属表面垂直于z 轴,热发射电子沿z 轴方向脱离金属,则要求
而速度分量
v 利用积分公式得到
利用积分公式得到 0E 因为在v 利用积分公式14.其中(0F E N 式中
于是
由此可得
()
,100F F E N E =--- 15.每个原子占据的体积为3
a ,绝对零度时价电子的费密半径为
计算每个原子电子数目.
【解答】
由《固体物理教程》(6.4)式可知,在绝对零度时导电电子的费密半径
现在已知一金属导电电子的费密半径
所以,该金属中导电电子的密度 3a 是一个原子占据的体积,由此可知,该金属的原子具有两个价电子.
16.求出绝对零度时费密能0F E 、电子浓度n 、能态密度()0F E N
及电子比热e V C 与费密半径0
F k 的关系. 【解答】
绝对零度时电子的费密半径
电子浓度n 与费密半径的关系是 由《固体物理教程》(6.3)式可得到绝对零度时电子的费密能与费密半径的关系为
由《固体物理教程》(5.103)式可知,自由电子的能态密度是
由此可得
由《固体物理教程》(6.13)式可知平均一个电子对热容量的贡献为
因为
所以一个电子的热容与费密半径的关系为
17.
【解答】F k 将漂移速度

代入上式,近的少数电子由于n <<'18.则A 由上式的到
齐次方程
的通解为 τt e B - .
电子漂移速度满足的方程的解为 d v =τt e B - ().10t i e i m e ωωττε+-
当电子达到稳定态后,上式右端的第一项趋于0.于是
d v =().10t i
e i m e ωωττε+- 按照经典理论,电流密度j 与漂移速度d v ,电导σ和电场强度ε的关系为
j =()
().102εωσωτεω=+=
-t i d e t i m ne v ne 由上式得
其中
如果设电场为
则有
19.求出立方晶系金属的积分1P 、32P P
和 【解答】
由《固体物理教程》(6.119),(6.120)和(6.123)三式得
以上三式中的面积分是在一个等能面上进行,对于等能面是球面的情况,面积分的值
E =因为另外
21.,方向与温
与正向温差电流
反向,条件
更不可少
其实此问题用6.19题的结果也可证明.忽略费密能随温度的变化,则
将6.19题的21P P 和代入上式,得
22.当金属中存在温度梯度时,电子分布函数
()x f 可以看成是平衡分布函数0f 的刚性平移,证明平移量为.
【解答】 当金属中存在温度梯度时,导电子的分布函数变成了(参见《固体物理教程》6.116式) 其中v 是电子的平均速度,n 是电子浓度,ε是温差电场.将
代入上式得到将上式与下式比较得到
上式表明,当金属中存在温度梯度时,导电电子的分布函数()k f 可看成平衡分布函数()k f
0在波矢空间里的刚性平移,平移量为。

相关文档
最新文档