萃取过程的计算
合集下载
8.1.3 萃取过程计算

E2-R1=E3-R2 E3-R2=E4-R3 E N-RN-1=S-RN
E1-F=E2-R1=E3-R2==S-RN=D
即每一级离去的萃取相与进来的萃余相之差为常数D 在三角形相图上点D为F与E1、R1与E2、R2与E3、 RN与S的差点。
B与S部分溶解时多级逆流萃取的图解
A
E1-F=E2-R1=E3-R2==S-RN=D
Y1
E1 E2
P
Y2
S
XN
X2
X1
XF
1 XF 1 所需的理论级为 N= 1 ln 1 ln A A X A
N
式中A=mS/B称为萃取因数 吸收时所需的理论塔板数为 式中A=L/mG吸收因数
1 yb m xa 1 1 N= ln 1 ln A A y a m xa A
溶质A:Ri 1 xi 1,A Ei 1 yi 1,A Ri xi,A Ei yi,A 溶剂S:Ri 1 xi 1,S Ei 1 yi 1,S Ri xi,S Ei yi,S
对平衡级内传质过程的特征方程为:
分配曲线:yi f xi 溶解度曲线:xm,s xm, A 溶解度曲线的左支
1 2 E F , R F 3 3
E M
S
温度对互溶度的影响
温度越低,两相区越大,对萃取越有利。
b. 解析法
理论级指溶质A在萃取相与萃余相中互成平衡
R i-1,X i-1 E i,Yi
i
R i,X i
Ei+1,Yi+1
物料衡算:
总:Ri 1 Ei 1 Ri Ei
ym,s ym, A 溶解度曲线的右支
E1-F=E2-R1=E3-R2==S-RN=D
即每一级离去的萃取相与进来的萃余相之差为常数D 在三角形相图上点D为F与E1、R1与E2、R2与E3、 RN与S的差点。
B与S部分溶解时多级逆流萃取的图解
A
E1-F=E2-R1=E3-R2==S-RN=D
Y1
E1 E2
P
Y2
S
XN
X2
X1
XF
1 XF 1 所需的理论级为 N= 1 ln 1 ln A A X A
N
式中A=mS/B称为萃取因数 吸收时所需的理论塔板数为 式中A=L/mG吸收因数
1 yb m xa 1 1 N= ln 1 ln A A y a m xa A
溶质A:Ri 1 xi 1,A Ei 1 yi 1,A Ri xi,A Ei yi,A 溶剂S:Ri 1 xi 1,S Ei 1 yi 1,S Ri xi,S Ei yi,S
对平衡级内传质过程的特征方程为:
分配曲线:yi f xi 溶解度曲线:xm,s xm, A 溶解度曲线的左支
1 2 E F , R F 3 3
E M
S
温度对互溶度的影响
温度越低,两相区越大,对萃取越有利。
b. 解析法
理论级指溶质A在萃取相与萃余相中互成平衡
R i-1,X i-1 E i,Yi
i
R i,X i
Ei+1,Yi+1
物料衡算:
总:Ri 1 Ei 1 Ri Ei
ym,s ym, A 溶解度曲线的右支
5.2液液萃取过程计算

5.2-
7
5 液液萃取
5.2 液液萃取过程的计算
式中 cx 是与萃取相主体中溶质浓度成平衡的萃余相溶质浓度。
*
边界条件为: 在 z= 0: V x c xF = V x c xo − E x
dc y / dz = 0
dc x / dz = 0
dc x dz
dc y dz
(5-31) (5-32) (5-33) (5-34)
组分 k 留在萃取相的 (相对 )分数:
(5-4)
1 − ΦU =
ue − 1 ueN +1 − 1
(5-5)
1/ 2 式中: u e = [u N (u1 + 1) + 0.25] − 0.5 (5-6)
计算 ε 1 和 ε N 需要 L1、 LN, 假定两相线性分布, 由总物料衡算确定。 在塔顶:
H =∫ =
x A1
(1 − xA )lm dxA L ⋅ SK oxα (1 − xA )lm (1 − xA )( xA − x* A)
L SK oxα (1 − xA )lm
yA2 y A1
∫
xA 2
x A1
(1 − xA )lm dxA (1 − xA )( xA − x* A)
H =∫ =
(5-27)
ε
( NTU ) oy
⎤ ⎡⎛ y A1 − mx A1 ⎞ ⎟ ( ) ε ε ln ⎢⎜ 1 − + ⎥ ⎜ y − mx ⎟ A1 ⎠ ⎝ A2 ⎦ ⎣ = 1− ε
(5-28)
一般情况的积分计算采用图解法或数值积分的方法计算 (5- 19)的积分值。 二、 轴向扩散模型 活塞流模型没有考虑轴向混合或扩散, 与实际情况偏差较大。 轴向扩散模型假定: ①相际连续逆流传质传质; ②每一相中都存在着从高浓度到低浓度的传递过程, 相内的扩散通量服从 费克定律, 用连续相和分散相的轴向扩散系数两个参数描述。 萃取塔中连续相的轴向混合由扩散模型得到较好描述。但分散相的轴向混
10.3 液-液萃取过程的计算

Y1
1 2
J
3
YS
4
斜率
D Xn X n计算 ≤ X n规定 n=4
B/S XF
多级逆流萃取直角坐标图图解计算
10.3.3 多级逆流萃取的计算
二、多级逆流萃取的计算
(2) 解析法 设平衡关系为 Y 类似于逆流吸收
= KX
(B) V S (S ) ( Xn )Y2 X2(YS )
* 1 1 Y1 −Y 2 1 NT = ln[( 1 − ) + ] * ln A A Y2 − Y2 A
B 由操作线方程 Y1 − YS = − ( X1 − XF ) S
10.3.2 多级错流萃取的计算
二、多级错流萃取的计算
S XF + YS Am = KS B B X1 = 萃取 1 + Am 因子 S S ( XF + YS ) YS B 第二级: 第二级: X2 = + B (1 + Am )2 1 + Am
F MS = S MF
F R M
E
单级萃取图解
10.3.1 单极萃取的计算
二、B 与 S不互溶物系 不互溶物系
若 B与 S 完全不互溶 萃取相中不含 B,S 的量不变 萃余相中不含 S ,B 的量不变 用质量比 计算方便
XF —原料液中组分A的质量比,kgA / kgB YE —萃取相中组分A的质量比,kgA / kgS XR —萃余相中组分A的质量比,kgA / kgB YS —萃取剂中组分A的质量比,kgA / kgS
10.3.2 多级错流萃取的计算
二、多级错流萃取的计算
1. B与 S部分互溶物系 与 部分互溶物系 已知: 原料量 F 原料组成 xF 各级萃取剂用量 Si 规定: 最终萃余相组成 xn 计算:萃取级数 n 萃取级数 三角形相图 图解法
萃取过程的计算

萃取过程的计算
2. 解析法
对于原溶剂B与萃取剂S不互溶的物系,若在操作范围内,以质
量比表示的分配系数K 为常数,则平衡关系可表示为
Y=KX
(8-16
式中 Y——萃取相E中溶质A的质量比分数;
X——萃余相R中溶质A的质量比分数;
K——相组成以质量比分数表示时的分配系数。
即分配曲线为通过原点的直线。在此情况下,当错流萃取的各
萃取过程的计算
图8-14 三级错流萃取三角形坐标图解
萃取过程的计算
(3)以R1为原料液,加入纯的萃取剂S,依杠杆规则找出 两者混合点M2,按与(2)类似的方法可以得到E2和R2,此即第二 个理论级分离的结果。
(4)以此类推,直至某级萃余相中溶质的组成等于或小于规 定的组成xR为止,重复作出的联结线数目即为所需的理论级数。
(1)由已知的相平衡数据在等腰直角三角形坐标图中绘出溶解度曲线 和辅助线,如图8-11所示。
(2)在三角形坐标的AB边上根据原料液的组成确定点F,根据萃取剂 的组成确定点S(若为纯溶剂,则为顶点S),联结点F、S,则原料液与 萃取剂的混合物系点M必落在FS连线上。
萃取过程的计算
(3)由已知的萃余相组成xR,在图上确定点R,再由点R利用辅助曲 线求出点E,作R与E的联结线,显然RE线与FS线的交点即为混合液的组 成点M。
(8-12)
联立求解式(8-6)和式(8-12) 得
萃取过程的计算
同理,可得萃取液和萃余液的量E′、R′,即 上述诸式中各股物流的组成可由三角形相图直接读出。
萃取过程的计算
二、 多级错流萃取的计算
单级萃取所得的萃余相中往往还含有较多的溶质,为进一步降低萃 余相中溶质的含量,可采用多级错流萃取。其流程如图8-13所示。
5.2液液萃取过程计算

(5-1)
被萃取组分 i 在 j 平衡级上的萃取因子 ε i,j 为:
ε i, j =
mi , jV j Lj
(5-2)
Kremser 的集团法假定每一个平衡级的 ε i, j 相等, 略去下标 j。 定义 Φ E 为进料中组分 i 被萃取的分数 (相对萃取率 ), 类似 (4-36)式解吸过程 的推导: ε eN +1 − ε e l0 − l N = ΦE = (5-7) l0 − l N +1 ε eN +1 − 1
5 液液萃取
5.2 液液萃取过程的计算
5.2 液液萃取过程的计算 5.2.1 逆流萃取计算的集团法 Kremser 的集团法关联分离过程的进料和产品组成与所需级数的关系, 不 能提供各级温度与组成。
L相 传质过程 V相
i 组分 传质过程 k组分
L相
V相
组分 i 在 j 平衡级上的分配系数为:
mi , j = yi , j xi , j = vi , j / V j li , j / L j
5.24
5 液液萃取
5.2 液液萃取过程的计算
H = ∫ dz = ∫
0
z
xA 2
x A1
dxA L SK oxα (1 −Leabharlann x A )( xA − x* A)
=∫
yA2 y A1
dy A V SK oyα (1 − y A )( y* A − yA )
xA 2
(5-18)
根据相间传质的膜理论分析, 由式 (5-18)最终可推导出,
∗
x A1
yA2
1 1 − x A1 + ln 2 1 − x A2
1 1 − y A2 + ln 2 1 − y A1
化工原理-萃取过程的计算

中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中4南.5.林2 塔业式科萃技取大设学备化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
(3) 选择性系数β β=yA/xA/yB/xB=(27/7.2)/(1.5/91.4)=228.5 (4) 每公斤B需要的S量 组分B,S可视为完全不互溶 XF=xF/(1-xF)=0.35/0.65=0.5385 X1=(1-ψA)XF=(1-0.8)0.5385=0.1077 Ys=0 Y1与X1呈平衡关系 Y1=3.4X1=3.4×0.1077=0.3622 S/B=(XF-X1)/Y1=(0.5385-0.1077) /0.3622=1.176
例:4-5
4.4 其他萃取分离技术
中南林业科技大学化工原理
4.5 液—液萃取设备
根据两相的接触方式 :逐级接触式和微分接触式.
4.5.2 混合—澄清槽
优点:传质效率高,操作方便,运转稳定可靠,结构 简单,可处理含有悬浮固体的物料. 缺点:水平排列的设备占地面积大,每级内都装有搅 拌装置,液体在基建流动需泵输送,能量消耗大,设 备费及操作费都较高
BXF +SYs =SY1+BX1 B(XF-X1)=S(Y1-Ys)
中南林业科技大学化工原理
例:在25℃下以水(S)为萃取剂从醋酸(A)与氯仿(B)的混合液中 提取醋酸,已知原料液流量为1000kg/h,其中醋酸的质量百分 率为35%,其余为氯仿。用水量为800kg/h,操作温度下,E相 和R相以质量百分率表示的平衡数据列于本题附表中。 求:(1)经单级萃取后E相和R相的组成及流量;(2)若将E相和R 相中的溶剂完全脱除,再求萃取液及萃余液的组成和流量;(3) 操作条件下的选择性系数β;(4)若组分B,S可视为完全不互溶, 且操作条件下以质量比表示相组成的分配系数K=3.4,要求原 料液中溶质A的80%进入萃取相,则每公斤稀释剂B需消耗多 少公斤萃取剂S。
8-3-2萃取计算

42.14 47.21
2.18
1.02 0.44
55.97
71.80 99.56
41.85
27.18 0
附表2
xA 5.96 yA 8.75
联结线数据
10.0 15.0 14.0 21.0 19.1 27.7 21.0 32.0 27.0 40.5 35.0 48.0
解: (1)由题中数据作溶解度曲线和辅助曲线; (2)由题丙酮含量40%,确定F点位置; (3)连结FS,有杠杆规则确定M1点位置; (4)试差法求R1与E1位置:以M1点为轴,转动 联结线R1与E1,当点T恰好落在辅助曲线上时, 停止转动,此时该直线与溶解度曲线的交点就是 所求的R1与E1; (5)杠杆规则求R1的质量: 以E1为支点:
二、液—液萃取过程的计算 (一)单级萃取
单级萃取流程
实际上,对于某一个萃取分离任务,通 常已知料液量F及其组成xF,且规定了 萃余相的浓度xR ,求萃取剂用量S,萃 取相的量E和组成yE,及萃余相的量R。
也就是,已知: (1)料液量F;
P
(2பைடு நூலகம் F点相图位置;
(3)萃余相R点的位置。 (1)萃取剂用量S; 求: (2)萃余相的量R;
(3)萃取相的量E;
(4)萃取相E的相图位置。
F+S
物料衡算: 杠杆规则求 各流股的量:
M
E R
E’ R’
F+S=M=E+R
S×MS = F×MF E×ER = M×MR
(以M点为支点)
(以R点为支点)
E’×E’R’ = F×FR’ (以R’点为支点)
溶质A物料衡算:
FxF = MxM = EyE + RxR= E’yE’ + R’xR’
2.18
1.02 0.44
55.97
71.80 99.56
41.85
27.18 0
附表2
xA 5.96 yA 8.75
联结线数据
10.0 15.0 14.0 21.0 19.1 27.7 21.0 32.0 27.0 40.5 35.0 48.0
解: (1)由题中数据作溶解度曲线和辅助曲线; (2)由题丙酮含量40%,确定F点位置; (3)连结FS,有杠杆规则确定M1点位置; (4)试差法求R1与E1位置:以M1点为轴,转动 联结线R1与E1,当点T恰好落在辅助曲线上时, 停止转动,此时该直线与溶解度曲线的交点就是 所求的R1与E1; (5)杠杆规则求R1的质量: 以E1为支点:
二、液—液萃取过程的计算 (一)单级萃取
单级萃取流程
实际上,对于某一个萃取分离任务,通 常已知料液量F及其组成xF,且规定了 萃余相的浓度xR ,求萃取剂用量S,萃 取相的量E和组成yE,及萃余相的量R。
也就是,已知: (1)料液量F;
P
(2பைடு நூலகம் F点相图位置;
(3)萃余相R点的位置。 (1)萃取剂用量S; 求: (2)萃余相的量R;
(3)萃取相的量E;
(4)萃取相E的相图位置。
F+S
物料衡算: 杠杆规则求 各流股的量:
M
E R
E’ R’
F+S=M=E+R
S×MS = F×MF E×ER = M×MR
(以M点为支点)
(以R点为支点)
E’×E’R’ = F×FR’ (以R’点为支点)
溶质A物料衡算:
FxF = MxM = EyE + RxR= E’yE’ + R’xR’
萃取过程的计算

整理得
Y1
YS
B S
(X1
XF)
二、多级错流萃取的计算
第 n 级作溶质 A的质量衡算
Yn
YS
B S
(Xn
X n1)
操作线方程
斜率 过点
B S
( X n1,YS )
直角坐标图图解法
Y1
Y2 Y3
YS
N
M
斜率 –B/S
L
X3 X2
X1
XF
x x n计算 ≤ n规定
n=3
多级错流萃取直角坐标图图解计算
E
yE
xF
F
xR
R R
xR
E M
单级萃取图解
yE
纯溶剂
一、B 与 S 部分互溶物系
M FS RE
MF S Leabharlann F×MSR M E
E M RM RE
E F RF R E
Smin
F
FG GS
R F E
Smax
F
FH HS
Smin S Smax
多级错流萃取流程示意图
多级错流萃取的总溶剂用量为各级溶剂用量 之和,当各级溶剂用量相等时,达到一定的分离 程度所需的总溶剂用量最少。
二、多级错流萃取的计算
1. B与 S部分互溶物系 已知: 原料量 F
原料组成 xF
各级萃取剂用量 Si
规定:最终萃余相组成 xn
计算: 萃取级数 n
三角形相图图解法
F
F xF
1
E1 y1
R1 x1 E2 y2
x R x 2 2
Y1
YS
B S
(X1
XF)
二、多级错流萃取的计算
第 n 级作溶质 A的质量衡算
Yn
YS
B S
(Xn
X n1)
操作线方程
斜率 过点
B S
( X n1,YS )
直角坐标图图解法
Y1
Y2 Y3
YS
N
M
斜率 –B/S
L
X3 X2
X1
XF
x x n计算 ≤ n规定
n=3
多级错流萃取直角坐标图图解计算
E
yE
xF
F
xR
R R
xR
E M
单级萃取图解
yE
纯溶剂
一、B 与 S 部分互溶物系
M FS RE
MF S Leabharlann F×MSR M E
E M RM RE
E F RF R E
Smin
F
FG GS
R F E
Smax
F
FH HS
Smin S Smax
多级错流萃取流程示意图
多级错流萃取的总溶剂用量为各级溶剂用量 之和,当各级溶剂用量相等时,达到一定的分离 程度所需的总溶剂用量最少。
二、多级错流萃取的计算
1. B与 S部分互溶物系 已知: 原料量 F
原料组成 xF
各级萃取剂用量 Si
规定:最终萃余相组成 xn
计算: 萃取级数 n
三角形相图图解法
F
F xF
1
E1 y1
R1 x1 E2 y2
x R x 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、单级萃取过程
部分互溶物系
图解法( 已知 xF、F、S 求 x’ )
A
①作溶解度曲线及辅助线 ②确定F、S点
③由杠杆定律确定M
④由M及辅助线试差法确定R、E ⑤由R、E及SE、SR定R’、E’ ⑥由△确定x’
E’
F M R’ R
B S
E
二、单级萃取过程
部分互溶物系
图解法( 已知 xF、F、 x’ 求 S及E相和R相的量、E 相组成 )
原溶剂B
yB kB xB
yA xA
E
R
k值愈大,萃取分离的效果愈好,其值随温度和组成而变
4
如第Ⅰ类物系,一般 k值随温度的升高或溶质组成的增 大而降低。一定温度下,仅当溶质组成范围变化不大时, k 值才可视为常数。 对于萃取剂S与原溶剂B互不相溶的物系,溶质在两液相 中的分配关系与吸收中的类似,即
' ' '
y E xR
'
R F E
二、单级萃取过程
B、S完全不互溶
适用于萃取剂与稀释剂互溶度很小,且在操作范围内溶质组 分对 B、S 的互溶度又无明显影响的体系。
Ⅰ 已知F ,xF 及 Y0,规定萃余液组成x,求S用量。 Ⅱ 已知F ,xF,Y0及 S 用量,求萃余液组成x’
二、单级萃取过程——完全不互溶物系
物料衡算:
BX F SY0 BX SY
S (Y Y0 ) B( X F X )
操作线方程
B Y X-X F Y0 S
二、单级萃取过程——完全不互溶物系
物料衡算:
BX F SY0 BX SY
S (Y Y0 ) B( X F X )
Y
Y1
Y2
B X 1-X F Y0 S
B X 2-X 1 Y0 S
Yi
B X i-X i-1 Y0 S
三、多级错流萃取过程- 作分配曲线 ② 作操作线
Yi B X i-X i-1 Y0 S
酮的含量降到5%,求所需要的理论级数和萃余相、
萃取相的流量。在25℃下的平衡数据列于表11-2中。
(2)每次用50kg/h纯萃取剂进行两级错流萃取时所得的最
终萃余相的流量及其中醋酸的组成; (3)上述两种萃取操作的萃余率。
例题4
原料液为含丙酮20%(质量,下同)的水溶液,其 流量为800kg/h。现以纯三氯乙烷为萃取剂,在25℃ 下采用多级错流萃取过程从原料液中萃取丙酮,每一 级的三氯乙烷用量为320kg/h。要求最终萃余相中丙
二、单级萃取过程
流程:
萃取剂 S, y0 原料液F,
xF
萃取相
E, yA
脱除 SE 萃取液 E’, y’A
萃余相 R,
萃余液
脱除 SR R’,
xA
x’A
已知原料液的处理量、组成、萃取剂的用量 所得产品的量和组成 单级萃取操作 已知原料液的处理量、组成、规定萃余相的组成
计算溶剂用量、E相及R相得量、E相组成
操作线方程
Y0
B Y X-X F Y0 S
0
XF
X
—— 单级萃取操作的操作线方程
操作线方程在Y-X坐标图上为过点(XF,Y0),斜率为-B/S 的直线
二、单级萃取过程——完全不互溶物系
图解法(已知XF、F、Y0,分离要求X,求S )
①作分配曲线 ②由X确定点b,由(X,Y0)确定点a ③连接ab,该线斜率为-B/S
解析法(平衡线为直线Y=KX)
B Y 操作线: (X X F ) Y0 S
Y KX
交点: 令
B Y (X X F ) Y0 S
S X F Y0 B X S 1 K B
S K B
表示达平衡后的萃取相中溶质的量与萃 余相中溶质的量之比,称为萃取因数。
二、单级萃取过程——完全不互溶物系
(2)试求与组成为25%醋酸、1%水、其余为苯的液相呈平衡的另一
液相的组成,并求出醋酸在两平衡液相中的分配系数KA的数值。
A
B
S
第三节 萃取过程的计算
一、计算任务 二、单级萃取过程 三、多级错流萃取过程
四、多级逆流萃取过程
一、计算任务
分类(接触方式):
(1)级式接触式:单级,多级错流,多级逆流 (2)连续(微分)接触式 计算任务(平衡关系已知): (1)给定理论级数及分离要求,求溶剂用量S (2)给定溶剂用量及分离要求,求理论级数NT (3)给定理论级数及溶剂用量,求E’及R’组成
相平衡数据表
氯仿层(R相) (wt%) 醋酸 水 0.00 0.99 醋酸 0.00 水 99.16 醋酸 27.65 5.2 水 醋酸 50.56 水 31.11 水层(E相) (wt%) 氯仿层(R相) (wt%) 水层(E相) (wt%)
6.77
1.38
25.10
73.69
32.08
7.93
Y1
分配曲线
b
-B/S
Y0 0
④由斜率-B/S确定S
a
X
XF
二、单级萃取过程——完全不互溶物系
图解法(已知XF、F、Y0,萃取剂用量S,求X)
分配曲线
①作分配曲线
b
Y1
②由(XF,Y0)确定点a
③由点a及斜率-B/S作操作线ab
-B/S
Y0 0
交分配曲线于点b
④由点b坐标确定X
a
X
XF
二、单级萃取过程——完全不互溶物系
S
Rmin
二、单级萃取过程
单级萃取的物料衡算
部分互溶物系
F+S=E+R=M
各股流量由杠杆定律求得
MF S F MS MR EM RE E F
'
RF RE
' '
'
对单级萃取装置作溶质A的衡算
FxF SyS EyE RxR MxM
E E
' '
M xM x R F xF xR y E xR
A
R3 R2 R1
E3 E2
E1
B
R0
E0
S
A A
A
E0 R0
A
E2 R2 E3 R3
E1 R1
2
A
临界混熔点
萃取相
萃余相
P
辅助曲线
B L
J
S
3
(3)分配系数和分配曲线
分配系数 一定温度下,某组分在互相平衡的E相与R相中的组成 之比称为该组分的分配系数,以 K表示,即
溶质A
yA kA xA
中提取醋酸。已知原料液处理量为2000kg/h,用水量为1600kg/h。操作温 度下,E相和R相以质量分数表示的平衡数据如下页附表所示。试求:
(1)单级萃取后E相和R相的组成和流量;
(2)将E相和R相中的萃取剂完全脱除后的萃取液和萃余液的组成和流量? (3)操作条件下的选择性系数; (4)若组分B、S可视为完全不互溶,且操作条件下以质量比表示相组成的分配 系数K=3.4,要求原料液中的溶质A有80%进入萃取相,则每千克原溶剂B 需要消耗多少千克的萃取剂S。
所以
6
A
P
萃取相
yA
分配曲线
yAP
P
N
y=x
yAE
B L
萃余相
S
x AR
xA
7
萃取过程在三角形相图上的表示
E RF R E F
Emax
E
E R F
S MF F MS
F R
●
E R
E MR R ME
M
8
课前思考
1、A、B、S、E、R、E’、R’、F、xF、 xA、 yA、 X、Y、kA、β的含义? 2、溶解度曲线?联结线(共轭线)?临界混溶点? 辅助线?
M2 M3
由xn<x给定求定NT
三、多级错流萃取过程 –完全不互溶物系
操作线方程(推导)
M1=F+S=E1+R1
M2=R1 + S =E2+R2 Mi=Ri-1 + S =Ei+Ri
BX F SY0 BX1 SY1 BX1 SY0 BX 2 SY2 BX i-1 SY0 BX i SYi
溶解度曲线可通过下述实验方法得到:
在一定温度下,将组分B与组分S以适当比例相混合,使其总组成位于 两相区,设为M,则达平衡后必然得到两个互不相溶的液层,其相点为 R0、E0。 在恒温下,向此二元混合液中加入适量的溶质A并充分混合,使之达到 新的平衡,静置分层后得到一对共轭相,其相点为R1、E1,然后继续加 入溶质A,重复上述操作,即可以得到n+1对共轭相的相点Ri、Ei (i=0,1,2,……n),当加入A的量使混合液恰好由两相变为一相时,其组成 点用K表示,K点称为混溶点或分层点。 联结各共轭相的相点及K点的曲线即为实验温度下该三元物系的溶解 度曲线。 若组分B与组分S完全不互溶,则点R0与E0分别与三角形顶点B及顶点S 1 相重合。
三、多级错流萃取过程——部分互溶物系
图解法( 以Ⅲ为例: 已知 xF、F、 S, NT 求x’ ) ①作溶解度曲线(辅助线!) ② 确定F、S点 ③由杠杆定律确定M1
A
④由M1及辅助线定R1、E1 ⑤由R1、S定M2 ⑥由M2及辅助线定R2、E2,…
⑦由RN及S定x’
F
M1
E1 E2 E3
S
B
R1 R2 R3
Y KX
E
A+S A+B
R 式中 Y——萃取相E中溶质A的质量比组成; X——萃余相R中溶质A的质量比组成; K ——相组成以质量比表示时的分配系数。