萃取过程的计算

合集下载

4章萃取3第二节萃取过程的流程和计算

4章萃取3第二节萃取过程的流程和计算
第二节 萃取过程的流程和计算
4-2-0 萃取过程概述
中 国 矿 业 大 学 化 工 学 院 化 工 系
萃取设备可以分为“级式” 萃取设备可以分为“级式”和“连续式”两类。对于前 连续式”两类。 者,既可以进行间歇操作也可以进行连续操作, 既可以进行间歇操作也可以进行连续操作, 其主要计算是求所需的理论级数 相当于 其主要计算是求所需的理论级数(相当于 T);后者计算传质 理论级数 相当于N ;后者计算传质 单元数(NOE)。 单元数 。 因为一个实际萃取级达不到一个理论级的分离能力, 因为一个实际萃取级达不到一个理论级的分离能力,所 理论级的分离能力 以要用“级效率”予以校正。级效率通常是由实验测得。 以要用“级效率”予以校正。级效率通常是由实验测得。
B, Xn-1
n 级
S,Yn
SYS + BX n1 = SYn + BX n
B B Yn = Xn + (Ys + Xn1) S S
S,YS
B, Xn
(4-15)
4-15为B,S完全不互溶时的操作线方程 是斜率为-B/S,通过点(Xn-1,Ys)的直线 且当n=1时, Xn-1=XF
中 国 矿 业 大 学 化 工 学 院 化 工 系
Rn ↑ Rn
E1
S↓
E1
S↑
2.级间的物衡 级间的物衡
E1'
中 国 矿 业 大 学 化 工 学 院 化 工 系
F 1 E1
R1 2 E2
R2 3 E3
Rn-1 N En
Rn S R n'
第1级:F+E2=E1+R1 级 第2级:R1+E3=E2+ R2 级 第n级:Rn-1+S=En+ Rn 级 …

8.1.3 萃取过程计算

8.1.3 萃取过程计算
E2-R1=E3-R2 E3-R2=E4-R3 E N-RN-1=S-RN
E1-F=E2-R1=E3-R2==S-RN=D
即每一级离去的萃取相与进来的萃余相之差为常数D 在三角形相图上点D为F与E1、R1与E2、R2与E3、 RN与S的差点。
B与S部分溶解时多级逆流萃取的图解
A
E1-F=E2-R1=E3-R2==S-RN=D
Y1
E1 E2
P
Y2
S
XN
X2
X1
XF
1 XF 1 所需的理论级为 N= 1 ln 1 ln A A X A
N

式中A=mS/B称为萃取因数 吸收时所需的理论塔板数为 式中A=L/mG吸收因数
1 yb m xa 1 1 N= ln 1 ln A A y a m xa A
溶质A:Ri 1 xi 1,A Ei 1 yi 1,A Ri xi,A Ei yi,A 溶剂S:Ri 1 xi 1,S Ei 1 yi 1,S Ri xi,S Ei yi,S
对平衡级内传质过程的特征方程为:
分配曲线:yi f xi 溶解度曲线:xm,s xm, A 溶解度曲线的左支
1 2 E F , R F 3 3
E M
S
温度对互溶度的影响
温度越低,两相区越大,对萃取越有利。
b. 解析法
理论级指溶质A在萃取相与萃余相中互成平衡
R i-1,X i-1 E i,Yi
i
R i,X i
Ei+1,Yi+1
物料衡算:
总:Ri 1 Ei 1 Ri Ei
ym,s ym, A 溶解度曲线的右支

萃取过程的计算

萃取过程的计算

萃取过程的计算
2. 解析法
对于原溶剂B与萃取剂S不互溶的物系,若在操作范围内,以质
量比表示的分配系数K 为常数,则平衡关系可表示为
Y=KX
(8-16
式中 Y——萃取相E中溶质A的质量比分数;
X——萃余相R中溶质A的质量比分数;
K——相组成以质量比分数表示时的分配系数。
即分配曲线为通过原点的直线。在此情况下,当错流萃取的各
萃取过程的计算
图8-14 三级错流萃取三角形坐标图解
萃取过程的计算
(3)以R1为原料液,加入纯的萃取剂S,依杠杆规则找出 两者混合点M2,按与(2)类似的方法可以得到E2和R2,此即第二 个理论级分离的结果。
(4)以此类推,直至某级萃余相中溶质的组成等于或小于规 定的组成xR为止,重复作出的联结线数目即为所需的理论级数。
(1)由已知的相平衡数据在等腰直角三角形坐标图中绘出溶解度曲线 和辅助线,如图8-11所示。
(2)在三角形坐标的AB边上根据原料液的组成确定点F,根据萃取剂 的组成确定点S(若为纯溶剂,则为顶点S),联结点F、S,则原料液与 萃取剂的混合物系点M必落在FS连线上。
萃取过程的计算
(3)由已知的萃余相组成xR,在图上确定点R,再由点R利用辅助曲 线求出点E,作R与E的联结线,显然RE线与FS线的交点即为混合液的组 成点M。
(8-12)
联立求解式(8-6)和式(8-12) 得
萃取过程的计算
同理,可得萃取液和萃余液的量E′、R′,即 上述诸式中各股物流的组成可由三角形相图直接读出。
萃取过程的计算
二、 多级错流萃取的计算
单级萃取所得的萃余相中往往还含有较多的溶质,为进一步降低萃 余相中溶质的含量,可采用多级错流萃取。其流程如图8-13所示。

萃取过程的计算

萃取过程的计算
EM MR ER
F R E
E E ES SE
—— 溶剂比
R
GLL
单级萃取(S 与 B 部分互溶) 解析法
F S0 R E M FxF S0 ys 0 Rx R Ey E MxM
A
E’
yE、xM、xR 、x’R、y’E可由相平衡 关系求出。
S0 F ( xF x M ) xM yS 0
+
x NS ( x NA ) y1 S ( y1 A )
E1 , y1 A , y1 S , RN , x NS
第一级
F E 2 R1 E1 Fx FA E 2 y2 A R1 x1 A E1 y1 A Fx FS E 2 y2 S R1 x1 S E1 y1 S
HF S max F HS 0
E H S0 S
在极限情况下,混合液只有一个 相,起不到分离作用。 萃取操作S应满足下列条件
Smin S0 Smax
GLL
例10-1:以水为溶剂萃取丙酮—醋酸乙酯中的丙酮,三元物系在30℃ 下的相平衡数据如表10-1所示。试求: ① 在直角三角形相图中,作出溶解度曲线和六条联结线; ② 各对相平衡数据相应的分配系数和选择性系数; ③ 当酯相中丙酮为30%时的相平衡数据; ④ 当原料液中丙酮含量为30%,水与原料液的质量相等,每kg原料 液进行单级萃取后的结果。
ym , A f ( x m , A )
+
xm , S ( xm , A ) ym , S ( ym , A )
R1 , E2 , y2 A , y2 S , x1 A , x1 S
GLL
第二级……xNA达到要求

第七章 萃取

第七章 萃取


一个实际萃取级的分离能力达不到一个理论级,两者的差 异用级效率校正。 一、单级萃取的计算
二、多级错流接触萃取的计算
三、多级逆流接触萃取的计算
一、单级萃取的计算

萃取操作物系的平衡关系一般难以表示为简单的函数关系, 用三角形相图表示比较简便易行。基于杠杆定律的图解方法
kA
B
yA 分配系数 k A xA
yB
式中β --选择性系数 y --组分在萃取相E中的质量分率; x --组分在萃余相R中的质量分率; k --组分的分配系数。 (下标A组分A,B示组分B)
(2)溶剂与原溶剂的互溶度

互溶度越小,两相区越大,萃取操作的范围越大。对于B、S
完全不溶物系,选择性系数达到无穷大,选择性最好,对萃
四、分配系数和分配曲线
1. 分配系数(以kA表示)
溶剂B的分配系数:
分配系数与温度和浓度有关
kA越大,愈有利于萃取分离
对于溶剂S和原溶剂B完全不互溶物系,浓度常用质量分 率X、Y表示,其分配系数表示如下: 溶质A的分配系数:
原溶剂B 的分配系数:
2. 分配曲线
将共轭相组成转换到直角坐标中得到的曲线,将三角形相
y’max的萃取液。y’max 与组 分B、S 之间的互溶度密切相
八. 溶剂(萃取剂)的选择

萃取剂的选取是萃取操作分离效果和经济性的关键。 萃取剂的性能由以下几方面衡量: 选择性是指萃取剂对混合液中各组分的溶解能力的差异。 要求萃取剂对溶质的溶解度要大,对其他组份的溶解度要 小。这种选择性的大小或选择性的优劣通常用选择性系数 β 衡量。
(1) 萃取剂的选择性


选择性系数β 类似于蒸馏过程的α ,反映了A、B组分溶解

化工原理-萃取过程的计算

化工原理-萃取过程的计算

中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中4南.5.林2 塔业式科萃技取大设学备化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
(3) 选择性系数β β=yA/xA/yB/xB=(27/7.2)/(1.5/91.4)=228.5 (4) 每公斤B需要的S量 组分B,S可视为完全不互溶 XF=xF/(1-xF)=0.35/0.65=0.5385 X1=(1-ψA)XF=(1-0.8)0.5385=0.1077 Ys=0 Y1与X1呈平衡关系 Y1=3.4X1=3.4×0.1077=0.3622 S/B=(XF-X1)/Y1=(0.5385-0.1077) /0.3622=1.176
例:4-5
4.4 其他萃取分离技术
中南林业科技大学化工原理
4.5 液—液萃取设备
根据两相的接触方式 :逐级接触式和微分接触式.
4.5.2 混合—澄清槽
优点:传质效率高,操作方便,运转稳定可靠,结构 简单,可处理含有悬浮固体的物料. 缺点:水平排列的设备占地面积大,每级内都装有搅 拌装置,液体在基建流动需泵输送,能量消耗大,设 备费及操作费都较高
BXF +SYs =SY1+BX1 B(XF-X1)=S(Y1-Ys)
中南林业科技大学化工原理
例:在25℃下以水(S)为萃取剂从醋酸(A)与氯仿(B)的混合液中 提取醋酸,已知原料液流量为1000kg/h,其中醋酸的质量百分 率为35%,其余为氯仿。用水量为800kg/h,操作温度下,E相 和R相以质量百分率表示的平衡数据列于本题附表中。 求:(1)经单级萃取后E相和R相的组成及流量;(2)若将E相和R 相中的溶剂完全脱除,再求萃取液及萃余液的组成和流量;(3) 操作条件下的选择性系数β;(4)若组分B,S可视为完全不互溶, 且操作条件下以质量比表示相组成的分配系数K=3.4,要求原 料液中溶质A的80%进入萃取相,则每公斤稀释剂B需消耗多 少公斤萃取剂S。

萃取过程的计算

萃取过程的计算

和点 M 与差点 E 、 R 之间的关系可用杠杆规 则描述,即 :
(1) 几何关系:和点 M 与差点 E 、 R 共线。 即:和点在两差点的连线上;一个差点 在另一差点与和点连线的延长线上。
(2) 数量关系:和点与差点的量之间的关 系符合杠杆原理,即,
根据杠杆规则,若已知两个差点,则可确定 和点;若已知和点和一个差点,则可确定另 一个差点。
5.2 萃取过程的计算
5.2.1逆流萃取计算的集团法
定义 ΦE为进料中组分 i 被 萃取的分数
逆流萃取塔
各式可用质量单位或摩尔单位。由于在 绝热萃取塔中温度变化一般都不大,因此一 般不需要焓平衡方程,只有当原料与溶剂有 较大温差或混和热很大时才需考虑。
5.2.2 微分逆流萃取的计算
一﹑活塞流模型 活塞流模型是一个完全理想化的微分逆流 萃取模型。它假定塔内同一截面上任一点每 一相的流速相等,两相在塔内作活塞流动; 两相的传质只发生在水平方向上,在垂直方 向上,每一相内没有物质传递。
该方程为非线形方程,用迭代方法求解 H=5.26 m 效率=(HTU)ox(NTU)ox / H = 4×0.9144 / 5.26 ×100% = 69.5%
补充材料:萃取应用与设备
现在萃取技术已在各方面获得了广泛的应 用: 炼油和石化工业中石油馏分的分离和 精制,如烷烃和芳烃的分离、润滑油 精制等; 湿法冶金,铀、钍、钚等放射性元素 、稀土、铜等有色金属、金等贵金属 的分离和提取;
磷和硼等无机资源的提取和净化; 医药工业中多种抗生素和生物碱的分离
提取; 食品工业中有机酸的分离和净化; 环保处理中有害物质的脱除等。
一些工业萃取过程
工业萃取过程举例
--醋酸萃取
醋酸是一种常用的化学品。在醋酸的生 产和使用过程中,经常需要进行醋酸 - 水的 分离。通常,可以用普通精馏的方法进行醋 酸(b.p.=118.1℃)和水(b.p.=100.0℃) 的分离。当溶液中醋酸含量较低时,由于水 的汽化潜热很大,精馏的能耗很高,此时采 用萃取的方法从经济上更为有利。

第八章 萃取-萃取计算

第八章 萃取-萃取计算

I
P
R2 R1
B R • • • • •
E
S
O
x
三元体系的相平衡关系也可在直角坐标系中表达。 x:萃余相中的平衡组成; y:萃取相中的平衡组成。 曲线:OHIP即为一定温度下的分配曲线。 分配曲线位于y=x直线的上方。
8.2.4 分配曲线和分配系数
• 一定温度下,液液两相达到相平衡,组分A在萃取相与萃余相 中的组成之比为分配系数kA,即:
FR ' E' = F E'R'
式中,E’为萃取液量,kg或kg/h。
(F是E’和R’的和点。)
解析法: 物料衡算 总物料衡算: 组分A物料衡算: 有: F+S=E+R=M
Fx FA + Sy SA = Ey A + Rx A = Mz A
M (z A − xA ) E= yA − xA
F ( x FA − x' A ) E' = y ' A − x' A
M
G K zB
B
8.2.2 溶解度曲线和平衡联结线
A • 溶解度曲线RPE • 曲线以外:均相区 • 曲线以内及上:两相区 • 将两相区内的点M静置后得到 两平衡液相R2和E2. 二者成为 共轭相; • 联结R2E2的线称为联结线。 M2点为R2和E2的和点, R2(或E2)为M2与E2(或R2)的差 S 点。 •
8.2 三元体系的液液相平衡
8.2.1 三元体系在三角形相图中的组成表示
A C F zA D zS • 如右图: • 顶点:纯组分 • 三条边:任一点表示二元混 合物;如C点表示溶质A和稀 释剂B的混合物; • 三角形内部任一点表示一个 三元混合物,如图中M点。 • FB,KS,BD分别代表 A,B,S的百分含量。 S • zA+zB+zS=1.0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Smin S Smax
第十章 液-液萃取和液-固浸取
10.1 萃取过程概述 10.2 液-液相平衡关系 10.3 液-液萃取过程的计算 10.3.1 单级萃取的计算
一、B 与 S 部分互溶物系
二、B 与 S不互溶物系
若 B与 S 完全不互溶
萃取相中不含 B,S 的量不变
萃余相中不含 S ,B 的量不变
XF
最小溶剂用量
ቤተ መጻሕፍቲ ባይዱ
max B S min
S min B max
Y1* YS max XF Xn
练 习 题 目
思考题 1. 单级萃取如何进行计算? 2.多级错流萃取有何特点,其级数如何计算? 3.多级逆流萃取有何特点,其级数如何计算? 作业题: 3、4、5
用质量比 计算方便
XF —原料液中组分A的质量比,kgA / kgB YE —萃取相中组分A的质量比,kgA / kgS XR —萃余相中组分A的质量比,kgA / kgB YS —萃取剂中组分A的质量比,kgA / kgS
二、B 与 S不互溶物系
对溶质 A质量衡算
BX F SYS SYE BX R
一、多级错流萃取的流程
多级错流萃取操作的特点
原料液从第 1 级加入
每一级均加入新鲜萃取剂 前一级的萃余相为后一级的原料液
每级为新萃取剂,传质推动力大,溶剂用量大
一般为间歇操作,生产能力小
S1
S2
R1 x1
Sn
xF
F
1
E 1 y1
2
E2 y 2
R2 x2

Rn1
xn 1
En
(2) 解析法 设平衡关系为 Y KX 类似于逆流吸收
* 1 1 Y1 Y 2 1 NT ln[(1 ) ] * ln A A Y2 Y2 A
( X n ) Y2
(B ) V
S (S ) X 2 (Y )
S
1 1 X F YS / K 1 n ln[(1 ) ] ln Am Am X n YS / K Am
F
xF
R1
M1 M2 R2 R3 M3
E1 E2 E3
多级错流萃 取三角形相 图图解计算
x n计算 ≤ x n规定
n=3
S1 S2 S3
二、多级错流萃取的计算
2. B与 S不互溶物系 (1) 直角坐标图解法 设S S1 S2 Sn 第 1 级作溶质 A的质量衡算
BX F SYS BX1 SY1
YS
L XF
x n计算 ≤ x n规定
n=3
多级错流萃取直角坐标图图解计算
二、多级错流萃取的计算
(2) 解析法 设平衡关系为
Y KX
Y1 KX 1
第一级的相平衡关系为 由操作线方程 联立得
B Y1 YS ( X 1 X F ) S
S X F YS B X1 KS 1 B
F
E1
M
△ 在无穷远处
Rn
溶剂比的影响 S / F 为某数值
二、多级逆流萃取的计算
2. B与 S不互溶物系的计算 (1) 直角坐标图图解法 在第 1 级至第 i 级之间进行质量衡算
B XF
S Y1
B X1
1
S Y2
B X i 1
S Yi i
B Xi
S Yi 1
BX F SYi 1 BX i SY1
4.3 萃取过程的计算
4.3.1 单级萃取的计算 4.3.2 多级错流接触萃取的流程和计算 4.3.1 多级逆流接触萃取的流程和计算
一、B 与 S 部分互溶物系
已知:原料量 F 、原料组成 xF 溶剂组成 yS 规定:萃余相组成 xR 计算:萃取剂量 S 萃取相量 E 、组成 yE 萃余相量 R 萃取液量 E 、组成 y E 萃余液量 R 、组成 x R
n
Rn xn
yn
多级错流萃取流程示意图 多级错流萃取的总溶剂用量为各级溶剂用量 之和,当各级溶剂用量相等时,达到一定的分离 程度所需的总溶剂用量最少。
二、多级错流萃取的计算
1. B与 S部分互溶物系 已知: 原料量 F 原料组成 xF 各级萃取剂用量 Si 规定: 最终萃余相组成 xn 计算: 萃取级数 n 三角形相图图解法

F E1 Rn S F E1 R1 E2
R1 E2 R 2 E3 Rn1 En R n S
F E1 R1 E2 R2 E3 Rn S
净流量差 操作点
n=4
E1
x n计算 ≤ x n规定
xF
F
R1 R2 R3
一、多级逆流萃取的流程
多级逆流萃取操作的特点
原料液从第 1 级加入 萃取剂从第 n 级加入 前一级的萃余相为后一级的原料液 后一级的萃取相为前一级的萃取剂 萃取剂循环使用,传质推动力大,溶剂用量小 连续操作,生产能力大
F xF
E 1 y1
R1 x 1
R2 x 2
1
E2 y 2
B YE-YS - ( X R-X F ) S B 斜率 操作线 S 方程 过点 ( X F , YS )
直角坐标图图解法
B
S
XF
E R
YS
S
YE
B XR
YE
斜率 –B/S
YS
XR
单级萃取图解计算
XF
E S SYE S (1 YE ) R B BX R B(1 X R )
二、多级错流萃取的计算
整理得
X F - (YS /K) 1 n ln[ ] ln(1 A m ) X n - (YS /K)
多级错流 萃取级数
计算内容 由 xn 由n 由 n 、x n 级数 n 组成 xn 溶剂用量 S
多级错流萃取算图
第十章 液-液萃取和液-固浸取
10.3 液-液萃取过程的计算 10.3.1 单级萃取的计算 10.3.2 多级错流萃取的计算 10.3.3 多级逆流萃取的计算
M
E2 E3 E4

Rn
xn 多级逆流萃取三角形相图图解计算
F S E1 Rn M
F E1 R1 E2 R2 E3 Rn S
E1
F
M
△ 在 左 侧
Rn
溶剂比的影响 S / F 较小
F
E1
M
Rn
溶剂比的影响 S / F 较大
△ 在 右 侧
(B ) V ( X ) Y1
F
S (S ) X 1 (Y1 )
萃取因 子
二、多级逆流萃取的计算
(3)适宜溶剂量的确定 处理量F 一定
S
~ S/F ~ n
设备费 操作费
根据工程经验
S = (1.1 ~ 2.0)S min
适宜溶剂用量
Y1 Y1
Y1
max
YS Xn
B/S
( B / S )
二、多级逆流萃取的计算
整理得
B B Yi 1 X i (Y1 X F ) S S
斜率 操作线方程 过点
B S
( X F , Y1 )
( X n , YS )
Y1
1 2
J
3
YS
4
D Xn XF
斜率
B/S
x n计算 ≤ x n规定
n=4
多级逆流萃取直角坐标图图解计算
二、多级逆流萃取的计算
二、多级错流萃取的计算


S S ( X F YS ) YS B 对第二级 X 2 B (1 Am ) 2 1 Am
S X F YS B X1 1 Am
Am KS B
萃 取 因 子
对第 n 级
S S S ( X F YS ) YS YS B B Xn B (1 Am ) n (1 Am ) n 1 (1 Am )
2
E3 y 3
E
Rn1
n
xn 1
Rn xn
yn
n
S yS
多级逆流萃取流程示意图
二、多级逆流萃取的计算
1. B与 S部分互溶物系 已知: 原料量 F 原料组成 xF 萃取剂用量 S 萃取剂组成 ys 规定: 最终萃余相组成 xn
计算: 萃取级数 n
三角形相图图解法
二、多级逆流萃取的计算
物料衡算关系
E
yE
xF
F
yE
E M 纯溶剂
xR
xR
R R
单级萃取图解
一、B 与 S 部分互溶物系
M F S RE
MF S = F× MS
EM RM RE
R M E
E F R F R E
R F E
S max FH F HS
Smin
FG F GS
整理得
B Y1 YS ( X 1 X F ) S
二、多级错流萃取的计算
第 n 级作溶质 A的质量衡算
B Yn YS ( X n X n 1 ) S
斜率 操作线方程 过点 直角坐标图图解法
B S
( X n1 , YS )
Y1 Y2 Y3 N X3 X2 M X1 斜率 –B/S
相关文档
最新文档