萃取过程的计算
合集下载
4章萃取3第二节萃取过程的流程和计算

第二节 萃取过程的流程和计算
4-2-0 萃取过程概述
中 国 矿 业 大 学 化 工 学 院 化 工 系
萃取设备可以分为“级式” 萃取设备可以分为“级式”和“连续式”两类。对于前 连续式”两类。 者,既可以进行间歇操作也可以进行连续操作, 既可以进行间歇操作也可以进行连续操作, 其主要计算是求所需的理论级数 相当于 其主要计算是求所需的理论级数(相当于 T);后者计算传质 理论级数 相当于N ;后者计算传质 单元数(NOE)。 单元数 。 因为一个实际萃取级达不到一个理论级的分离能力, 因为一个实际萃取级达不到一个理论级的分离能力,所 理论级的分离能力 以要用“级效率”予以校正。级效率通常是由实验测得。 以要用“级效率”予以校正。级效率通常是由实验测得。
B, Xn-1
n 级
S,Yn
SYS + BX n1 = SYn + BX n
B B Yn = Xn + (Ys + Xn1) S S
S,YS
B, Xn
(4-15)
4-15为B,S完全不互溶时的操作线方程 是斜率为-B/S,通过点(Xn-1,Ys)的直线 且当n=1时, Xn-1=XF
中 国 矿 业 大 学 化 工 学 院 化 工 系
Rn ↑ Rn
E1
S↓
E1
S↑
2.级间的物衡 级间的物衡
E1'
中 国 矿 业 大 学 化 工 学 院 化 工 系
F 1 E1
R1 2 E2
R2 3 E3
Rn-1 N En
Rn S R n'
第1级:F+E2=E1+R1 级 第2级:R1+E3=E2+ R2 级 第n级:Rn-1+S=En+ Rn 级 …
4-2-0 萃取过程概述
中 国 矿 业 大 学 化 工 学 院 化 工 系
萃取设备可以分为“级式” 萃取设备可以分为“级式”和“连续式”两类。对于前 连续式”两类。 者,既可以进行间歇操作也可以进行连续操作, 既可以进行间歇操作也可以进行连续操作, 其主要计算是求所需的理论级数 相当于 其主要计算是求所需的理论级数(相当于 T);后者计算传质 理论级数 相当于N ;后者计算传质 单元数(NOE)。 单元数 。 因为一个实际萃取级达不到一个理论级的分离能力, 因为一个实际萃取级达不到一个理论级的分离能力,所 理论级的分离能力 以要用“级效率”予以校正。级效率通常是由实验测得。 以要用“级效率”予以校正。级效率通常是由实验测得。
B, Xn-1
n 级
S,Yn
SYS + BX n1 = SYn + BX n
B B Yn = Xn + (Ys + Xn1) S S
S,YS
B, Xn
(4-15)
4-15为B,S完全不互溶时的操作线方程 是斜率为-B/S,通过点(Xn-1,Ys)的直线 且当n=1时, Xn-1=XF
中 国 矿 业 大 学 化 工 学 院 化 工 系
Rn ↑ Rn
E1
S↓
E1
S↑
2.级间的物衡 级间的物衡
E1'
中 国 矿 业 大 学 化 工 学 院 化 工 系
F 1 E1
R1 2 E2
R2 3 E3
Rn-1 N En
Rn S R n'
第1级:F+E2=E1+R1 级 第2级:R1+E3=E2+ R2 级 第n级:Rn-1+S=En+ Rn 级 …
8.1.3 萃取过程计算

E2-R1=E3-R2 E3-R2=E4-R3 E N-RN-1=S-RN
E1-F=E2-R1=E3-R2==S-RN=D
即每一级离去的萃取相与进来的萃余相之差为常数D 在三角形相图上点D为F与E1、R1与E2、R2与E3、 RN与S的差点。
B与S部分溶解时多级逆流萃取的图解
A
E1-F=E2-R1=E3-R2==S-RN=D
Y1
E1 E2
P
Y2
S
XN
X2
X1
XF
1 XF 1 所需的理论级为 N= 1 ln 1 ln A A X A
N
式中A=mS/B称为萃取因数 吸收时所需的理论塔板数为 式中A=L/mG吸收因数
1 yb m xa 1 1 N= ln 1 ln A A y a m xa A
溶质A:Ri 1 xi 1,A Ei 1 yi 1,A Ri xi,A Ei yi,A 溶剂S:Ri 1 xi 1,S Ei 1 yi 1,S Ri xi,S Ei yi,S
对平衡级内传质过程的特征方程为:
分配曲线:yi f xi 溶解度曲线:xm,s xm, A 溶解度曲线的左支
1 2 E F , R F 3 3
E M
S
温度对互溶度的影响
温度越低,两相区越大,对萃取越有利。
b. 解析法
理论级指溶质A在萃取相与萃余相中互成平衡
R i-1,X i-1 E i,Yi
i
R i,X i
Ei+1,Yi+1
物料衡算:
总:Ri 1 Ei 1 Ri Ei
ym,s ym, A 溶解度曲线的右支
E1-F=E2-R1=E3-R2==S-RN=D
即每一级离去的萃取相与进来的萃余相之差为常数D 在三角形相图上点D为F与E1、R1与E2、R2与E3、 RN与S的差点。
B与S部分溶解时多级逆流萃取的图解
A
E1-F=E2-R1=E3-R2==S-RN=D
Y1
E1 E2
P
Y2
S
XN
X2
X1
XF
1 XF 1 所需的理论级为 N= 1 ln 1 ln A A X A
N
式中A=mS/B称为萃取因数 吸收时所需的理论塔板数为 式中A=L/mG吸收因数
1 yb m xa 1 1 N= ln 1 ln A A y a m xa A
溶质A:Ri 1 xi 1,A Ei 1 yi 1,A Ri xi,A Ei yi,A 溶剂S:Ri 1 xi 1,S Ei 1 yi 1,S Ri xi,S Ei yi,S
对平衡级内传质过程的特征方程为:
分配曲线:yi f xi 溶解度曲线:xm,s xm, A 溶解度曲线的左支
1 2 E F , R F 3 3
E M
S
温度对互溶度的影响
温度越低,两相区越大,对萃取越有利。
b. 解析法
理论级指溶质A在萃取相与萃余相中互成平衡
R i-1,X i-1 E i,Yi
i
R i,X i
Ei+1,Yi+1
物料衡算:
总:Ri 1 Ei 1 Ri Ei
ym,s ym, A 溶解度曲线的右支
10.3 液-液萃取过程的计算

Y1
1 2
J
3
YS
4
斜率
D Xn X n计算 ≤ X n规定 n=4
B/S XF
多级逆流萃取直角坐标图图解计算
10.3.3 多级逆流萃取的计算
二、多级逆流萃取的计算
(2) 解析法 设平衡关系为 Y 类似于逆流吸收
= KX
(B) V S (S ) ( Xn )Y2 X2(YS )
* 1 1 Y1 −Y 2 1 NT = ln[( 1 − ) + ] * ln A A Y2 − Y2 A
B 由操作线方程 Y1 − YS = − ( X1 − XF ) S
10.3.2 多级错流萃取的计算
二、多级错流萃取的计算
S XF + YS Am = KS B B X1 = 萃取 1 + Am 因子 S S ( XF + YS ) YS B 第二级: 第二级: X2 = + B (1 + Am )2 1 + Am
F MS = S MF
F R M
E
单级萃取图解
10.3.1 单极萃取的计算
二、B 与 S不互溶物系 不互溶物系
若 B与 S 完全不互溶 萃取相中不含 B,S 的量不变 萃余相中不含 S ,B 的量不变 用质量比 计算方便
XF —原料液中组分A的质量比,kgA / kgB YE —萃取相中组分A的质量比,kgA / kgS XR —萃余相中组分A的质量比,kgA / kgB YS —萃取剂中组分A的质量比,kgA / kgS
10.3.2 多级错流萃取的计算
二、多级错流萃取的计算
1. B与 S部分互溶物系 与 部分互溶物系 已知: 原料量 F 原料组成 xF 各级萃取剂用量 Si 规定: 最终萃余相组成 xn 计算:萃取级数 n 萃取级数 三角形相图 图解法
萃取过程的计算

萃取过程的计算
2. 解析法
对于原溶剂B与萃取剂S不互溶的物系,若在操作范围内,以质
量比表示的分配系数K 为常数,则平衡关系可表示为
Y=KX
(8-16
式中 Y——萃取相E中溶质A的质量比分数;
X——萃余相R中溶质A的质量比分数;
K——相组成以质量比分数表示时的分配系数。
即分配曲线为通过原点的直线。在此情况下,当错流萃取的各
萃取过程的计算
图8-14 三级错流萃取三角形坐标图解
萃取过程的计算
(3)以R1为原料液,加入纯的萃取剂S,依杠杆规则找出 两者混合点M2,按与(2)类似的方法可以得到E2和R2,此即第二 个理论级分离的结果。
(4)以此类推,直至某级萃余相中溶质的组成等于或小于规 定的组成xR为止,重复作出的联结线数目即为所需的理论级数。
(1)由已知的相平衡数据在等腰直角三角形坐标图中绘出溶解度曲线 和辅助线,如图8-11所示。
(2)在三角形坐标的AB边上根据原料液的组成确定点F,根据萃取剂 的组成确定点S(若为纯溶剂,则为顶点S),联结点F、S,则原料液与 萃取剂的混合物系点M必落在FS连线上。
萃取过程的计算
(3)由已知的萃余相组成xR,在图上确定点R,再由点R利用辅助曲 线求出点E,作R与E的联结线,显然RE线与FS线的交点即为混合液的组 成点M。
(8-12)
联立求解式(8-6)和式(8-12) 得
萃取过程的计算
同理,可得萃取液和萃余液的量E′、R′,即 上述诸式中各股物流的组成可由三角形相图直接读出。
萃取过程的计算
二、 多级错流萃取的计算
单级萃取所得的萃余相中往往还含有较多的溶质,为进一步降低萃 余相中溶质的含量,可采用多级错流萃取。其流程如图8-13所示。
萃取过程的计算

EM MR ER
F R E
E E ES SE
—— 溶剂比
R
GLL
单级萃取(S 与 B 部分互溶) 解析法
F S0 R E M FxF S0 ys 0 Rx R Ey E MxM
A
E’
yE、xM、xR 、x’R、y’E可由相平衡 关系求出。
S0 F ( xF x M ) xM yS 0
+
x NS ( x NA ) y1 S ( y1 A )
E1 , y1 A , y1 S , RN , x NS
第一级
F E 2 R1 E1 Fx FA E 2 y2 A R1 x1 A E1 y1 A Fx FS E 2 y2 S R1 x1 S E1 y1 S
HF S max F HS 0
E H S0 S
在极限情况下,混合液只有一个 相,起不到分离作用。 萃取操作S应满足下列条件
Smin S0 Smax
GLL
例10-1:以水为溶剂萃取丙酮—醋酸乙酯中的丙酮,三元物系在30℃ 下的相平衡数据如表10-1所示。试求: ① 在直角三角形相图中,作出溶解度曲线和六条联结线; ② 各对相平衡数据相应的分配系数和选择性系数; ③ 当酯相中丙酮为30%时的相平衡数据; ④ 当原料液中丙酮含量为30%,水与原料液的质量相等,每kg原料 液进行单级萃取后的结果。
ym , A f ( x m , A )
+
xm , S ( xm , A ) ym , S ( ym , A )
R1 , E2 , y2 A , y2 S , x1 A , x1 S
GLL
第二级……xNA达到要求
F R E
E E ES SE
—— 溶剂比
R
GLL
单级萃取(S 与 B 部分互溶) 解析法
F S0 R E M FxF S0 ys 0 Rx R Ey E MxM
A
E’
yE、xM、xR 、x’R、y’E可由相平衡 关系求出。
S0 F ( xF x M ) xM yS 0
+
x NS ( x NA ) y1 S ( y1 A )
E1 , y1 A , y1 S , RN , x NS
第一级
F E 2 R1 E1 Fx FA E 2 y2 A R1 x1 A E1 y1 A Fx FS E 2 y2 S R1 x1 S E1 y1 S
HF S max F HS 0
E H S0 S
在极限情况下,混合液只有一个 相,起不到分离作用。 萃取操作S应满足下列条件
Smin S0 Smax
GLL
例10-1:以水为溶剂萃取丙酮—醋酸乙酯中的丙酮,三元物系在30℃ 下的相平衡数据如表10-1所示。试求: ① 在直角三角形相图中,作出溶解度曲线和六条联结线; ② 各对相平衡数据相应的分配系数和选择性系数; ③ 当酯相中丙酮为30%时的相平衡数据; ④ 当原料液中丙酮含量为30%,水与原料液的质量相等,每kg原料 液进行单级萃取后的结果。
ym , A f ( x m , A )
+
xm , S ( xm , A ) ym , S ( ym , A )
R1 , E2 , y2 A , y2 S , x1 A , x1 S
GLL
第二级……xNA达到要求
萃取过程的计算

二、单级萃取过程
部分互溶物系
图解法( 已知 xF、F、S 求 x’ )
A
①作溶解度曲线及辅助线 ②确定F、S点
③由杠杆定律确定M
④由M及辅助线试差法确定R、E ⑤由R、E及SE、SR定R’、E’ ⑥由△确定x’
E’
F M R’ R
B S
E
二、单级萃取过程
部分互溶物系
图解法( 已知 xF、F、 x’ 求 S及E相和R相的量、E 相组成 )
原溶剂B
yB kB xB
yA xA
E
R
k值愈大,萃取分离的效果愈好,其值随温度和组成而变
4
如第Ⅰ类物系,一般 k值随温度的升高或溶质组成的增 大而降低。一定温度下,仅当溶质组成范围变化不大时, k 值才可视为常数。 对于萃取剂S与原溶剂B互不相溶的物系,溶质在两液相 中的分配关系与吸收中的类似,即
' ' '
y E xR
'
R F E
二、单级萃取过程
B、S完全不互溶
适用于萃取剂与稀释剂互溶度很小,且在操作范围内溶质组 分对 B、S 的互溶度又无明显影响的体系。
Ⅰ 已知F ,xF 及 Y0,规定萃余液组成x,求S用量。 Ⅱ 已知F ,xF,Y0及 S 用量,求萃余液组成x’
二、单级萃取过程——完全不互溶物系
物料衡算:
BX F SY0 BX SY
S (Y Y0 ) B( X F X )
操作线方程
B Y X-X F Y0 S
二、单级萃取过程——完全不互溶物系
物料衡算:
BX F SY0 BX SY
S (Y Y0 ) B( X F X )
化工原理-萃取过程的计算

中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中4南.5.林2 塔业式科萃技取大设学备化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
中南林业科技大学化工原理
(3) 选择性系数β β=yA/xA/yB/xB=(27/7.2)/(1.5/91.4)=228.5 (4) 每公斤B需要的S量 组分B,S可视为完全不互溶 XF=xF/(1-xF)=0.35/0.65=0.5385 X1=(1-ψA)XF=(1-0.8)0.5385=0.1077 Ys=0 Y1与X1呈平衡关系 Y1=3.4X1=3.4×0.1077=0.3622 S/B=(XF-X1)/Y1=(0.5385-0.1077) /0.3622=1.176
例:4-5
4.4 其他萃取分离技术
中南林业科技大学化工原理
4.5 液—液萃取设备
根据两相的接触方式 :逐级接触式和微分接触式.
4.5.2 混合—澄清槽
优点:传质效率高,操作方便,运转稳定可靠,结构 简单,可处理含有悬浮固体的物料. 缺点:水平排列的设备占地面积大,每级内都装有搅 拌装置,液体在基建流动需泵输送,能量消耗大,设 备费及操作费都较高
BXF +SYs =SY1+BX1 B(XF-X1)=S(Y1-Ys)
中南林业科技大学化工原理
例:在25℃下以水(S)为萃取剂从醋酸(A)与氯仿(B)的混合液中 提取醋酸,已知原料液流量为1000kg/h,其中醋酸的质量百分 率为35%,其余为氯仿。用水量为800kg/h,操作温度下,E相 和R相以质量百分率表示的平衡数据列于本题附表中。 求:(1)经单级萃取后E相和R相的组成及流量;(2)若将E相和R 相中的溶剂完全脱除,再求萃取液及萃余液的组成和流量;(3) 操作条件下的选择性系数β;(4)若组分B,S可视为完全不互溶, 且操作条件下以质量比表示相组成的分配系数K=3.4,要求原 料液中溶质A的80%进入萃取相,则每公斤稀释剂B需消耗多 少公斤萃取剂S。
8-3-2萃取计算

42.14 47.21
2.18
1.02 0.44
55.97
71.80 99.56
41.85
27.18 0
附表2
xA 5.96 yA 8.75
联结线数据
10.0 15.0 14.0 21.0 19.1 27.7 21.0 32.0 27.0 40.5 35.0 48.0
解: (1)由题中数据作溶解度曲线和辅助曲线; (2)由题丙酮含量40%,确定F点位置; (3)连结FS,有杠杆规则确定M1点位置; (4)试差法求R1与E1位置:以M1点为轴,转动 联结线R1与E1,当点T恰好落在辅助曲线上时, 停止转动,此时该直线与溶解度曲线的交点就是 所求的R1与E1; (5)杠杆规则求R1的质量: 以E1为支点:
二、液—液萃取过程的计算 (一)单级萃取
单级萃取流程
实际上,对于某一个萃取分离任务,通 常已知料液量F及其组成xF,且规定了 萃余相的浓度xR ,求萃取剂用量S,萃 取相的量E和组成yE,及萃余相的量R。
也就是,已知: (1)料液量F;
P
(2பைடு நூலகம் F点相图位置;
(3)萃余相R点的位置。 (1)萃取剂用量S; 求: (2)萃余相的量R;
(3)萃取相的量E;
(4)萃取相E的相图位置。
F+S
物料衡算: 杠杆规则求 各流股的量:
M
E R
E’ R’
F+S=M=E+R
S×MS = F×MF E×ER = M×MR
(以M点为支点)
(以R点为支点)
E’×E’R’ = F×FR’ (以R’点为支点)
溶质A物料衡算:
FxF = MxM = EyE + RxR= E’yE’ + R’xR’
2.18
1.02 0.44
55.97
71.80 99.56
41.85
27.18 0
附表2
xA 5.96 yA 8.75
联结线数据
10.0 15.0 14.0 21.0 19.1 27.7 21.0 32.0 27.0 40.5 35.0 48.0
解: (1)由题中数据作溶解度曲线和辅助曲线; (2)由题丙酮含量40%,确定F点位置; (3)连结FS,有杠杆规则确定M1点位置; (4)试差法求R1与E1位置:以M1点为轴,转动 联结线R1与E1,当点T恰好落在辅助曲线上时, 停止转动,此时该直线与溶解度曲线的交点就是 所求的R1与E1; (5)杠杆规则求R1的质量: 以E1为支点:
二、液—液萃取过程的计算 (一)单级萃取
单级萃取流程
实际上,对于某一个萃取分离任务,通 常已知料液量F及其组成xF,且规定了 萃余相的浓度xR ,求萃取剂用量S,萃 取相的量E和组成yE,及萃余相的量R。
也就是,已知: (1)料液量F;
P
(2பைடு நூலகம் F点相图位置;
(3)萃余相R点的位置。 (1)萃取剂用量S; 求: (2)萃余相的量R;
(3)萃取相的量E;
(4)萃取相E的相图位置。
F+S
物料衡算: 杠杆规则求 各流股的量:
M
E R
E’ R’
F+S=M=E+R
S×MS = F×MF E×ER = M×MR
(以M点为支点)
(以R点为支点)
E’×E’R’ = F×FR’ (以R’点为支点)
溶质A物料衡算:
FxF = MxM = EyE + RxR= E’yE’ + R’xR’
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多级逆流接触萃取
在多级逆流萃取操作中,原料液的流量F和 组成xF,A,最终萃余相溶质组成xn,A均由工 艺条件规定,萃取剂用量S和组成ys由经济 权衡而选定,要计算萃取所需的理论级和 离开任一级各股物料的量和组成。
多级逆流萃取的解析计算
图11-35 表示多级逆流萃取过程中物料进、 出各级的流向及参数。设待分离混合液的 流量F及组成xF,A、xF,S为已知,选定溶剂量 S并已知溶剂的组成zA与zS;
y2S =0.933-1.05 y2A
x1S=0.013-0.05 x1A
解出
x1A =0.0145,x1S =0.0123,
y2A =0.104,y2S =0.824,R1 =0.996,
E2=0.121。
同理可求出x2A =0.0047,x2S =0.0128,y3A =0.0241,y3S =0.908,R2 =0.985, E3=0.110。
xS=0.013-0.05 xA
=0.013-0.05×0.002=0.0129
解出 y1A =0.224,y1S =0.698, E1=0.125kg/s,RN =0.975 kg/s。
对第1萃取级进行计算
总物料 F + E2 = R1 + E1
1+ E2= R1 + 0.125
图中E′及R′点为从E相及R 相中脱除全部溶剂后的萃 取液及萃余液组成坐标点。
各流股组成可从相应点直 接读出。
单级萃取的图解计算
各股流量由杠杆定律求得:
S FM F SM
S/F称为溶剂比,根据溶剂比与料液流量F 即可求出溶剂流量S。
单级萃取的图解计算
进入萃取器的总物料量与溶剂流量之和为M, 即
最后用分配曲线由yNA求出xNA。当xNA低于 规定数值,N即为所求的理论级。
例11-3 多级逆流萃取所需理论级数的计算
某化工过程中,需要25℃的丁醇(S)萃取 间苯二酚(A)水(B)溶液中的间苯二酚, 原料液进料量为1kg/s,含间苯二酚 xF,A=0.03。操作采用的溶剂比(S/F)为 0.1,要求最终萃余相中含间苯二酚低于 0.002。已知操作条件下的相平衡关系为 yA=3.98xA0.68,yS =0.933-1.05 yA, xS=0.013-0.05 xA。试求逆流操作所需要的 理论级数。
溶质A FxF,A + E2y2A = R1x1,A + E1y1A
0.03+ E2y2A = R1x1,A + 0.125×0.224
溶剂S FxF,S + E2y2S = R1x1,S + E1y1S
E2y2S = R1x1,S + 0.125×0.698
相平衡关系
0.224=3.98x1A0.68
单级萃取的图解计算
用解析方法计算萃取问题将溶解度曲线及 分配曲线拟合成数学表达式,而所得的数 学表达式皆为非线性,联立求解时必须通 过试差计算。在三角形相图上可以方便的 求解。
单级萃取的图解计算
如图11-30b所示,根据已 知解的度x图F上,A确及定规点定F的及x萃A在余溶相 的组成点R,过R作平衡连 结线RE与FS线交于M点, 与溶解度曲线交于E点。
11.3.4 多级逆流接触萃取
多级逆流萃取的解析计算 组分B和S部分互溶时的图解计算法 溶剂比对逆流萃取理论级数的影响 最小溶剂比的计算
Байду номын сангаас
多级逆流接触萃取
多级逆流接触萃取操作一般是连续的,其分离效 率高,溶剂用量少,故在工业中得到广泛的应用。
图11-34为多级逆流萃取操作流程示意图,萃取剂 一般是循环使用的,其中常含有少量的组分A和B, 故最终萃余相中可达到的溶质最低组成受溶剂中 溶质组成限制,最终萃取相中溶质的最高组成受 原料液中溶质组成的制约。
图11-29 萃取级的物料衡算
萃取级内传质过程的简化-理论级与级效率
由于萃取过程的传质很复杂,为了避免直 接写出传质速率方程式的困难,引入理论 级的概念。
假设进入一个理论级的两股物料流Rm-1和 Em+1,不论组成如何,经过传质后离开该 级的两股物料流Rm 和Em达到平衡。
萃取级内传质过程的简化-理论级与级效率
单级萃取的解析计算
单级萃取可以连续操作,也可以间歇操作, 各股物料的量以kg表示, 连续操作时,用 kg/h表示。进、出萃取器的各股物料与组成 如图11-30所示。则物料衡算式可具体简化 为
FS RE FxFA Sz A RxA EyA 0 SzS RxS EyS
1/Am为萃取因数。当各级所用的溶剂量均 相等,则各级的萃取因数为一常数(1/A), 则可从第一级m=1(X0=XF)计算至最后一 级m=N,可最终算出萃余相含量XN为
XN
XF
1
1
N
A
YN
KX F
1
1
N
分接触,离开进两相已 达到平衡,则
Y = K·X
一根般据X要F求、的Z、X即B为可已计知算, 出Y和S。
图11-40 完全不互溶体系的单级萃取
单级萃取
上述计算也可采用 图解计算,如图图 11-40b所示。由点 H(XF、Z)作一 直线,斜率为
B Z Y S XF X
B( X m1 X m ) SmYm
图11-42 多级错流萃取第m级物流的物料衡算
多级错流萃取
将平衡关系Ym=KXm代入上式,则
Xm
X m1 1 Sm K
X m1 1 1
B
Am
1 Am
Sm B
K
S mYm BX m
萃取相中组分 A的量 萃余相中组分 A的量
多级错流萃取
组成与相平衡的表示方法
X与x,Y与y的关系为
Y y 1 y
X x 1 x
溶质在两相中的平衡关系可用X~Y在直角 坐标图中的分配曲线表示,即
Y = K·X
单级萃取
图11-40为一单级萃取 器,进出该萃取器的各 物料的流量及组成如图 所示,对萃取器进行物 料衡算
S(Y-Z)=B(XF-X) 假设物料在萃取器内充
单一萃取级的物料衡算
在级式萃取设备内任选第m级,作为为考察 对象,对该级进行物料衡算,如图11-29所 示。
总物料衡算 Rm-1 + Em+1 = Rm + Em 溶质A衡算 Rm-1x m-1 + Em+1ym+1 = Rmxm + Emym 溶剂S衡算 Rm-1x m-1,S + Em+1 ym+1,S= Rm xm,S+ Emym,S
多级错流萃取
多级错流萃取是上述单级萃取的重复计算,进出 各级的物流及图解计算可见图11-41所示。
在操作范围内,平衡线为通过原点的直线,即分 配系数K为一常数。则多级错流的理论级数可通 过解析计算。
多级错流萃取
图11-42为多级错流萃取中任意第m级有关 物流及组成,若假设溶剂中不含溶质A (Z=0),对其作物料衡算
这样萃取级内传质过程特征方程可简化为
分配曲线 ym,A=f(xm,A)
溶解度曲线 xm,S=Ψ(xm,A)
ym,S=φ(ym,A)
一个实际萃取级的分离能力不同于理论级,
两者的差异用级效率表示。级效率必须结
合具体设备型式通过实验研究确定。
11.3.2 单级萃取的计算
单级萃取的解析计算 单级萃取的图解计算 单级萃取的分离范围
M SF E M MR
RE RM E
单级萃取的分离范围
对于一定的料液流量F及 组大成,x混合F,A点,M溶越剂靠的近用S量,越 但以c点为限,如图11-31 所示,即c点的溶剂用量 为最大用量。超过此用量, 混合物将进入均相区而无 法操作。
与c点成平衡关系的萃余 相萃溶取质可含 达量 到x 的最A,m低in为值单,级除 去溶剂后萃余液的最低含 量为xºA,min。
根据工艺要求已知最终萃余相的溶质含量 xN,A。求理论级数N及离开每一级的萃取相 与萃余相流量及组成共6N个未知数。
多级逆流萃取的解析计算
计算时可首先以萃取设备为控制体列出物料衡算式
总物料衡算式 溶质A衡算式
F + S = RN + E1
FxF,A + SzA = RNxN,A + E1y1A
解:以整个萃取设备为控制体,进行物料 衡算
总物料 F + S = RN + E1 1.1= RN + E1
溶质A FxF,A + SzA = RNxN,A + E1y1A
0.03=0.002 RN+ E1y1A
溶剂S FxF,S + SzS = RNxN,S + E1y1S
0.1 = RNxN,S + E1y1S
图11-30 单级萃取
单级萃取的解析计算
假设萃取器相当于一个理论级,离开该级 的萃取相E和萃余相R成平衡,两相组成满 足相平衡方程式,得
yS (yA) xS (xA)
yA f (xA)
单级萃取的解析计算
在单级萃取操作中,原料量F及组成xFA、物 系的相平衡数据是已知的,规定萃余相组 成xA,可选择溶剂组成zA与zS,要求计 算溶剂用量、萃取相流量及以萃取相组成 yS与yA,萃余相流量及其中溶剂含量xS 等6个未知数。
实际溶剂比可取最小溶剂比的某一倍数。
11.3.5 完全不互溶物系萃取过程的计算