山东济南2018年学业水平考试数学试题
济南2018年初三年级学业水平考试数学全真模拟试卷2

济南2018年初三年级学业水平考试数学全真模拟试卷2第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.)1.|-2 014|等于( )A.-2 014B.2 014C.±2 014D.2 0142.下面的计算正确的是( )A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A.a-c>b-cB.a+c<b+cC.ac>bcD.a cb b4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( )A.1颗B.2颗C.3颗D.4颗5.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( )A.10,10B.10,12.5C.11,12.5D.11,106.一个几何体的三视图如图所示,则这个几何体是( )7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y =2的解的是( )8.对于非零的两个实数a ,b ,规定a b=11b a -,若2(2x-1)=1,则x 的值为( )5531A. B. C. D.6426- 9.已知2x y 32x y 0-+++=(),则x+y 的值为( )A.0B.-1C.1D.510.如图,已知⊙O 的两条弦AC 、BD 相交于点E ,∠A =70°,∠C = 50°,那么sin ∠AEB 的值为( )33A. B.2321C.D.2211.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48B.60C.76D.8012.如图,点D 为y 轴上任意一点,过点A(-6,4)作AB 垂直于x 轴交x 轴于点B ,交双曲线6y x-=于点C,则△ADC 的面积为( )A.9B.10C.12D.15 13.2012-2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( ) A.科比罚球投篮2次,一定全部命中 B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于( )A.60°B.90°C.120°D.180°15.如图,在正方形ABCD中,AB=3 cm,动点M自A点出发沿AB方向以每秒1 cm的速度向B点运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3 cm的速度运动,到达B点时运动同时停止.设△AMN 的面积为y(cm2),运动时间为x(s),则下列图象中能大致反映y与x之间的函数关系的是第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:a3-ab2=________.17.计算124183-⨯=_________.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是______.19.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是______.20.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_____________.21.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--,现已知121x x 3=-, 是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依次类推,则x 2 013=____________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.) 22.(本小题满分7分) (1)解方程组2x 3y 3x 2y 2.-=⎧⎨+=-⎩,(2)化简:1a a (). 22a2a1-÷++23.(本小题满分7分)(1)如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E. 求证:BE=DE.(2)如图,AB是⊙O的直径,DF⊥AB于点D,交弦AC于点E,FC=FE.求证:FC是⊙O的切线.24.(本小题满分8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.(本小题满分8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1 200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.26.(本小题满分9分)如图,O是菱形ABCD对角线AC与BD的交点,CD=5 cm,OD=3 cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.27.(本小题满分9分)如图,直线1y x4=与双曲线kyx=相交于A、B两点,BC⊥x轴于点C(-4,0).(1)求A、B两点的坐标及双曲线的解析式;(2)若经过点A的直线与x轴的正半轴交于点D,与y轴的正半轴交于点E,且△AOE的面积为10,求CD的长.28.(本小题满分9分) 如图,抛物线21y x 1 -交x 轴的正半轴于点A ,交y 轴于点B ,将此抛物线向右平移4个单位得抛物线y 2,两条抛物线相交于点 C.(1)请直接写出抛物线y 2的解析式;(2)若点 P 是x 轴上一动点,且满足∠CPA=∠OBA ,求出所有满足条件的P 点坐标;(3)在第四象限内抛物线y 2上,是否存在点Q ,使得△QOC 中OC 边上的高h 有最大值,若存在,请求出点Q 的坐标及h 的最大值;若不存在,请说明理由.参考答案1.B2.C3.B4.B5.D6.D7.C8.A9.C 10.A 11.C 12.A 13.A 14.D 15.C19.2 20.40% 21.416.a(a+b)(a-b) 17.618.1323.(1)证明:作CF⊥BE,垂足为F.∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,∵四边形EFCD为矩形,∴DE=CF.在△BAE和△CBF中,有∠CBE=∠BAE,∠BFC=∠BEA=90°,AB=BC,∴△BAE≌△CBF,∴BE=CF=DE,即BE=DE.(2)证明:连接OC.∵FC=FE,∴∠FCE=∠FEC.又∵∠AED=∠FEC,∴∠FCE=∠AED.∵OC=OA,∴∠OCA=∠OAC,∴∠FCO=∠FCE+∠OCA=∠AED+∠OAC=180°-∠ADE.∵DF⊥AB,∴∠ADE=90°,∴∠FCO=90°,即OC⊥FC.又∵点C在⊙O上,∴FC是⊙O的切线;24.解法一:解:设上月萝卜的单价是x元/斤,排骨的单价是y 元/斤,根据题意得:()()3x 2y 363150%x 2120%y 45x 2:y 15.+=⎧⎨+++=⎩=⎧⎨=⎩,,,解得这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤), 这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤). 答:这天萝卜的单价是3元/斤,排骨的单价是18/斤. 解法二:解:设这天萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:32x y 36150%120%3x 2y 45x 3:y 18.⎧+=⎪++⎨⎪+=⎩=⎧⎨=⎩,,,解得 答:这天萝卜的单价是3元/斤,排骨的单价18元/斤. 25.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%, 利用条形图中喜欢武术的女生有10人, ∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50-10-16=24(人). 补充条形统计图,如图所示:(2)100(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数:1 200×30100=360人.答:全校学生中喜欢剪纸的有360人. 26.解:(1)∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴直角△OCD 中,2222OC CD OD 53 4 cm =-=-=;(2)∵CE ∥DB ,BE ∥AC ,∴四边形OBEC 为平行四边形,又∵AC ⊥BD ,即∠COB=90°,∴平行四边形OBEC 为矩形;(3)∵OB=OD ,∴S 矩形OBEC =OB ·OC=4×3=12(cm 2).27.解:(1)∵BC ⊥x 轴,C (-4,0),∴B 的横坐标是-4,代入y=14x 得:y=-1, ∴B 的坐标是(-4,-1).∵把B 的坐标代入k y k 4x==得:, ∴反比例函数的解析式是4y.x = ∵解方程组12121y x x 4x 444y 1y 1y x⎧=⎪==-⎧⎧⎪⎨⎨⎨==-⎩⎩⎪=⎪⎩,,,得:,,, ∴A 的坐标为(4,1),B 的坐标为(-4,-1);(2)设OE=a ,OD=b ,则△AOE 面积S △AOE =S △EOD -S △AO D,AOE 1110ab b 1,221S a 410,2=- == 即:①并且,② 由①,②可解得:a=5,b=5,即OD=5.∵OC=|-4|=4,∴CD 的长为:4+5=9.28.解:(1)y=x 2-8x+15;(2)当 y 1= y 2,即x 2-1 =x 2-8x+15,∴x=2,y=3,∴C (2,3).由题可知, A ( 1 , 0 ) , B ( 0 ,-1),∴OA =OB= 1 ,∴∠OBA= 45°.过点 C 作CD ⊥x 轴于点D,∴D(2,0),∴CD=3.当∠CPA=∠OBA=45°时,∴PD=CD=3 ,∴满足条件的点P有2个,分别为P1 (5,0),P2(-1,0);(3)存在.过点C作CE⊥y轴于点E,过点Q作QF⊥y轴于点F,连接OC、QC、 OQ. 设Q (x0,y0) ,∵Q在y2上,∴y0=x02-8x0+15,∴CE=2,QF=x0,EF=3-y0,OE=3,OF=-y0.∵在△QOC中,OC边长为定值,∴当S△QOC取最大值时,OC边上的高h也取最大值.。
2018年济南市初三年级学业水平考试数学试题word版含答案

2018年济南市初三年级学业水平考试数学试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题结出的四个选项中,只有一项是符合题目要求的.) 1.5的相反数是( )A .15B .5C .-15D .-5【答案】D【解析】一般地,只有符号不同的两个数,我说其中的一个是另一个的相反数,特别的,0的相反数是0.∴5的相反数是-5. 故答案选D .2.随着高铁的发展,预计2020年济南西客站客流量特达到2150万人,数字2150用科学记数法表示为( ) A .0.215×104B .2.15×103C .2.15×104D .21.5×102【答案】B【解析】2150这个数共有4位整数位,所以将它用科学计数法表示为2.15×103. 故答案选B .3.如图,直线l 1∥l 2,等腰直角△ABC 的两个顶点A 、B 分别落在直线l 1、l 2上,∠ACB =90°,若∠1=15°,则∠2的度数是( )A . 35°B .30°C . 25°D .20°【答案】B【解析】∵△ABC 是等腰直角,∠ACB =90°,∴∠CAB =45°. ∵∠1=15°,∴∠3=∠CAB -∠1=45°-15°=30°. ∵l 1∥l 2,∴∠2=∠3=30°. 故答案选B .第3题答案图2l 1第3题图l 2l 14.如图,以下给出的几何体中,其主视图是矩形,俯视图是三角形的是( )A .B .C .D . 【答案】D【解析】A 选项的主视图是三角形,所以A 选项不正确; B 选项的主视图是矩形,但俯视图是圆,所以B 选项不正确; C 选项的主视图是三角形,所以C 选项不正确;D 选项的主视图是矩形,俯视图是三角形,所以D 选项正确; 故答案选D .5.下列运算正确的是( )A . a 2+a =2a 3B .a 2·a 3=a 6C .(-2a 3)2=4a 6D .a 6÷a 2=a 3【答案】C【解析】因为a 2与a 不是同类项,它们不能合并,所以A 选项不正确;因为a 2·a 3=a 5,所以B 选项不正确;因为(-2a 3)2=(-2)2(a3)2=4a 6, 所以C 选项正确;因为a 6÷a 2=a 4,所以D 选项不正确; 故答案选C .6.京剧脸谱、剪纸等图案蕴含着简洁美、对称美,下列选取的图片中既是轴对称图形又是中心对称图形的是( )【答案】D【解析】A 、B 是轴对称图形但不是中心对称图形,C 是中心对称图形但不是轴对称图形,所以A 、B 、C 选项都不正确;D 既是轴对称图形又是中心对称图形,所以D 选项正确; 故答案选D . 7.化简22111x x ÷--的结果是( ) A .21x + B .2x C .21x - D .2(x +1)【答案】A【解析】22111x x ÷--=2(x +1) (x -1)•x -11=2x +1. 故答案选A .8.如图,在6×6方格中有两个涂有阴影的图形M 、N ,①中的图形M 平移后位置如图②所示,以下对图形M 的平移方法叙述正确的是 ( )A .向右平移2个单位,向下平移3个单位B .向右平移1个单位,向下平移3个单位C .向右平移1个单位,向下平移4个单位D .向右平移2个单位,向下平移4个单位【答案】B【解析】图①中的点A 和图②中的点A ′是一对对应点,将点A 先向右平移1个单位,再向下平移3个单位就得到点A ′,所以B 选项正确. 故答案选B .9.如图,若一次函数y =-2x +b 的图像交y 轴于点A (0,3),则不等式-2x +b >0的解集为( ) A .x >32 B .x >3 C .x <32D .x <3【答案】C【解析】把点A (0,3)代入y =-2x +b ,得3=0+b .∴b =3. 一次函数解析式为y =-2x +3.第9题图第8题答案图②N 第8题图②MN N由-2x +3>0,得x <32. 故答案选C .10.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和和小睿选到同一课程的概率是( )A .12 B .13 C .16 D .19【答案】B【解析】根据题意,列表如下:总共有9种等可能的结果,其中小波和和小睿选到同一课程结果有3种,所以其规律为13.故答案选B .11.若关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围是( )A .k <1B .k ≤1C .k >-1D .k >1 【答案】A【解析】根据题意,得(-2)2-4×1×k >0.解得k <1. 故答案选A .12.济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A 处仰望塔顶,测得仰角为30°,再往楼的方向前进60m 至B 处,测得仰角为60°,若学1.7,结果精确到1m ,则该楼的高度CD为( )A .47mB .51mC .53mD .54m 【答案】B【解析】AB =BD =60m ,BC =12BD =30m ,CD =3BC ≈1.7×30=51(m).故答案选B .13.(2016济南,13,3分)如图,在 ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,交AD 的延第12题图长线于点E ,CG ⊥BE ,垂足为G ,若EF =2,则线段CG 的长为( ) A .152B .4 3C .215D .55【答案】C【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC .∴∠ABE =∠DFE ,∠CBE =∠E .∵BE 平分∠ABC ,∴∠ABE =∠CBE .∴∠DFE =∠E .∴DE =DF . ∵∠ABE =∠CBE , ∠ABE =∠DFE , ∠CFB =∠DFE , ∴∠CBE =∠CFB .∴CF =CB =8. ∴DF =DC -CF =12-8=4.∵AE ∥BC ,∴△DEF ∽△CBF .∴EF BF =DF CF .∴2BF =48.∴BF =4.∵CF =CB , CG ⊥BE ,∴FG =BG =12BF =2(三线合一).在Rt △CFG 中,CG =CF 2-FG 2=82-22=215.∴选项C 正确.14.(2016济南,14,3分)定义:点A (x ,y )为平面直角坐标系内的点,若满足x =y ,则把点A 叫做“平衡点”.例如:M (1,1),N (-2,-2)都是“平衡点”.当-1≤x ≤3时,直线y =2x +m 上有“平衡点”,则m 的取值范围是( )A .0≤m ≤1B .-3≤m ≤1C .-3≤m ≤3D .-1≤m ≤0 【答案】B 【解析】(1)把x =-1代入y =x ,得y =-1.把(-1,-1)代入y =2x +m ,得m =1. (2)把x =3代入y =x ,得y =3.把(3,3)代入y =2x +m ,得m =-3. ∴m 的取值范围是:-3≤m ≤1.第13题图B∴选项B 正确.15.(2016济南,15,3分)如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是AB 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )【答案】D【解析】过点D 作DF ⊥AB 于点F (如图1),则DF =BC =4. ∵AD =5,DF =4,∴AF =3.∴sin ∠A =DF AD =45,MF =3-1=2,BF =AB -AF =5-3=2,DC =BF =2.∵AD =5,AN =3,∴ND =5-3=2.(1)当0≤t ≤2时,点P 在MF 上,点Q 在ND 上(如图2),此时AP =AM +MP =1+t ,AQ =AN +NQ =3+t .∴S =12AP •AQ •sin ∠A =12(1+t )(3+t )×45=25(t +2)2―25.当0≤t ≤2时,S 随t 的增大而增大,且当t=2时,S =6.由此可知A 、B 选项都不对.(2)当t =5时,点P 在MF 上,点Q 在ND 上(如图3),此时BP =1,PE =BC -BP -CE =4-1-1=2. ∴S =12AB •PE =12×5×2=5.第15题答案图3(Q )FP第15题答案图2 第15题答案图1第15题图∵6>5, ∴选项D 正确.二、填空题:(本大题共6个小题,每小题3分,共18分.) 16.(2016济南,16,3分)计算:2-1+(-2)2=_______. 【答案】212【解析】2-1+(-2)2=12+4=12+2=212.17.(2016济南,17,3分)分解因式:a 2-4b 2=_______. 【答案】(a +2b )(a -2b )【解析】应用平方差公式得a 2-4b 2=(a +2b )(a -2b )18.(2016济南,18,3分)某学习小组在“世界读书日”这天统计了本组5名同学在上学期阅读课外书籍的册数,数据是:18,x ,15,16,13.若这组数据的平均数为16,则这组数据的中位数是_______. 【答案】16【解析】根据题意,得15(18+x +15+16+13)=16. 解得x =19.∴这组数据是:18,19,15,16,13.将这组数据按从小到大的顺序排列为:13,15,16,18,19. ∴这组数据的中位数是16. 19.(2016济南,19,3分)若代数式6x +2与4x的值相等,则x =_______. 【答案】4【解析】根据题意,得6x +2=4x. 解得x =4.经检验:x =4是方程的解.20.(2016济南,20,3分)如图,半径为2的⊙O 在第一象限与直线y =x 交于点A ,反比例函数y =k x(x >0)的图象过点A ,则k =_________.【答案】2【解析】∵点A 在直线y =x 上,∴可设点A 的坐标为(x ,x ).∵OA =2,∴x 2+x 2=22.解得x =2.∴点A 的坐标为(2,2). 把点A (2,2)代入y =k x (x >0),得2=k2.解得k =2.21.(2016济南,21,3分)如图1,在矩形纸片ABCD 中,AB =83,AD =10,点E 是CD 的中点.将这张纸片依次折叠两次:第一次折叠纸片使点A 与点E 重合,如图2,折痕为MN ,连接ME 、NE ;第二次折叠纸片使点N 与点E 重合,如图3,点B 落在B ′处,折痕为HG ,连接HE ,则tan ∠EHG =_______.【答案】563【解析】在图2中,设DM =x ,则AM =EM =10-x .∵点E 是CD 的中点,AB =CD =83,∴DE =CE =12CD =43.在Rt △DEM 中,∵DE 2+DM 2=EM 2,∴(43)2+x 2=(10-x )2.解得x =2.6. ∴DM =2.6,AM =EM =10-2.6=7.4.过点N 作NF ⊥CD 于点F (如答案图1),则△DEM ∽△FNE . ∴DE FN =EM EN .∴4310=7.4EN . 解得EN =3763.∴AN =EN =3763. 第21题图1AAB'MNNG第21题图2第21题图3第20题图∴tan ∠AMN =AN AM =37637.4=563.在答案图2中,∵ME ⊥EN ,HG ⊥EN ,∴ME ∥HG .∴∠NME =∠NHK . 又∵∠NME =∠AMN ,∠EHG =∠NHK ,∴∠AMN =∠EHG . ∴tan ∠EHG =tan ∠AMN =563.三、解答题(本大题7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 22.(本小题满分7分)(1)先化简再求值:a (1-4a )+(2a +1)(2a -1),其中a =4.【解】原式=a -4a 2+4a 2-1=a -1.当a =4时,原式=a -1=4-1=3.(2)解不等式组:⎩⎨⎧2x +1≤7 ①3+2x ≥1+x ②【解】由①,得x ≤3.由②,得x ≥-2.∴解不等式组的解集为:-2≤x ≤3.23.(本小题满分7分)(1)如图,在菱形ABCD 中,CE =CF . 求证:AE =AF .证明:∵四边形ABCD 是菱形,∴AD =AB ,∠D =∠B ,DC =BC . ∵CE =CF ,CB 第23(1)题图第21题答案图2B'ANG第21题答案图1 AMN∴DC -CF =BC -CE . ∴DF =BE .∴△ADF ≌△ABE . ∴AE =AF .(2)如图,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.解:∵AB 是⊙O 的直径,PA 与⊙O 相切于点A ,∴PA ⊥AB .∴∠A =90°.又∵∠OPA =40°,∴∠AOP =50°. ∵OB =OC ,∴∠B =∠OCB .又∵∠AOP =∠B +∠OCB ,∴∠B =∠OCB =12∠AOP =25°.24.(本小题满分8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg ,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克? (2)这些采摘的黄瓜和茄子可赚多少元? 解:(1)设采摘黄瓜x 千克,采摘茄子y 千克,根据题意,得⎩⎨⎧x +y =40x +1.2y =42 . 解得⎩⎨⎧x =30y =10. 答:采摘黄瓜30千克,采摘茄子10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元).答:采摘的黄瓜和茄子可赚23元. 25.(本小题满分8分)着教育信息化的发展,学生的学习方式日益增多. 教师为了指导学生有幸效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:第23(2)题图P(1)本次接受问卷调查的学生共有 人;在扇形统计图中“D ”选项所占的百分比为; (2)扇形统计图中,“B ”选项所对应扇形圆心角为 度; (3)请补全条形统计图;(4)若该校共有1200名学生,请你估计该校学生课外利用网络学习的时间在“A ”选项的有多少人? 解:(1)50÷50%=100.∴本次接受问卷调查的学生共有100人;10÷100×100%=10%.∴在扇形统计图中“D ”选项所占的百分比为10%. (2)20÷100×360°=72°.∴扇形统计图中,“B ”选项所对应扇形圆心角为72°. (3)100-20-50-10=20(人),∴条形统计图中“A ”选项所对应的人数是20人.(补图略)(4)20÷100×1200=240(人).答:估计该校学生课外利用网络学习的时间在“A ”选项的有240人. 26.(本小题满分9分)如图1,□OABC 的边OC 在x 轴的正半轴上,OC =5,反比例函数y =mx(x >0)的图象经过点A (1,4). (1)求反比例函数的关系式和点B 的坐标;(2)如图2,过BC 的中点D 作DP ∥x 轴交反比例函数图象于点P ,连接AP 、OP . ①求△AOP 的面积;②在□OABC 的边上是否存在点M ,使得△POM 是以PO 为斜边的直角三角形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.第25题图1选项第25题图2课外利用网络学习的时间问卷调查表 您好!这是一份关于您平均每周课外利用网络学习时间的问卷调查表,请在表格中选择一项符合您学习时间的选项,在其后空格内打“√”,非常感谢您的合作.解:(1)把A (1,4)代入y =mx,得4=m 1.∴m =4.∴反比例函数的关系式为:y =4x .∵x B =AB +1=5+1=6,y B =4,∴点B 的坐标为(6,4).(2)①∵D 是BC 的中点,且B (6,4),C (5,0),∴D (5.5,2).作DP 的延长线,交OA 于点E .∵DP ∥OA ,D 是BC 的中点,∴点E 是OA 的中点.∴E (0.5,2).过点A 作AF ⊥OC 于点F ,交PE 于点G ,则AG ⊥P E 于点G ,且AF =4. ∵点P 的纵坐标与点D 的纵坐标相同, ∴点P 的纵坐标为2.把y =2代入y =4x ,得2=4x.∴x =2.∴点P 的坐标为(2,2).∴PE =x P -x E =2-0.5=1.5.∴△AOP 的面积=△AEP 的面积+△EOP 的面积=12PE •AG +12PE •FG =12PE (AG +FG )= 12PE •AF =12×1.5×4=3.②在□OABC 的边上是否存在点M ,使得△POM 是以PO 为斜边的直角三角形.以OP 为直径作圆,该圆交OC 于点M 1,交OA 于点M 2,则M 1,M 2就是符合题意的点. ∵PM 1⊥OC ,且点P 的坐标为(2,2), ∴点M 1的坐标为(2,0).可求得直线OA 的解析式为y =4x .∵PM 2⊥OA ,∴可设直线PM 2的解析式为y =-14x +b .第26题答案图2第26题答案图1把点P (2,2)代入,得2=-14×2+b .解得b =2.5.∴直线PM 2的解析式为y =-14x +2.5.由⎩⎪⎨⎪⎧y =4xy =-14x +2.5 解得⎩⎨⎧x =1017y =4017.∴点M 2的坐标为(1017,4017).综合以上可得,符合题意的点M 的坐标为(2,0)或(1017,4017).27.(本小题满分9分)在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究. (一)尝试探究如图1,在四边形ABCD 中,AB =AD ,∠BAD =60°,∠ABC =∠ADC =90°,点E 、F 分別在线段BC 、CD 上,∠EAF =30°,连接EF .(1)如图2,将△ABE 绕点A 逆时针旋转60°后得到△A ′B ′E ′(A ′B ′与AD 重合),请直 接写出∠E ′AF =________度,线段BE 、EF 、FD 之间的数量关系为________;(2)如图3,当点E 、F 分别在线段BC 、CD 的延长线上时,其他条件不变,请探究线 段BE 、EF 、FD 之间的数量关系,并说明理由. (二)拓展延伸如图4,在等边△ABC 中,E 、F 是边BC 上的两点,∠EAF =30°,BE =1,将△ABE 绕点A 逆时针旋转60°得到△A ′B ′E ′(A ′B ′与AC 重合),连接EE ′,AF 与EE ′交于点N ,过点A 作AM ⊥BC 于点M ,连接MN ,求线段MN 的长度.第27题图2第27题图1E'CCD解:(一)尝试探究:(1)∠E ′AF =30°,线段BE 、EF 、FD 之间的数量关系为:EF =BE +FD . 理由:∵将△ABE 绕点A 逆时针旋转60°得到△A ′B ′E ′,∴AE ′=AE ,∠A ′B ′E ′=∠B =90°,B ′E ′=BE ,∠B ′A ′E ′=∠BAE . ∵∠ADC =90°,∴∠ADC +∠A ′B ′E ′=180°. ∴F 、D 、E ′在同一条直线上. ∵∠BAD =60°,∠EAF =30°, ∴∠BAE +∠FAD =30°.∴∠B ′A ′E ′+∠FAD =30°. ∴∠E ′AF =∠FAE =30°. 又∵AE ′=AE ,AF =AF , ∴△AFE ≌△AFE ′.∴EF =E ′F =DF +DE ′=DF +BE .(2)在图3中,线段BE 、EF 、FD 之间的数量关系为:EF =BE -FD .理由:如答案图1,将△ABE 绕点A 逆时针旋转60°后得到△A ′B ′E ′(A ′B ′与AD 重合).∵将△ABE 绕点A 逆时针旋转60°得到△A ′B ′E ′,∴AE ′=AE ,∠A ′B ′E ′=∠B =90°,B ′E ′=BE ,∠B ′A ′E ′=∠BAE . ∵∠ADC =90°,∴∠ADC +∠A ′B ′E ′=180°. ∴F 、D 、E ′在同一条直线上.∵∠BAE +∠EAD =60°, ∠B ′A ′E ′=∠BAE , ∴∠B ′A ′E ′+∠EAD =60°. 即∠E ′AE =60°. 又∵∠EAF =30°,∴∠E ′AF =∠E ′AE ―∠EAF =60°―30°=30°. ∴∠EAF =∠E ′AF . 又∵AE ′=AE ,AF =AF , ∴△AFE ≌△AFE ′.∴EF =E ′F =DE ′―DF =BE ―DF .第27题图3第27题图4ME'FBE(二)拓展延伸:如答案图2,连接E ′F .∵将△ABE 绕点A 逆时针旋转60°得到△A ′B ′E ′(A ′B ′与AC 重合), ∴AE ′=AE , B ′E ′=BE =1,∠B ′A ′E ′=∠BAE . ∵∠BAE +∠EAC =60°, ∠B ′A ′E ′=∠BAE , ∴∠B ′A ′E ′+∠EAC =60°. 即∠E ′AE =60°. 又∵AE ′=AE ,∴△EAE ′是等边三角形.∵∠E ′AE =60°,∠EAF =30°, ∴∠E ′AF =∠EAF =30°. 又∵AE ′=AE ,∴AN ⊥EE ′(三线合一).∴AN AE ′=32. 在等边△ABC 中,∵AM ⊥BC 于点M ,∴AM AC=32,且∠CAM =∠BAM =12∠BAC =30°. 可证∠E ′AF =∠EAF =30°.∴∠E ′AF =∠CAM =30°.∴∠E ′AF -∠FAC =∠CAM -∠FAC . ∴∠E ′AC =∠FAM .又∵AN AE ′=32,AM AC =32,′ ∴△MAN ∽△CAE ′.∴MN CE ′=32. 又∵CE ′=1,∴MN =32. 28.(本小题满分9分)如图1,抛物线y =ax 2+(a +3)x +3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 第27题答案图2ME'FEE'第27题答案图1于点M .(1)求a 的值和直线AB 的函数表达式; (2)设△PMN 的周长为C 1,△AEN 的周长为C 2,若12C C =65,求m 的値; (3)如图2,在(2)的条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A +23E ′B 的最小值.解:(1)把点A (4,0)代入y =ax 2+(a +3)x +3,得 16a +4(a +3)+3=0.解得a =-34.∴抛物线的函数表达式为:y =-34x 2+94x +3.把x =0代入上式,得y =3.∴点B 的坐标为(0,3).由A (4,0),B (0,3)可得直线AB 的函数表达式为:y =-34x +3.(2)根据题意,得OE =m ,AE =4-m ,AB =5,点P 的坐标可表示为(m ,-34m 2+94m +3).∴PE =-34m 2+94m +3……………………………………………………①∵△AEN ∽△AOB ,∴AN AB =NE BO =AE 4.∴AN 5=NE 3=4-m4.∴AN =54(4-m ), NE =34(4-m ).∵△PMN ∽△AEN ,且12C C =65,∴PNAN=65.∴PN =65AN =65×54(4-m )=32(4-m ).∴PE =NE +PN =34(4-m )+32(4-m )=94(4-m )………………………...②由①、②,得-34m 2+94m +3=94(4-m ). 解得m 1=2,m 2=4(不合题意,舍去). ∴m 的値为2.(3)在(2)的条件下,m 的値为2,点E (2,0),OE =2.∴OE ′=OE =2. 如图,取点F (0,43),连接FE ′、AF .则OF =43,AF =42+(43)2=4310.∵OF OE ′=432=23,OE ′OB =23,且∠FOE ′=∠E ′OB ,∴△FOE ′∽△E ′OB .∴FE ′E ′B =23.∴FE ′=23E ′B . ∴E ′A +23E ′B =E ′A +FE ′≥AF =4310.∴E ′A +23E ′B 的最小值为4310.第28题答案图。
∥3套精选试卷∥2018年济南市八年级上学期数学期末学业水平测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,△ABC ≌△ADE ,∠B =25°,∠E =105°,∠EAB =10°,则∠BAD 为( )A .50°B .60°C .80°D .120°【答案】B 【分析】先根据全等三角形的对应角相等得出B=∠D=25°,再由三角形内角和为180°,求出∠DAE=50°,然后根据∠BAD=∠DAE+∠EAB 即可得出∠BAD 的度数.【详解】解:∵△ABC ≌△ADE ,∴∠B=∠D=25°,又∵∠D+∠E+∠DAE=180°,∠E=105°,∴∠DAE=180°-25°-105°=50°,∵∠EAB=10°,∴∠BAD=∠DAE+∠EAB=60°.故选B .【点睛】本题主要考查了全等三角形的性质,三角形内角和定理.综合应用全等三角形的性质和三角形内角和定理是解题的关键.2.分式64x x -+有意义的条件是( ) A .4x ≠-B .6x ≠C .4x ≠-且6x ≠D .4x = 【答案】A【分析】根据分式有意义的条件即可求出答案.【详解】根据题意得:x+1≠0,∴x ≠﹣1.故选:A .【点睛】本题考查了分式有意义的条件,解答本题的关键是熟练运用分式有意义的条件,本题属于基础题型. 3.下列电视台的台标中,是轴对称图形的是( )A .B .C .D .【答案】A 【解析】B,C,D 不是轴对称图形,A 是轴对称图形.故选A.4.如图,在平面直角坐标系中,ABC ∆位于第二象限,点A 的坐标是(2,3)-,先把ABC ∆向右平移3个单位长度得到111A B C ∆,再把111A B C ∆绕点1C 顺时针旋转90︒得到221A B C ∆,则点A 的对应点2A 的坐标是( )A .(2,2)-B .(6,0)-C .(0,0)D .(4,2)【答案】D 【分析】根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A 2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.5.平移前后两个图形是全等图形,对应点连线( )A .平行但不相等B .不平行也不相等C .平行且相等D .不相等【答案】C【分析】根据平移的性质即可得出答案.【详解】解:平移前后两个图形是全等图形,对应点连线平行且相等.故选:C.【点睛】本题利用了平移的基本性质:①图形平移前后的形状和大小没有变化,只是位置发生变化;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.6.如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A.9 B.8 C.27 D.45【答案】A【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可【详解】∵正方形A. B. C的面积依次为2、4、3∴根据图形得:2+4=x−3解得:x=9故选A.【点睛】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键7.计算3x3x1x-1--的结果是()A.xx-1B.x C.3 D.0【答案】C【解析】原式=331xx--=311xx--()=3.故选C.点睛:掌握同分母分式的计算法则.8.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB 交AE的延长线于点E,则DF的长为()A.4.5 B.5 C.5.5 D.6【答案】C【解析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=12AB=12×11=1.1,∴DF=1.1.故选:C.【点睛】本题考查了等腰三角形的性质,平行线的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.9.下列命题的逆命题是真命题的是()A.同位角相等B.对顶角相等C.等边对等角D.全等三角形的面积相等【答案】C【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【详解】A、原命题的逆命题为:相等是同错角,不正确;B、原命题的逆命题为:相等的角为对顶角,不正确;C、原命题的逆命题为:等角对等边,正确;D、原命题的逆命题为:面积相等的三角形全等,不正确;故选:C.【点睛】此题主要考查学生对命题与逆命题的理解及真假命题的判断能力,对选项要逐个验证,判断命题真假时可举反例说明.10.在平行四边形ABCD 中,对角线AC ,BD 交于点O ,如果AC=12,BD=10,AB=m ,那么m 的取值范围是( )A .1<m<11B .2<m<22C .10<m<12D .5<m<6【答案】A【分析】根据三角形三边关系判断即可.【详解】∵ABCD 是平行四边形,AC=12,BD=10,O 为AC 和BD 的交点,∴AO=6,BO=5,∴6-5<m<6+5,即1<m<11故选:A .【点睛】本题考查平行四边形的性质和三角形的三边关系,关键在于熟记三角关系.二、填空题11.如图,在Rt ABC ∆中,090,6,10,8∠====ABC AB AC BC ,D E 、分别为AB AC 、的中点,点P 为线段DE 上的一个动点,连接、BP CP ,则BPC ∆的周长的最小值等于__________.【答案】1【分析】由题意可得:当点P 与点E 重合时,△BPC 的周长有最小值,即为AC+BC 的长度,由此进行计算即可.【详解】∵∠ABC=90°, D 、E 分别为AB 、AC 的中点,∴DE⊥AB,∴DE 是线段AB 的垂直平分线,∴当点P 与点E 重合时,△BPC 的周长的最小值;BE =AE ,如图所示:∴△BPC 的周长=EC+BE+BC =AC+BC ,又∵AC=10,BC=8,∴△BPC 的周长=10+8=1.故答案为:1.【点睛】考查了轴对称-最短路线问题,解题关键利用线段垂直平分线和两点之间线段最短得到点P 与点E 重合时,△BPC 的周长有最小值.12.已知m 2﹣mn=2,mn ﹣n 2=5,则3m 2+2mn ﹣5n 2=________.【答案】31【解析】试题解析:根据题意,222,5,m mn mn n -=-=故有222,5m mn n mn =+=-,∴原式=3(2+mm)+2mn−5(mn−5)=31.故答案为31.13.若(x+2)(x ﹣6)=x 2+px+q ,则p+q =_____.【答案】-1【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p 与q 的值,再代入计算即可求解.【详解】解:(x+2)(x ﹣6)=x 2﹣4x ﹣12=x 2+px+q ,可得p =﹣4,q =﹣12,p+q =﹣4﹣12=﹣1.故答案为:﹣1.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.14.一次函数1y x =+与3y ax =+的图象交于点P ,且点P 的横坐标为1,则关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是______. 【答案】12x y =⎧⎨=⎩【解析】把1x =代入1y x =+,得2y =,得出两直线的交点坐标为(1,2),从而得到方程组的解。
2018年山东济南中考数学试题word-答案

山东省济南市2018年学业水平考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.(2018济南,1,4分)4的算术平方根是()A.2 B.-2 C.±2 D.【答案】A2.(2018济南,2,4分)如图所示的几何体,它的俯视图是()正面A. B. C. D.【答案】D3.(2018济南,3,4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()7.6×10×10 A.0.76× B.7.610 434.C2 10D.76×B【答案】分)“瓦当”是中国古建筑装饰××头的,济南,(4.201844下面“瓦当”图案中既附件,是中国特有的文化艺术遗产,1 / 29)是轴对称图形又是中心对称图形的是(CABDD【答案】=35°,1是∠的平分线,∥,若∠42018济南,5,分)如图,5.()则∠的度数为(.17.5° B.35° C.55°A .70°D B1D FACB【答案】)分)下列运算正确的是((6.2018济南,6,452332aaaaa B=2)4.+2=3.(-A2222babaaaaa 2 D+=-2)((.C+1)-)+.(=+2 / 29【答案】Cxxm=1的解为正数,-7,4分)关于2的方程37.(2018济南,m的取值范围是()则mmm>>- C A..<-B.m< D.【答案】ByA=-图象上有三个点,4分)在反比例函数8.(2018济南,8xyBxyCxyxxx,则<)、(),若,<)、<((0,,332231121下列结论正确的是()yyyyyyyyy. B.<<<. A<< C<133113222yyy.<<D231【答案】C9.(2018济南,9,4分)如图,在平面直角坐标系中,△的顶P顺时针方向旋转90°,点都在方格线的格点上,将△绕点ABCP的坐标为()′得到△′,则点′ A.(0,4) B.(1,1) C.(1,2) D.(2,1)y7B'65A4A'3'C2C1BxO4123214––––33 / 29【答案】C10.(2018济南,10,4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是()...A.与2016年相比,2017年我国电子书人均阅读量有所降低B.2012年至2017年,我国纸质书的人均阅读量的中位数是4.57 C.从2014年到2017年,我国纸质书的人均阅读量逐年增长D.2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多阅读量/本654.4.4.4.4.44. 77 66 65 58 56 39 33.纸质书电子书2.222 2.35 O201720152012201320142016年份48B【答案】90°,如图,一个扇形纸片的圆心角为,2018济南,114分)(11.OA恰.如图半径为62,将这张扇形纸片折叠,使点与点4 / 29好重合,折痕为,图中阴影为重合部分,则阴影部分的面积为()A.6π- B.6π-9 C.12π-D.A AD COB BO(A)A【答案】M满足横、分)若平面直角坐标系内的点济南,11,412.(2018PM、0)(纵坐标都为整数,则把点1叫做“整点”.例如:,2myQm0)-2(-4+4,-(22)都是“整点”.抛物线>=BAABx之间的部分与、轴交于点、与两点,若该抛物线在m的取值线段所围成的区域(包括边界)恰有七个整点,则)范围是(mmm1.<2 D≤<1 B.<≤1 C.1 A.≤m2 <<B 【答案】【解析】22mmymx0,2(-2)-且>2+-解:∵=44-=,对称轴是(2,-2)∴该抛物线开口向上,顶点坐标为x直线=2.5 / 29由此可知点(2,0)、点(2,-1)、顶点(2,-2)符合题意.方法一:①当该抛物线经过点(1,-1)和(3,-1)时(如答案图1),这两个点符合题意.m.=1 2mmmym442得到-1=+将(1,-1)代入=-4+4---2.解得2xyx 2=.-4此时抛物线解析式为+2xxyxx+2-≈0.6,2-4=+20.解得=由0=得=21≈3.4.x (3,0)符合题意.(1,0)、(2,0)、∴轴上的点m,-0)、(1、(2,0)、(3,则当=1时,恰好有 (1,0) 个整点符合题意.-(2,2)这7、1)、(3,-1)(2,-1)、mmm的值越的值越大,抛物线的开口越小,≤1.【注:∴】小,抛物线的开口越大,yy2211OO541213–1234–15xx1–1–2–2–3––3m答案图时) 答案图1(=1m=时2( ) ②当该抛物线经过点(0,0)和点(4,0)时(如答案图6 / 292),这两个点符合题意.x轴上的点 (1,0)、(2,0)、(3,0)也符合题意.此时2mym解.0-00=-40)代入2=-4+4+-2得到,将(0m得=.2xyx此时抛物线解析式为2=.-yx,-1.∴点=1时,得(1当=×1-2×1=-<- 1)符合题意.yx,-.∴点3时,得(3=×9-2×3=-<-当1= 1) 符合题意.m,(3,、(20)、=时,点(0,0)、(1,0) 综上可知:当,-(2,-2)、,-,-1)、(31)、(2,0)、(40)、(1 个整点符合题意,1)都符合题意,共有9m∴=不符合题.m∴>.xm轴所≤1综合①②可得:当<时,该函数的图象与故答案选B.围城的区域(含边界)内有七个整点,mmm,依==1,方法二:根据题目提供的选项,分别选取2=,次加以验证.2xymx2①当=时(如答案图3),得-=.2xxxyx=.4由得=0,-2=0.解得=021x,、,、,、,、,∴轴上的点(00)(10)(20)(30)(4 0)符合题意.7 / 29xy=×1-2×1=-<-1.∴点1时,得(1,-当=1)符合题意.xy=×9-2×3=-<-1.∴点3时,得(3当,-=1) 符合题意.m=时,点(0,0)、(1,0)、(2,0)、(3 综上可知:当,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意,mA不正确.=不符合题.∴选项∴yyymm=1时) 222111OOO5–14123x1–34512x121345–x1–1–1–2–2–2–3–3–3–答案图4( 答案图3( )=时m=2时答案图5()xxxxy2==20 2xxym.,得+=2-4②当4=1时(如答案图)2=得-≈0.6,-4=+20由.解得21+≈3.4.x,0)符合题意.、,0)、(2,0)(3∴轴上的点(1yx1),-=-21.∴点(1当=1时,得=1-4×1+符合题意.yx符1) ,∴点129时,当=3得=-4×3+=-.(3-合题意.8 / 29m=1时,点(1,0)、(2,0)、(3,综上可知:当0)、(1,-1)、(3,-1)、(2,-2) 、(2,-1)都符合题意,共有7个整点符合题意,m=1∴符合题.B正确.∴选项2xxmy.2+-8③当2=时(如答案图5),得6=2xxxyx,.=3+6=0.解得=由1=0得28-21x符合题意.(3,0)、(1,0)(2,0)∴、轴上的点m、(3,0)0)、(2,0)、综上可知:当,=2时,点(1个整点符合都符合题意,共有5,-,-2) 、(21)(2 题意,m 2∴不符合题.=分)24小题,每小题二、填空题(本大题共64分,共mm2)2m 4=;2018济南,13,4分)分解因式:-(13.【答案】(2)(+-个黑色棋,4分)在不透明的盒子中装有5济南,14.(201814任意摸出子和若于个白色做子,每个棋子除颜色外都相同,摸到黑包棋子的概率是,则白色棋子的个数是=;一个棋子,15【答案】108°,分),济南,(15.2018154一个正多边形的每个内角等于则它的边数是=;9 / 29【答案】5x=;,则 4分)若代数式的值是216.(2018济南,16,【答案】6AB两地相距20、,甲乙两人沿同一2018济南,17,4分)17.(AB 地.甲先出发,匀速行驶,甲出发1地到条路线从小时后乙再出发,乙以2的速度度匀速行驶1小时后提高速度并A地的继续匀速行驶,结果比甲提前到达.甲、乙两人离开sth)的关系如图所示,则甲出发小时后距离(()与时间和乙相遇.y/km【答案】.乙甲20O51t h/4ytty=;≤4);=4(0≤【解析】乙甲由方程组解得=)) .∴答案为.18.(2018济南,18,4分)如图,矩形的四个顶点分别在矩形的各条边上,=,=2,=3.有以下四个结论:①∠=∠;②△≌△;③∠=;④矩形的面积是4.其中一定成立的是.(把所有正确结论的序号填在横线上)10 / 29ADEHFCGB【答案】①②④.aa,则==.【解析】设==∵∠=90°,∴∠+∠=90°. 又∵∠+∠=90°, ∴∠=∠…………………………………故①正确.. 同理可得∠=∠. ∴∠=∠DB,=∠又∵∠=90°,=∴△≌△…………………………………故②正确.. ∴=同理可得△≌△.. .∴=.易得△∽△.∴=∴=aa. --.∴==∴=-=,2+=2在△中,∵2222aaaa. -==)2..解得=2.∴=∴= ( 3∴+-,∴∠=在△中,∵∠==,2)30°. …………………………………故③正确.∴∠=30°=,3).…………………………………故④正=矩形的面积=×=2×24 确.11 / 29三、解答题(本大题共9小题,共78分)19.(2018济南,19,6分)1).计算:2+│-5│-30°+(0-1 2解:+│-5-10π-│-30°+(π-1).1=+5-+6= 6分)济南,20,.20(2018x)) ②>解不等式组:①, 2 解:由①,得xx1. 33--2<x2. <∴,得由②xx1. >34-x1.∴>-x2.<∴不等式组的解集为-1< 6分),(21.2018济南,21FE□是延长线上的点,是延长线上的点,连接,如图,在中,O且=,连接交于点.求证:=.AED OCBF12 / 29□中,证明:∵∴=∥.∴∠=∠.又∵=,∴+=+.∴=.又∵∠=∠,∴△≌△.∴=.22.(2018济南,22,8分)本学期学校开展以“感受中华传统买德”为主题的研学部动,组织150名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中全顺活动,共支付票款2000元,票价信息如下:地点票价10元/人历史博物馆人/元20 民俗展览馆1)请问参观历史博物馆和民俗展览馆的人数各是多少人?( 2()若学生都去参观历史博物馆,则能节省票款多少元?x人,则参观民俗展览馆的有)设参观历史博物馆的有1解:(x)人,依题意,得-150(xx)2000.10+20(150-13 / 29xx=202000. +300010-x=-1000. 10-x=100. ∴x=50. ∴150-答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000-150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.23.(2018济南,23,8分)OOAODC,的直径,与⊙,与⊙如图是⊙相切于点相较于点O上的一点,分别连接、,∠=60°.为⊙(1)求∠的度数;(2)若=6,求的长度.BOCDAP【解析】解:(1)方法一:连接(如答案图1所示).O直径,∴∠=90°.∵是⊙14 / 29C=60°.∵=,∴∠=∠∴∠=90°-∠=90°-60°=30°.BBOOCCDDAPAP第23题答案图1 第23题答案图2C=2×60°2∠(如答案图2所示),则∠=方法二:连接、=120°.∵=,∴∠=∠=(180°-120°)=30°.即∠=30°.O的切线,∴∠=90°. (2)∵是⊙在△中,∵∠=30°,∴==×6=3.∴==3.在△中,∵∠=,∴30°==,2).∴=4.∴=-=4-3=.24.(2018济南,24,10分)D”打印、数学史、诗歌欣赏、陶艺制作四门某校开设了“3校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后15 / 29绘制例图1 、图2两幅均不完整的统计图表.最受欢迎的校本课程问卷调校本课频频数(人数您好!这是一份关于您最喜欢的校本课304问卷调查表,请在表格中选择一个(只能选个)您最喜欢的课程选项,在其后空格内打20非常感谢您的合作.16C b8D校本课程选项合计a1A“3D”打印数学史BDBC诗歌欣赏A25%陶艺制作DC请您根据图表中提供的信息回答下列问题:ab=;=,1)统计表中的(D”对应扇形的圆心角为度;(2)“(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;AB”、”、“(4)小明和小亮参加校本课程学习,若每人从“C”三门校本课程中随机选取一门,请用画树状图或列表格的“方法,求两人恰好选中同一门校本课程的概率.a=36÷0.45=)80. 1解:(b=16÷80=0.20.D”对应扇形的圆心角的度数为:)“( 216 / 298÷80×360°=36°.(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人).(4)列表格如下:ABCABC共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.25.(2018济南,25,10分)yxAy轴交于点0)轴交于点,与(1 如图,直线与=+2,Bbtt >1.将线段先向右平移个单位长度、再向上平移(0,()yx>0=()的图0)个单位长度,得到对应线段,反比例函数CD两点,连接、.象恰好经过、ab的值; (1)求和(2)求反比例函数的表达式及四边形的面积;NxMyx>0)点(3)在轴正半轴上,点是反比例函数=(的图象上的一个点,若△是以为直角边的等腰直角三角形时,求17 / 29M的坐标.所有满足条件的点yyCBBxxAAOO第图题25 题备用图第25【解析】aAya=-.∴代入2=+2,得0=.+将点解:(1)2(1,0)xy+2∴直线的解析式为.=-2Bbxy.2.∴,=2.∴点2) 将=0代入上式,得(0=ttDC.(1,2+(2)由平移可得:点)(2,)、ttCtDy.解= ,2)、+(1,2+)分别代入)) 将点=,得(2,得.DyC4)=,点.(2,2)、点,(1 ∴反比例函数的解析式为.)分别连接、(如答案图1xCB轴,=.2、∵(0,2)2)(2,,∴∥xAD轴,=,∴⊥.44)、,∵(10)(1,∴⊥.S∴4=××=×2×4=.四边形18 / 29yBxAO1题答案图第25lC∥作直线①当∠=90°、=时(如答案图2所示),过点(3)HFxyGMlx过交.过点.作⊥直线轴于点于点轴,交,轴于点ENl作⊥直线.点于点mmNmm2-0),则=设点.(,=,0)(其中>∵∠=90°,∴∠+∠=90°.El 0°.∵⊥直线,∴∠+∠=于点9∴∠=∠.又∵∠=∠=90°,=,∴△≌△.m.-∴==2,==2.4=.∴=4∴=+=2+2Myxy 1).1.∴点(4将4=代入,=,得=yyEFFCECllGMMxxOONGNH19 / 29第25题答案图2 第25题答案图3Cly⊥作直线3 ②当∠=90°、=时(如答案图所示),过点FMxGl与点2.过点轴于点作⊥轴与点,交直线,则==ElE,==2.,则⊥直线于点∵∠=90°,∴∠+∠=90°.lE,∴∠+∠=90°.于点∵⊥直线∴∠=∠.又∵∠=∠=90°,=,∴△≌△.∴=,=.aaaMaa).+,=+=2+.∴点设==,,则=(2Maayaaa=--,=-=,得将点=.(2+,解得) 代入1211.a=+1.+∴=2M(+1,-1).∴点M的坐标为(4,1)或(+1,-1).综合①②可知:点26.(2018济南,26,12分)在△中,=,∠=120°,以为边在∠的另一侧作∠=∠,D为射线上任意一点,在射线上截取=,连接、、点.D落在线段的延长线上时,直接写出∠的1,当点(1)如图度数;D落在线段(不含边界)上时,与交于点22()如图,当点20 / 29F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若=6,求的最大值.ME MEAAFCDBCBD1题第图262 26题图第【解析】∠=30°.解:(1)EEAACCDBDB(2) (1)中的结论是否还成立证明:连接(如答案图1所示).B=∠=30°.∵∠=120°,=,∴∠B=∠=30°.又∵∠=∠,∴∠21 / 29又∵=,∴△≌△.∴=,∠1=∠2.∴∠2+∠3=∠1+∠3=∠=120°.即∠=120°.又∵=,∴∠=∠=30°.MMEEAA2FF31CBDCDB答案图12答案图.6 (3) ∵=,=,∴=6 ∵∠=∠=30°且∠=∠,.∴=..∴=·.∴=∴△∽△.∴=∴当最短时,最短、22 6最长.,此时==所示)易得当⊥时,最短、最长(如答案图2 .3 ===.∴最短.=6=-∴-=最短最长分)12(2018济南,27,27.2yyAB两点,交,(40)0)过++1如图,抛物线=4(2,、xCC轴的平行线与不等式抛物线上的另一个交轴于点,过点作22 / 29DPPm的横坐标为.点点为是该抛物线上一动点,设点,连接、m >4).((1)求该抛物线的表达式和∠的正切值;m的值;如图2,若∠=45°,求(2)APyNP作⊥,、轴于点的直线与,过点,过点(3)如图3MxQ,试判断四边形的形状,并说明,直线与垂足为轴交于点理由.yyyMDCDCCDPPQAxOBxAxOAOBBN第27题图1 第27题图2第27题图3【解析】xxy 2yBA4,得0)分别代入=(1)将点,(20)和点++(4,解:2+-.∴该抛物线的解析式为.解得=-3)) 3=4. Cxy.),4,=4 将=0代入上式,得=4.∴点(02. 在△中,===y4,设直线的解析式为=+kAk.解得200)将点(2,代入上式,得=+4=-2.23 / 29yx+4.=-2 ∴直线的解析式为yx+4.=-同理可得直线的解析式为求∠方法一:BG(如答案图1所示)作⊥,交的延长线于点,过点G =90°.则∠G=90°,∠=∠,∴△∽△. ∵∠=∠∴===2.∴=2.=2=在△中,∵+=,∴(2)+. 2+=∴==+=. 222222.=, )在△中,∠==yyCD CD P PE AOxB OAxB G第27题答案图1 第27题答案图2求∠方法二:AE(如答案图2作⊥,交于点所示)过点,则·=-1.∴-2=-1.∴=.yxm.∴可设直线的解析式为=+24 / 29Amm=-1.0=×2+.解得将点 (2,0)代入上式,得yx-1∴直线的解析式为.=xxE(,).解得=)) -1=-.∴点+4)) 由方程组∴==.在△中,∠==,2)=.求∠方法三:AE(如答案图3所示),则·=-过点1. 作⊥,交点∴-=-1.∴=1.yxn.∴可设直线的解析式为+=Ann=-2+..解得将点,(20)代入上式,得0=2yx-2=.∴直线的解析式为F(3,1)由方程组解得.∴点.∴==,==3.在△中,∠=)=,3)=.yCDPFxAOB第27题答案图3(2)方法一:利用“一线三等角”模型A沿顺时针方向旋转90°,得到线段′,则将线段绕点25 / 29CA=∠′=45°.′=,∠′=90°,∠′C′=90°.∴∠+∠又∵∠+∠=90°,C′.∴∠=∠CCExEC′=∠=90°.′⊥.则∠过点轴于点′作CC′,′=,′=∠=90°,∠=∠∵∠C′≌△.∴△CE==2,==4′.∴∴=+=2+4=6.C′(6,2).∴点CCy=+4.的解析式为设直线′Chh=-.+46′(6,2)代入上式,得2=将点.解得CCyx+4=-′.的解析式为∴直线PCC上.∵∠=45°,∠′=45°,∴点′在直线2xxxxPyx 的+4),则=-是方程-3设点4的坐标为(,+一个解.2xx0314-.=将方程整理,得xx.=0(不合题意,舍去)解得=,21yxyx+4,得=.=代入将=-1P,∴点的坐标为().26 / 29yyCxOAB xAOB'K E题答案274 第第27题答案图5 图方法二:利用正方形中的“全角夹半角”模型.2)(KHB过点,交于点作⊥于点,连接.易得四边形是正方形.应用“全角夹半角”可得=+.hhhhKh.)=-6,=+=2+(4设-(4,),则=-,=-=42222h22hh.解得(6-2在△中,由勾股定理,得+=.∴+ )==.K.(4,∴点)y.=+设直线的解析式为4hhK=-.+4.解得将点4(4,)代入上式,得=xy 4=-.∴直线的解析式为+2xxxxPxy的4+设点=-的坐标为(,,则)4是方程-3+一个解.2xx 314-.=0将方程整理,得xx=解得=,0(不合题意,舍去).2127 / 29xyxy=. 4将+=代入,得=-1P的坐标为(,).∴点(3)四边形是平行四边形.理由如下:x轴,∴==4∵∥.22xxxxyyx,=+4.3解得+4,得 4=0 将-=4代入=3-D(6,4∴点).1x=6.2mmmm 2mmHmmmMP.,0,4 根据题意,得)(,,3-)+4),((24,=.-2 ∴=-3,=+4),=mm5时(如答案图所示),=6 ①当4<-<62mmm 2)-3.+4)=-∵△∽△,∴=.∴m 4∴===.-∵△∽△,∴=.∴=.m∴=.∴=4-.mm6(-4)=-.-∴=-= 2m-=∴= 6.又∵∥,∴四边形是平行四边形.28 / 29yyQ HHNN题答27题答案图6 第第 277案图m所示),同理可得:四边形6②当6>时(如答案图是平行四边形.综合①、②可知:四边形是平行四边形.29 / 29。
2018年济南中考数学 精品

5分数人数(人)15 6分 0 2010 8分 10分第7题图济南市2018年初三年级学业水平考试数 学 试 题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方. 3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2+(-2)的值是A .-4B .14- C .0 D .42.一组数据0、1、2、2、3、1、3、3的众数是 A .0 B .1 C .2 D .33.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为4.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨.将28400吨用科学记数法表示为A .0.284×105 吨B .2.84×104吨C .28.4×103吨D .284×102吨 5.二元一次方程组42x y x y -=⎧⎨+=⎩的解是A .37x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C .73x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩6.下列各选项的运算结果正确的是A .236(2)8x x =B .22523a b a b -=C .623x x x ÷=D .222()a b a b -=- 7.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为A .53分 B .354分 C .403分 D .8分第4题图 A .B .C .D . 第3题图A BC DEF第14题图第10题图A DPE第12题图ABCDM NO 第9题图⑴ 1+8=? 1+8+16=?⑵ ⑶ 1+8+16+24=? 第11题图…… 8.一次函数21y x =-+的图象经过哪几个象限 A .一、二、三象限 B .一、二、四象限 C .一、三、四象限D .二、三、四象限9.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos∠OMN 的值为A .12BC D .110.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是A .x <-1B .x >2C .-1<x <2D .x <-1或x >211.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为A .2(21)n +B .2(21)n -C .2(2)n +D .2n 12.如图所示,矩形ABCD 中,AB =4,BC =,点E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有A .2个B .3个C .4个D .5个 绝密★启用前济南市2018年初三年级学业水平考试数 学 试 题注意事项:1.第Ⅱ卷共6页.用蓝、黑色钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚.第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题 中的横线上.)13.分解因式:221x x ++= . 14.如图所示,△DEF 是△ABC 沿水平方向ABCD第19题图第16题图第17题图向右平移后的对应图形,若∠B =31°,∠C =79°,则∠D 的度数是 度.15.解方程23123x x =-+的结果是 . 16.如图所示,点A 是双曲线1y x=-在第二象限的分支上的任意一点,点B 、C 、D 分别是点A关于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是 .17.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分7分)⑴解不等式组:224x x x +>-⎧⎨-⎩≤⑵如图所示,在梯形ABCD 中,BC ∥AD ,AB =DC ,点M 是AD 的中点. 求证:BM =CM .19.(本小题满分7分)0(3)-⑵如图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若B ACDM第18题图第21题图 第22题图AC求线段AD 的长.20.(本小题满分8分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与 b 的乘积等于2的概率.21.(本小题满分8分) 如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.22.(本小题满分9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式. ⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?第20题图A B C N M PA M N P 1 C P 2B ACMNP 1 P 2 P 2009 ……B 第23题图2 第23题图1第23题图323.(本小题满分9分)已知:△ABC 是任意三角形.⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN =∠A .⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由. ⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2018等分点,则∠MP 1N +∠MP 2N +……+∠MP 2009N =____________.(请直接将该小问的答案写在横线上.)24.(本小题满分9分)如图所示,抛物线223y x x =-++与x 轴交于A 、B 两点,直线BD 的函数表达式为y =+l 与直线BD 交于点C 、与x 轴交于点E .⑴求A 、B 、C 三个点的坐标.⑵点P 为线段AB 上的一个动点(与点A 、点B 不重合),以点A 为圆心、以AP 为半径的圆弧与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连接AN 、BM 、MN .①求证:AN =BM .②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值?并求出该最大值或最小值.济南市2018年初三年级学业水平考试数学试题参考答案及评分标准二、填空题13. 2(1)x + 14. 70 15.9x =- 三、解答题18.(1)解:224x xx +-⎧⎨-⎩>≤解不等式①,得1x ->, (1)分 解不等式②,得2x ≥-, ················· 2分 ∴不等式组的解集为1x ->. ················· 3分 (2) 证明:∵BC ∥AD ,AB =DC ,∴∠BAM =∠CDM , ·················· 1分 ∵点M 是AD 的中点,∴AM =DM , ····················· 2分∴△ABM ≌△DCM , ·················· 3分 ∴BM =CM . ····················· 4分 19.(1)解:原式0(3)- ·············· 1分2+1 ···················· 2分 1 ····················· 3分(2)解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ···················· 1分 ∴在Rt△ADC 中,cos30ACAD =︒············· 2分①②第22题图··········· 3分=2 . ·············· 4分20.解:a····························· 6分总共有16种结果,每种结果出现的可能性相同,其中ab =2的结果有2种, ································ 7分∴a 与 b 的乘积等于2的概率是18. ·············· 8分21.解:设BC 边的长为x 米,根据题意得 ············· 1分321202xx -=, ···················· 4分解得:121220x x ==,, ··················· 6分∵20>16,∴220x =不合题意,舍去, ················ 7分答:该矩形草坪BC 边的长为12米. ············ 8分 22. 解:⑴∵点A 的坐标为(-2,0),∠BAD =60°,∠AOD =90°,∴OD =OA ·tan60°=,∴点D 的坐标为(0,), ··············· 1分 设直线AD 的函数表达式为y kx b =+,20k b b -+=⎧⎪⎨=⎪⎩,解得k b ⎧⎪⎨=⎪⎩ ∴直线AD 的函数表达式为y +. ·········· 3分 ⑵∵四边形ABCD 是菱形, ∴∠DCB =∠BAD =60°,∴∠1=∠2=∠3=∠4=30°, AD =DC =CB =BA =4, ···················· 5分 如图所示:①点P 在AD 上与AC 相切时, AP 1=2r =2, ∴t 1=2.②点P 在DC 上与AC 相切时, CP 2=2r =2,DCMNO A B P 第24题图lxy FE AB C M N P 1第23题图P21 2 ∴AD +DP 2=6, ∴t 2=6. ········· 7分 ③点P 在BC 上与AC 相切时, CP 3=2r =2,∴AD +DC +CP 3=10, ∴t 3=10. ········· 8分 ④点P 在AB 上与AC 相切时, AP 4=2r =2,∴AD +DC +CB +BP 4=14, ∴t 4=14,∴当t =2、6、10、14时,以点P 为圆心、以1为半径的圆与对角线AC 相切. ··············· 9分23. ⑴证明:∵点M 、P 、N 分别是AB 、BC 、CA 的中点, ∴线段MP 、PN 是△ABC 的中位线,∴MP ∥AN ,PN ∥AM , ······ 1分∴四边形AMPN 是平行四边形, · 2分∴∠MPN =∠A . ······· 3分⑵∠MP 1N +∠MP 2N =∠A 正确. ····· 4分 如图所示,连接MN , ······· 5分 ∵13AM AN AB AC ==,∠A =∠A ,∴△AMN ∽△ABC ,∴∠AMN =∠B ,13MN BC =,∴MN ∥BC ,MN =13BC , ······· 6分∵点P 1、P 2是边BC 的三等分点,∴MN 与BP 1平行且相等,MN 与P 1P 2平行且相等,MN 与P 2C 平行且相等, ∴四边形MBP 1N 、MP 1P 2N 、MP 2CN 都是平行四边形, ∴MB ∥NP 1,MP 1∥NP 2,MP 2∥AC ,·················· 7分 ∴∠MP 1N =∠1,∠MP 2N =∠2,∠BMP 2=∠A , ∴∠MP 1N +∠MP 2N =∠1+∠2=∠BMP 2=∠A .················· 8分 ⑶∠A . ············· 9分24.解:⑴令2230x x -++=,解得:121,3x x =-=, ∴A (-1,0),B (3,0) ······· 2分 ∵223y x x =-++=2(1)4x --+, ∴抛物线的对称轴为直线x =1,将x=1代入y=+y∴C(1,. ········3分⑵①在Rt△ACE中,tan∠CAE=CE AE=∴∠CAE=60º,由抛物线的对称性可知l是线段AB的垂直平分线,∴AC=BC,∴△ABC为等边三角形,················· 4分∴AB= BC =AC = 4,∠ABC=∠ACB= 60º,又∵AM=AP,BN=BP,∴BN = CM,∴△ABN≌△BCM,∴AN=BM. ························ 5分②四边形AMNB的面积有最小值.············· 6分设AP=m,四边形AMNB的面积为S,由①可知AB= BC= 4,BN = CM=BP,S△ABC×42=∴CM=BN= BP=4-m,CN=m,过M作MF⊥BC,垂足为F,则MF=MC)m -,∴S△CMN=12CN MF=12m)m-=2,······· 7分∴S=S△ABC-S△CMN=-(2+)22)m-+···················· 8分∴m=2时,S取得最小值··············· 9分。
最新山东省济南市2018年学业水平考试数学试题及答案资料

山东省济南市2018年学业水平考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.(2018济南,1,4分)4的算术平方根是( )A .2B .-2C .±2D . 2 2.(2018济南,2,4分)如图所示的几何体,它的俯视图是( )A .B .C .D .3.(2018济南,3,4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A .0.76×104B .7.6×103C .7.6×104D .76×1024.(2018济南,4,4分)“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是( )A B C D5.(2018济南,5,4分)如图,AF 是∠BAC 的平分线,DF ∥AC ,若∠1=35°,则∠BAF 的度数为( )A .17.5°B .35°C .55°D .70°6.(2018济南,6,4分)下列运算正确的是( )A .a 2+2a =3a 3B .(-2a 3)2=4a 5C .(a +2)(a -1)=a 2+a -2D .(a +b )2=a 2+b 27.(2018济南,7,4分)关于x 的方程3x -2m =1的解为正数,则m 的取值范围是( ) A .m <-12 B .m >-12 C .m >12 D .m <128.(2018济南,8,4分)在反比例函数y =-2x 图象上有三个点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),若x 1<0<x 2<x 3,则下列结论正确的是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 1<y 2 9.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1)10.(2018济南,10,4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理...的是( ) A .与2016年相比,2017年我国电子书人均阅读量有所降低 B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.57 C .从2014年到2017年,我国纸质书的人均阅读量逐年增长 D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多11.(2018济南,11,4分)如图,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .6π-92 3B .6π-9 3C .12π-92 3D .9π412.(2018济南,11,4分)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线y =mx 2-4mx +4m -2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2二、填空题(本大题共6小题,每小题4分,共24分)13.(2018济南,13,4分)分解因式:m 2-4=____________;14.(2018济南,14,4分)在不透明的盒子中装有5个黑色棋子和若于个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是14,则白色棋子的个数是=____________;15.(2018济南,15,4分)一个正多边形的每个内角等于108°,则它的边数是=____________; 16.(2018济南,16,4分)若代数式x -2x -4的值是2,则x =____________;17.(2018济南,17,4分)A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s (km )与时间t (h )的关系如图所示,则甲出发____________小时后和乙相遇.18.(2018济南,18,4分)如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB =EF ,FG =2,GC =3.有以下四个结论:①∠BGF =∠CHG ;②△BFG ≌△DHE ;③tan ∠BFG =12;④矩形EFGH 的面积是43.其中一定成立的是____________.(把所有正确结论的序号填在横线上)三、解答题(本大题共9小题,共78分)19.(2018济南,19,6分)计算:2-1+│-5│-sin30°+(π-1)0.20.(2018济南,20,6分)解不等式组:⎩⎪⎨⎪⎧3x +1<2x +3 ①2x >3x -12 ②21.(2018济南,21,6分)如图,在□ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且 AE =CF ,连接EF 交BD 于点O .求证:OB =O D .BF22.(2018济南,22,8分)本学期学校开展以“感受中华传统文化”为主题的研学部动,组织150名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中一种活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?23.(2018济南,23,8分)如图AB是⊙O的直径,P A与⊙O相切于点A,BP与⊙O相较于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.24.(2018济南,24,10分)某校开设了“3D ”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1 、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题: (1)统计表中的a =________,b =_______; (2)“D ”对应扇形的圆心角为_______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数; (4)小明和小亮参加校本课程学习,若每人从“A ”、“B ”、“C ”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.C25.(2018济南,25,10分)如图,直线y =ax +2与x 轴交于点A (1,0),与y 轴交于点B (0,b ).将线段AB 先向右平移1个单位长度、再向上平移t (t >0)个单位长度,得到对应线段CD ,反比例函数y =kx (x >0)的图象恰好经过C 、D 两点,连接AC 、B D . (1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数y =kx (x >0)的图象上的一个点,若△CMN是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.第25题图 第25题备用图26.(2018济南,26,12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF的最大值.第26题图1 第26题图227.(2018济南,27,12分)如图1,抛物线y =ax 2+bx +4过A (2,0)、B (4,0)两点,交y 轴于点C ,过点C 作x 轴的平行线与不等式抛物线上的另一个交点为D ,连接AC 、B C .点P 是该抛物线上一动点,设点P 的横坐标为m (m >4).(1)求该抛物线的表达式和∠ACB 的正切值; (2)如图2,若∠ACP =45°,求m 的值;(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM ⊥CD ,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.第27题图1 第27题图2 第27题图3答案:1、A2、D3、B4、D5、B6、C7、B8、C9、C10、B 11、A 12、B13、(m+2)(m-2) 14、15 15、5 16、6 17、16/518、①②③19、620、-1<χ<2 21、略22、(1)100人50人(2)500元23、(1)30º(2)根324、(1)a=80 b=0.20 (2)36º(3)500 (4)1/325、(1)a=-2 b=2 (2)y=4/x s=4 (3)M(4,1)或(根5 + 1,根5 -1)26、(1)30度(2)成立(3)9/227、(1)y=1/2x2-3x+4 tan<ACB =1/3 (2)m=16/3 (3)平行四边形28、。
2018年山东省济南市中考数学试卷-答案

2018年山东省济南市初中学业水平考试数学答案解析1.【答案】A【解析】解:2的平方为4,4的算术平方根为2.故选:A .∴【考点】算术平方根.2.【答案】D【解析】解:从几何体上面看,2排,上面3个,下面1个,左边2个正方形.故选:D .【考点】简单几何体的三视图3.【答案】B【解析】解:,故选:B .37 6007.610=⨯【考点】科学记数法—表示较大的数.4.【答案】D【解析】解:A .不是轴对称图形,也不是中心对称图形;B .不是轴对称图形,是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,是中心对称图形.故选:D .【考点】轴对称图形;中心对称图形.5.【答案】B【解析】解:,,是的平分线,,故选:DF AC ∥135FAC ∴∠=∠=︒AF BAC ∠35BAF FAC ∴∠=∠=︒B .【考点】平行线的性质,角平分线的性质6.【答案】C【解析】:A .错误,不是同类项不能合并;B .错误,应该是;C .正确;D .错误,应该()23624a a =-是;故选:C . ()2222a b a ab b +=++【考点】整式的运算7.【答案】B【解析】解:解方程得:,关于的方程的解为正数,,321x m -=123m x += x 321x m -=1203m +∴>解得:,故选:B . 12m >-【考点】一元一次方程的解;解一元一次不等式.8.【答案】C【解析】解:在反比例函数图象上,,,对于反比例函数,在第()11,A x y 2y x=-10x <10y ∴>2y x =-二象限,随的增大而增大,,,;故选:C .y x 230x x << 230y y ∴<<231y y y ∴<<【考点】反比例函数图象的增减性9.【答案】C【解析】解:由图知,旋转中心的坐标为,P ()1,2,故选:C .【考点】坐标与图形变化—旋转.10.【答案】B【解析】解:A .与2016年相比,2017年我国电子书人均阅读量有所降低,正确;B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.615,错误;C .从2014年到2017年,我国纸质书的人均阅读量逐年增长,正确;D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多,正确;故选:B .【考点】折线统计图,中位数.11.【答案】A【解析】解:连接,如图, OD扇形纸片折叠,使点与点恰好重合,折痕为,A O CD ,AC OC ∴=,23OD OC ∴==CD ∴==,,30CDO ∴∠=︒60COD ∠=︒由弧、线段和所围成的图形的面积∴AD AC CD, 260π 61 3 π3602S AOD S COD ⋅⋅⋅-=-= 扇形-阴影部分的面积为选:A . ∴6π-【考点】扇形面积的计算;翻折变换(折叠问题).12.【答案】B【解析】解:且, 2244222y mx mx m mx =+-=--- ()0m >该抛物线开口向上,顶点坐标为,对称轴是直线.∴()2,2-2x =由此可知点、点、顶点符合题意.()2,0()2,1-()2,2-①当该抛物线经过点和时(如答案图1),这两个点符合题意.()1,1-()3,1-将代入得到.解得.()1,1-2442y mx mx m +-=-1442m m m -=-+-1m =此时抛物线解析式为.242y x x -=+由得.解得,.0y =2420x x +=-120.6x =-≈22 3.4x =+≈轴上的点、、符合题意.x ∴()1,0()2,0()3,0则当m=1时,恰好有、、、、、、这7个整点符合题意. ()1,0()2,0()3,0()1,1-()3,1-()2,1-()2,2-.【注:的值越大,抛物线的开口越小,的值越小,抛物线的开口越大】1m ∴≤m m答案图1(时) 答案图2(时) 1m =12m =②当该抛物线经过点和点时(如答案图2),这两个点符合题意.()0,0()4,0此时x 轴上的点、、也符合题意.()1,0()2,0()3,0将代入得到.解得. ()0,02442y mx mx m +-=-00402m =-+-12m =此时抛物线解析式为.22y x x =-当时,得.点符合题意. 1x =13121122y =⨯-⨯=-<-∴()1,1-当时,得y=×9﹣2×3=﹣<﹣1.∴点(3,﹣1)符合题意.3x =1232综上可知:当时,点、、、、、、、、都符12m =()0,0()1,0()2,0()3,0()4,0()1,1-()3,1-()2,2-()2,1-合题意,共有9个整点符合题意,不符合题;. 12m ∴=12m ∴>综合①②可得:当时,该函数的图象与轴所围城的区域(含边界)内有七个整点, 112m <≤x 故选:B .【考点】抛物线的顶点坐标,根据点的坐标确定抛物线的位置13.【答案】()()22m m +-【解析】解:.故答案为:.()()2422m m m =+--()()22m m +-【考点】因式分解—运用公式法.14.【答案】15【解析】解:.∴白色棋子有15个;故答案为:15. 155154÷-=【考点】概率.15.【答案】5【解析】解:正多边形的每个内角等于,每一个外角的度数为, 108︒∴18010872︒-︒=︒边数,这个正多边形是正五边形.故答案为:5.∴360725=︒÷︒=∴【考点】多边形内角与外角.16.【答案】6【解析】解:, 2=24x x --去分母得:()224x x -=-228x x -=-,6x =经检验:是原方程的解.6x =故答案为:6.【考点】解分式方程.17.【答案】 165【解析】解:由图象可得:;; ()405y t t =≤≤甲()()()211291624t t y t t ⎧-≤≤⎪=⎨-<≤⎪⎩乙由方程组,解得. 4916y t y t =⎧⎨=-⎩165t =故答案为. 165【考点】一次函数的应用.19.【答案】① ② ④【解析】解:,. 90FGH ∠=︒ 90BGF CGH ∴∠+∠=︒又,90CGH CHG ∠+∠=︒ ,故①正确.BGF CHG ∴∠=∠同理可得.DEH CHG ∠=∠.BGF DEH ∴∠=∠又,,90B D ∠=∠=︒ FG EH =,故②正确.BFG DHE ∴△≌△同理可得.AFE CHG ≌,易得AF CH ∴=BFG CGH △∽△.设、为,GH EF a .. BF FG CG GH ∴=23BF a∴=,. 6BF a ∴=6AF AB BF a a∴=-=-. 6CH AF a a ∴==-在中,Rt CGH △,222CG CH GH +=.解得.. 22263a a a ∴+-=()a =GH ∴=6BF a a ∴=-=在中,,. Rt BFG △cos BF BFG FG ∠== 30BFG ∴∠=︒,故③错误. tan tan30BFG ∴∠=︒=。
济南2018年初三年级学业水平考试数学全真模拟试卷3

济南2018年初三年级学业水平考试数学全真模拟试卷3第Ⅰ卷(选择题共45分)一、选择题:1.如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1B.2k﹣1C.2k+1D.1﹣2k2.若x、y为有理数,下列各式成立的是()A.(﹣x)3=x3B.(﹣x)4=﹣x4C.x4=﹣x4D.﹣x3=(﹣x)33.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个4.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()5.下列运算正确的是()A.(a2)3=a5B.a3•a=a4C.(3ab)2=6a2b2D.a6÷a3=a26.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )7.若,则w=()8.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=6,则BE长度是()A.2B.4C.5D.39.下面哪个点不在函数y=﹣2x+3的图象上()A.(﹣5,13) B.(0.5,2) C.(3,0) D.(1,1)10.从标号分别为1,2,3,4,5的5张卡片中,随机抽取一张,下列事件中,必然事件是()A.标号小于6B.标号大于6C.标号是奇数D.标号是311.若关于x的二次方程x2+m=3x有两个不相等的实数解,则m的取值范围是()A.m>2.25B.m<2.25C.m≥2.25D.m≤2.2512.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米213.在一张长为8cm,宽为6cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上).这个等腰三角形有几种剪法?()A.1B.2C.3D.414.清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校. 图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系. 下列说法错误的是( )A .清清等公交车时间为3分钟B .清清步行的速度是80米/分C .公交车的速度是500米/分D .清清全程的平均速度为290米/分15.如图,在直角坐标系中,正△AOB 的边长为2,设直线x=t (0≤t ≤2)截这个三角形所得位于此直线左方的图形的面积为y ,则y 关于t 的函数图象大致是( )第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.a 13b 0a b -++=-,则=___________.17.命题“相等的角是对顶角”是____命题(填“真”或“假”). 18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有______种租车方案.19.如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为______.20.若圆锥的母线长为5 cm,底面半径为3 cm,则它的侧面展开图的面积为________cm2(结果保留π).21.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F= 72°,则∠D=______度.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)解方程组:x3y1, 3x2y8.+=-⎧⎨-=⎩(2)解不等式组2x312x0+>⎧⎨-≥⎩,并把解集在数轴上表示出来.23.(本小题满分7分)(1)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙O的切线;(2)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.24.(本小题满分8分)一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元. (1)甲、乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?25.(本小题满分8分)自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了多少名同学?(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(本小题满分9分)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P 为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA 交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC 沿PE 翻折至△PEG 位置,∠BAG=90°,求BP 长.27.(本小题满分9分)已知如图,一次函数1y x 12=+的图象与x 轴交于点A ,与y 轴交于点B ,二次函数21y x bx c 2=++的图象与一次函数1y x 12=+的图象交于B 、C 两点,与x 轴交于D 、E 两点,且D 点坐标为(1,0). (1)求二次函数的解析式.(2)在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P 运动的时间t 的值;若不存在,请说明理由. (3)若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P沿x轴正方向以每秒2个单位的速度运动,点Q以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似,若存在,求a的值;若不存在,说明理由.28.(本小题满分9分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为2 43(,),且与y 轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标.(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由.(3)以AB为直径的⊙M与CD相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案1.B2.D3.C4.B5.B6.B7.D8.B9.C10.A11.B12.D13.C14.D15.D16.4 17.假 18.2 19.52 20.15π 21.3622.(1)解:x3y13x2y8+=-⎧⎨-=⎩,①,②①×3-②,得11y=-11,解得:y=-1,把y=-1代入②,得:3x+2=8, 解得x=2.∴方程组的解为x2 y1.=⎧⎨=-⎩,(2)解:2x312x0+>⎧⎨-≥ ⎩,①,②由①得:x>-1;由②得:x≤2.不等式组的解集为:-1<x≤2, 在数轴上表示为:23.(1)证明:连接OE.∵BE是∠CBA的角平分线,∴∠ABE=∠CBE.∵OE=OB,∴∠ABE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠OEC=∠C=90°,∴AC是⊙O的切线.(2)证明:∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°.∵四边形ADBE是平行四边形,∴平行四边形ADBE是矩形.24.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得:111x1.5x12 +=,解得:x=20,经检验,知x=20是方程的解且符合题意.1.5x=30,故甲、乙两公司单独完成此项工程,各需20天、30天. (2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元.根据题意得:12(y+y-1 500)=102 000,解得:y=5 000,甲公司单独完成此项工程所需的施工费:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费:30×(5 000-1 500)=105 000(元);故甲公司的施工费较少.25.解:(1)张老师一共调查了:(6+4)÷50%=20(人);(2)C类女生人数:20×25%-3=2(人);D 类男生人数:20-3-10-5-1=1(人);将条形统计图补充完整如图所示:(3)列表如图,共6种情况,其中一位男同学一位女同学的情况是3种,所选两位同学恰好是一位男同学和一位女同学的概率是12. 26.解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,∴∠APB=∠CEP.又∵∠B=∠C=90°,∴△ABP ∽△PCE ,2AB BP 2x 1m ,,y x x.PC CE m x y 22∴==∴=-+-即 (2)2221m 1m m y x x (x ),22228=-+=--+ ∴当m x 2=时,y 取得最大值,最大值为2m .8 ∵点P 在线段BC 上运动时,点E 总在线段CD 上,2m 1,m 2 2.8∴≤≤解得∴m 的取值范围为:0m 2 2.<≤(3)由折叠可知,PG=PC ,EG=EC ,∠GPE=∠CPE.又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,∴∠APG=∠APB .∵∠BAG=90°,∠B=90°,∴AG ∥BC ,∴∠GAP=∠APB ,∴∠GAP=∠APG ,∴AG=PG=PC .解法一:如图所示,分别延长CE 、AG ,交于点H ,则易知ABCH 为矩形,HE=CH-CE=2-y ,GH=AH-AG=4-(4-x )=x , 在Rt △GHE 中,由勾股定理得:GH 2+HE 2=GE 2,即:x 2+(2-y )2=y 2,化简得:x 2-4y+4=0①.2221m 1y x x m 4221y x 2x,223x 8x 40x x 232BP 2.3=-+=∴=-+-+===∴由()可知,,这里,代入①式整理得:,解得:或,的长为或解法二:如图所示,连接GC .∵AG ∥PC ,AG=PC ,∴四边形APCG为平行四边形,∴AP=CG.易证△ABP≌GNC,∴CN=BP=x.过点G作GN⊥PC于点N,则GH=2,PN=PC-CN=4-2x.在Rt△GPN中,由勾股定理得:PN2+GN2=PG2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:x=23或x=2,∴BP的长为23或2.解法三:过点A作AK⊥PG于点K.∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG-PK=4-2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:2x x23==或,∴BP的长为22. 3或∴点C 的坐标为(4,3).设符合条件的点P 存在,令P (a ,0).当P 为直角顶点时,如图,过C 作CF ⊥x 轴于F.∵∠BPC=90°,∴∠BPO+∠CPF=90°.又∵∠OBP+∠BPO=90°,∴∠OBP=∠CPF,∴Rt △BOP ∽Rt △PFC ,BO OP 1t ,PF FC 4t 3∴==-,即 整理得:t 2-4t+3=0,解得:t=1或t=3,∴所求的点P 的坐标为(1,0)或(3,0),∴运动时间为1秒或3秒.(3)存在符合条件的t 值,使△APQ 与△ABD 相似.设运动时间为t ,则AP=2t ,AQ=at.∵∠BAD=∠PAQ , ∴当AP AQ AP AQ AB AD AD AB==或时,两三角形相似. 2t at 2t at AB 5AD 3,33556525a a ,53==∴==∴== ,,或或∴存在a 使两三角形相似且6525a a .53==或 28.解:(1)由题意,设抛物线的解析式为:22y a x 4?a 0.3=--≠()() ∵抛物线经过(0,2),22a 042,3∴--=() 解得:a=16, 22212y x 4.6314y x x 2.6314y 0x x 20,63∴=--=-+=-+=()即:当时, 解得:x=2或x=6,∴A (2,0),B (6,0).(2)存在,如图2,由(1)知:抛物线的对称轴l 为x=4,∵A 、B 两点关于l 对称,连接CB 交l 于点P ,则AP=BP ,∴AP+CP=BC的值最小.∵B (6,0),C (0,2) ,∴OB=6,OC=2, BC 210,AP CP BC 210,∴=∴+== ∴AP+CP 的最小值为210.(3)如图3,连接ME,∵CE 是⊙M 的切线,∴ME ⊥CE ,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE, ∵在△COD 与△MED 中,COD DEM ODC MDE OC ME ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM.设OD=x,则CD=DM=OM-OD=4-x,则Rt △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=(4-x )2.33x ,D(,0).22∴=∴ 设直线CE 的解析式为y=kx+b,∵直线CE 过C (0,2),D(3,02)两点, 43k k b 032b 2b 2⎧⎧=-+=⎪⎪⎨⎨⎪⎪==⎩⎩,,则解得:,,∴直线CE 的解析式为4y x 2.3=-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济南市2018年学业水平考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.(2018济南,1,4分)4的算术平方根是()A.2 B.-2 C.±2 D. 2 【答案】A2.(2018济南,2,4分)如图所示的几何体,它的俯视图是()A.B.C.D.【答案】D3.(2018济南,3,4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×102【答案】B4.(2018济南,4,4分)“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A B C D【答案】D5.(2018济南,5,4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF 的度数为()A.17.5°B.35°C.55°D.70°【答案】B6.(2018济南,6,4分)下列运算正确的是()A.a2+2a=3a3B.(-2a3)2=4a51ABCDFC .(a +2)(a -1)=a 2+a -2D .(a +b )2=a 2+b 2 【答案】C 7.(2018济南,7,4分)关于x 的方程3x -2m =1的解为正数,则m 的取值范围是( ) A .m <-12 B .m >-12 C .m >12 D .m <12【答案】B8.(2018济南,8,4分)在反比例函数y =-2x 图象上有三个点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),若x 1<0<x 2<x 3,则下列结论正确的是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 1<y 2 【答案】C 9.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1)【答案】C 10.(2018济南,10,4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理...的是( ) A .与2016年相比,2017年我国电子书人均阅读量有所降低 B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C .从2014年到2017年,我国纸质书的人均阅读量逐年增长D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多【答案】B 11.(2018济南,11,4分)如图,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( ) A .6π-92 3 B .6π-9 3 C .12π-92 3 D .9π4【答案】A12.(2018济南,11,4分)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线y =mx 2-4mx +4m -2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2【答案】B【解析】解:∵y =mx 2-4mx +4m -2=m (x -2)2-2且m >0,∴该抛物线开口向上,顶点坐标为(2,-2),对称轴是直线x =2.由此可知点(2,0)、点(2,-1)、顶点(2,-2)符合题意. 方法一:①当该抛物线经过点(1,-1)和(3,-1)时(如答案图1),这两个点符合题意. 将(1,-1)代入y =mx 2-4mx +4m -2得到-1=m -4m +4m -2.解得m =1. 此时抛物线解析式为y =x 2-4x +2.由y =0得x 2-4x +2=0.解得x 1=2-2≈0.6,x 2=2+2≈3.4.AB CDO (A ) ABO年份电子书纸质书62345∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-1)、(2,-2)这7个整点符合题意. ∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大,】答案图1(m =1时) 答案图2( m =12时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y =mx 2-4mx +4m -2得到0=0-4m +0-2.解得m =12.此时抛物线解析式为y =12x 2-2x .当x =1时,得y =12×1-2×1=-32<-1.∴点(1,-1)符合题意.当x =3时,得y =12×9-2×3=-32<-1.∴点(3,-1) 符合题意.综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意, ∴m =12不符合题.∴m >12.综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围城的区域(含边界)内有七个整点,故答案选B .方法二:根据题目提供的选项,分别选取m =12,m =1,m =2,依次加以验证.①当m =12时(如答案图3),得y =12x 2-2x .由y =0得12x 2-2x =0.解得x 1=0,x 2=4.∴x 轴上的点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)符合题意. 当x =1时,得y =12×1-2×1=-32<-1.∴点(1,-1)符合题意.当x =3时,得y =12×9-2×3=-32<-1.∴点(3,-1) 符合题意.综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意, ∴m =12不符合题.∴选项A 不正确.答案图3( m =12时) 答案图4(m =1时) 答案图5(m =2时)②当m =1时(如答案图4),得y =x 2-4x +2.由y =0得x 2-4x +2=0.解得x 1=2-2≈0.6,x 2=2+2≈3.4. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 当x =1时,得y =1-4×1+2=-1.∴点(1,-1)符合题意. 当x =3时,得y =9-4×3+2=-1.∴点(3,-1) 符合题意.综上可知:当m =1时,点(1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-2) 、(2,-1)都符合题意,共有7个整点符合题意, ∴m =1符合题. ∴选项B 正确.③当m =2时(如答案图5),得y =2x 2-8x +6. 由y =0得2x 2-8x +6=0.解得x 1=1,x 2=3. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.综上可知:当m =2时,点(1,0)、(2,0)、(3,0)、(2,-2) 、(2,-1)都符合题意,共有5个整点符合题意, ∴m =2不符合题.二、填空题(本大题共6小题,每小题4分,共24分)13.(2018济南,13,4分)分解因式:m 2-4=____________; 【答案】(m +2)(m -2) 14.(2018济南,14,4分)在不透明的盒子中装有5个黑色棋子和若于个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是14,则白色棋子的个数是=____________; 【答案】15 15.(2018济南,15,4分)一个正多边形的每个内角等于108°,则它的边数是=____________; 【答案】516.(2018济南,16,4分)若代数式x -2x -4的值是2,则x =____________;【答案】6 17.(2018济南,17,4分)A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s (km )与时间t (h )的关系如图所示,则甲出发____________小时后和乙相遇.【答案】165.【解析】y 甲=4t (0≤t ≤4);y 乙=⎩⎨⎧2(t -1)(1≤t ≤2)9(t -2)t (2<t ≤4);由方程组⎩⎨⎧y =4t y =9(t -2)解得⎩⎨⎧t =165y =645. ∴答案为165.18.(2018济南,18,4分)如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB =EF ,FG =2,GC =3.有以下四个结论:①∠BGF =∠CHG ;②△BFG ≌△DHE ;③tan ∠BFG =12;④矩形EFGH 的面积是43.其中一定成立的是____________.(把所有正确结论的序号填在横线上)F【答案】①②④.【解析】设EH =AB =a ,则CD =GH =a . ∵∠FGH =90°,∴∠BGF +∠CGH =90°. 又∵∠CGH +∠CHG =90°,∴∠BGF =∠CHG …………………………………故①正确.同理可得∠DEH =∠CHG . ∴∠BGF =∠DEH . 又∵∠B =∠D =90°,FG =EH ,∴△BFG ≌△DHE …………………………………故②正确. 同理可得△AFE ≌△CHG .∴AF =CH . 易得△BFG ∽△CGH .∴BF CG =FG GH .∴BF 3=2a .∴BF =6a. ∴AF =AB -BF =a -6a .∴CH =AF =a -6a .在Rt △CGH 中,∵CG 2+CH 2=GH 2,∴32+( a -6a )2=a 2.解得a =2 3.∴GH =2 3.∴BF = a -6a = 3.在Rt △BFG 中,∵cos ∠BFG =BF FG =32,∴∠BFG =30°. ∴tan ∠BFG =tan30°=33.…………………………………故③正确. 矩形EFGH 的面积=FG ×GH =2×23=43…………………………………故④正确.三、解答题(本大题共9小题,共78分)19.(2018济南,19,6分)计算:2-1+│-5│-sin30°+(π-1)0.解:2-1+│-5│-sin30°+(π-1)0.=12+5-12+1=620.(2018济南,20,6分)解不等式组:⎩⎪⎨⎪⎧3x +1<2x +3 ①2x >3x -12 ② 解:由① ,得3x -2x <3-1. ∴x <2. 由② ,得 4x >3x -1. ∴x >-1.∴不等式组的解集为-1<x <2.21.(2018济南,21,6分)如图,在□ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且 AE =CF ,连接EF 交BD 于点O .求证:OB =O D .证明:∵□ABCD中,∴AD=BC,AD∥B C.∴∠ADB=∠CB D.又∵AE=CF,∴AE+AD=CF+B C.∴ED=F B.又∵∠EOD=∠FOB,∴△EOD≌△FO B.∴OB=O D.22.(2018济南,22,8分)本学期学校开展以“感受中华传统买德”为主题的研学部动,组织150名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中全顺活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?解:(1)设参观历史博物馆的有x人,则参观民俗展览馆的有(150-x)人,依题意,得10x+20(150-x)2000.10x+3000-20x=2000.-10x=-1000.∴x=100.∴150-x=50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000-150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.23.(2018济南,23,8分)如图AB是⊙O的直径,P A与⊙O相切于点A,BP与⊙O相较于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.C【解析】解:(1)方法一:连接AD (如答案图1所示). ∵BA 是⊙O 直径,∴∠BDA =90°.∵⌒BD =⌒BD ,∴∠BAD =∠C =60°.∴∠ABD =90°-∠BAD =90°-60°=30°.CC第23题答案图1 第23题答案图2方法二:连接DA 、OD (如答案图2所示),则∠BOD =2∠C =2×60°=120°. ∵OB =OD ,∴∠OBD =∠ODB =12(180°-120°)=30°.即∠ABD =30°.(2)∵AP 是⊙O 的切线,∴∠BAP =90°. 在Rt △BAD 中,∵∠ABD =30°, ∴DA =12BA =12×6=3.∴BD =3DA =33.在Rt △BAP 中,∵cos ∠ABD =AB PB ,∴cos30°=6PB =32.∴BP =43.∴PD =BP -BD =43-33=3.24.(2018济南,24,10分)某校开设了“3D ”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1 、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a =________,b =_______; (2)“D ”对应扇形的圆心角为_______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数; (4)小明和小亮参加校本课程学习,若每人从“A ”、“B ”、“C ”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率. 解:(1)a =36÷0.45=80. b =16÷80=0.20.(2)“D ”对应扇形的圆心角的度数为:8÷80×360°=36°.(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为: 2000×0.25=500(人). (4)列表格如下:3种,所以两人恰好选中同一门校本课程的概率为:39=13.25.(2018济南,25,10分)如图,直线y =ax +2与x 轴交于点A (1,0),与y 轴交于点B (0,b ).将线段AB 先向右平移1个单位长度、再向上平移t (t >0)个单位长度,得到对应线段CD ,反比例函数y=kx (x >0)的图象恰好经过C 、D 两点,连接AC 、B D . (1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数y =kx (x >0)的图象上的一个点,若△CMN是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.第25题图 第25题备用图【解析】解:(1)将点A (1,0)代入y =ax +2,得0=a +2.∴a =-2. ∴直线的解析式为y =-2x +2.将x =0代入上式,得y =2.∴b =2.∴点B (0,2). (2)由平移可得:点C (2,t )、D (1,2+t ). 将点C (2,t )、D (1,2+t )分别代入y =kx,得⎩⎨⎧t =k 22+t =k 1.解得⎩⎨⎧k =4t =2. ∴反比例函数的解析式为y =4x ,点C (2,2)、点D (1,4).分别连接BC 、AD (如答案图1).∵B (0,2)、C (2,2),∴BC ∥x 轴,BC =2. ∵A (1,0)、D (1,4),∴AD ⊥x 轴,AD =4. ∴BC ⊥A D .∴S 四边形ABDC =12×BC ×AD =12×2×4=4.第25题答案图1(3)①当∠NCM =90°、CM =CN 时(如答案图2所示),过点C 作直线l ∥x 轴,交y 轴于点G .过点M 作MF ⊥直线l 于点F ,交x 轴于点H .过点N 作NE ⊥直线l 于点E . 设点N (m ,0)(其中m >0),则ON =m ,CE =2-m . ∵∠MCN =90°,∴∠MCF +∠NCE =90°. ∵NE ⊥直线l 于点E ,∴∠ENC +∠NCE =90°.∴∠MCF =∠EN C .又∵∠MFC =∠NEC =90°,CN =CM ,∴△NEC ≌△CFM . ∴CF =EN =2,FM =CE =2-m .∴FG =CG +CF =2+2=4.∴x M =4. 将x =4代入y =4x,得y =1.∴点M (4,1).l第25题答案图2 第25题答案图3 ②当∠NMC =90°、MC =MN 时(如答案图3所示),过点C 作直线l ⊥y 轴与点F ,则CF=x C =2.过点M 作MG ⊥x 轴于点G ,MG 交直线l 与点E ,则MG ⊥直线l 于点E ,EG =y C =2. ∵∠CMN =90°,∴∠CME +∠NMG =90°.∵ME ⊥直线l 于点E ,∴∠ECM +∠CME =90°.∴∠NMG =∠ECM .又∵∠CEM =∠NGM =90°,CM =MN ,∴△CEM ≌△MGN .∴CE =MG ,EM =NG .设CE =MG =a ,则y M =a ,x M =CF +CE =2+a .∴点M (2+a ,a ). 将点M (2+a ,a ) 代入y =4x ,得a =42+a.解得a 1=5-1,a 2=-5-1.∴x M=2+a=5+1.∴点M(5+1,5-1).综合①②可知:点M的坐标为(4,1)或(5+1,5-1).26.(2018济南,26,12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF的最大值.第26题图1 第26题图2【解析】解:(1) ∠ADE=30°.(2) (1)中的结论是否还成立证明:连接AE(如答案图1所示).∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.又∵∠ACM=∠ACB,∴∠B=∠ACM=30°.又∵CE=BD,∴△ABD≌△ACE.∴AD=AE,∠1=∠2.∴∠2+∠3=∠1+∠3=∠BAC=120°.即∠DAE=120°.又∵AD =AE ,∴∠ADE =∠AED =30°.D答案图1 答案图2(3) ∵AB =AC ,AB =6,∴AC =6. ∵∠ADE =∠ACB =30°且∠DAF =∠CAD ,∴△ADF ∽△AC D.∴AD AC =AF AD .∴AD 2=AF ·A C .∴AD 2=6AF .∴AF =AD 26.∴当AD 最短时,AF 最短、CF 最长.易得当AD ⊥BC 时,AF 最短、CF 最长(如答案图2所示),此时AD =12AB =3.∴AF 最短=AD 26=326=32.∴CF 最长=AC - AF 最短=6-32=92.27.(2018济南,27,12分)如图1,抛物线y =ax 2+bx +4过A (2,0)、B (4,0)两点,交y 轴于点C ,过点C 作x 轴的平行线与不等式抛物线上的另一个交点为D ,连接AC 、B C .点P 是该抛物线上一动点,设点P 的横坐标为m (m >4).(1)求该抛物线的表达式和∠ACB 的正切值; (2)如图2,若∠ACP =45°,求m 的值;(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM ⊥CD ,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.第27题图1 第27题图2 第27题图3【解析】 解:(1)将点A (2,0)和点B (4,0)分别代入y =ax 2+bx +4,得⎩⎨⎧0=4a +2x +40=16a +4b +4.解得⎩⎪⎨⎪⎧a =12b =-3.∴该抛物线的解析式为y =12x 2-3x +4.将x =0代入上式,得y =4.∴点C (0,4),OC =4.在Rt △AOC 中,AC =OA 2+OC 2=22+42=2 5.设直线AC 的解析式为y =kx +4,将点A (2,0)代入上式,得0=2k +4.解得k =-2. ∴直线AC 的解析式为y =-2x +4.同理可得直线BC 的解析式为y =-x +4. 求tan ∠ACB 方法一:过点B 作BG ⊥CA ,交CA 的延长线于点G (如答案图1所示),则∠G =90°.∵∠COA =∠G =90°,∠CAO =∠BAG ,∴△GAB ∽△OA C.∴BG AG =OC OA =42=2.∴BG =2AG . 在Rt △ABG 中,∵BG 2+AG 2=AB 2,∴(2AG )2+AG 2=22.AG =25 5.∴BG =455,CG =AC +AG =25+255=125 5.在Rt △BCG 中,tan ∠ACB =BG CQ =4551255=13.第27题答案图1 第27题答案图2求tan ∠ACB 方法二:过点A 作AE ⊥AC ,交BC 于点E (如答案图2所示),则k AE ·k AC =-1.∴-2k AE =-1.∴k AE =12.∴可设直线AE 的解析式为y =12x +m .将点A (2,0)代入上式,得0=12×2+m .解得m =-1.∴直线AE 的解析式为y =12x -1.由方程组⎩⎪⎨⎪⎧y =12x -1y =-x +4 解得⎩⎨⎧x =103y =23.∴点E (103,23). ∴AE =⎝⎛⎭⎫2-1032+⎝⎛⎭⎫0-232=235.在Rt △AEC 中,tan ∠ACB =AE AC =23525=13.求tan ∠ACB 方法三:过点A 作AF ⊥BC ,交BC 点E (如答案图3所示),则k AF ·k BC =-1. ∴-k AF =-1.∴k AF =1.∴可设直线AF 的解析式为y =x +n .将点A (2,0)代入上式,得0=2+n .解得n =-2.∴直线AF 的解析式为y =x -2.由方程组⎩⎨⎧y =x -2y =-x +4 解得⎩⎨⎧x =3y =1.∴点F (3,1).∴AF =(3-2)2+(1-0)2=2,CF =(3-0)2-(1-4)2=3 2.在Rt △AEC 中,tan ∠ACB =AF CF =232=13.第27题答案图3(2)方法一:利用“一线三等角”模型将线段AC 绕点A 沿顺时针方向旋转90°,得到线段AC ′,则 AC ′=AC ,∠C ′AC =90°,∠CC ′A =∠ACC ′=45°. ∴∠CAO +∠C ′AB =90°. 又∵∠OCA +∠CAO =90°, ∴∠OCA =∠C ′A B .过点C ′作C ′E ⊥x 轴于点E .则∠C ′EA =∠COA =90°. ∵∠C ′EA =∠COA =90°,∠OCA =∠C ′AB ,AC ′=AC ,∴△C ′EA ≌△AO C .∴C ′E =OA =2,AE =OC =4. ∴OE =OA +AE =2+4=6. ∴点C ′(6,2).设直线C ′C 的解析式为y =hx +4.将点C ′(6,2)代入上式,得2=6h +4.解得h =-13.∴直线C ′C 的解析式为y =-13x +4.∵∠ACP =45°,∠ACC ′=45°,∴点P 在直线C ′C 上.设点P 的坐标为(x ,y ),则x 是方程12x 2-3x +4=-13x +4的一个解.将方程整理,得3x 2-14x =0.解得x 1=163,x 2=0(不合题意,舍去).将x 1=163代入y =-13x +4,得y =209.∴点P 的坐标为(163,209).第27题答案图4 第27题答案图5(2)方法二:利用正方形中的“全角夹半角”模型.过点B 作BH ⊥CD 于点H ,交CP 于点K ,连接AK .易得四边形OBHC 是正方形. 应用“全角夹半角”可得AK =OA +HK .设K (4,h ),则BK =h ,HK =HB -KB =4-h ,AK =OA +HK =2+(4-h )=6-h .在Rt △ABK 中,由勾股定理,得AB 2+BK 2=AK 2.∴22+ h 2=(6-h )2.解得h =83.∴点K (4,83).设直线CK 的解析式为y =hx +4.将点K (4,83)代入上式,得83=4h +4.解得h =-13.∴直线CK 的解析式为y =-13x +4.设点P 的坐标为(x ,y ),则x 是方程12x 2-3x +4=-13x +4的一个解.将方程整理,得3x 2-14x =0.解得x 1=163,x 2=0(不合题意,舍去).将x 1=163代入y =-13x +4,得y =209.∴点P 的坐标为(163,209).(3)四边形ADMQ 是平行四边形.理由如下: ∵CD ∥x 轴,∴y C =y D =4.将y =4代入y =12x 2-3x +4,得 4=12x 2-3x +4.解得x 1=0,x 2=6.∴点D (6,4).根据题意,得P (m ,12m 2-3m +4),M (m ,4),H (m ,0).∴PH =12m 2-3m +4),OH =m ,AH =m -2,MH =4.①当4<m <6时(如答案图5所示),DM =6-m∵△OAN ∽△HAP ,∴ON PH =OA AH .∴ON 12m 2-3m +4=2m -2.∴ON =m 2-6m +8m -2=(m -4)(m -2)m -2=m -4.∵△ONQ ∽△HMP ,∴ON HM =OQ HQ .∴ON 4=OQm -OQ .∴m -44=OQm -OQ.∴OQ =m -4.∴AQ =OA -OQ =2-(m -4)=6-m .∴AQ = DM =6-m .又∵AQ ∥DM ,∴四边形ADMQ 是平行四边形.第27题答案图6 第27题答案图7②当m >6时(如答案图6所示),同理可得:四边形ADMQ 是平行四边形.综合①、②可知:四边形ADMQ是平行四边形.。