中职数学4.2-幂函数课件

合集下载

《幂函数》PPT课件

《幂函数》PPT课件
❖ ★当α为奇数时,幂函数为奇函数,
★当α为偶数时,幂函数为偶函数.
例2.证明幂函数f (x) = x在[0,+∞]上是增函数.
证明: 任取x1, x2∈[0,+∞],且x1 x2,则
f
(
x1)-f
(
x
)
2
x1-
(
x2
x1- x2)( x1 x1 x2
x2)
= x1 x2
方法技巧:分子有理化
几个幂函数的性质:
y x y x2
1
y x3 y x2 y x1
定义域 值域 奇偶性 单调性 公共点
yx
R
R 奇函数 增函数 (1,1)
y x2 R
y ≥0 偶函数
(1,1)
y x3 R
R 奇函数 增函数 (1,1)
1
y x2 x 0 y ≥0 非奇非偶 增函数 (1,1)
y x1 x 0 y 0 奇函数
(1,1)
一般幂函数的性质:
★幂函数的定义域、奇偶性,单调性,
因函数式中α的不同而各异.
❖ ★所有的幂函数在(0,+∞)都有定义,并且函数 图象都通过点(1,1).
❖ ★如果α>0,则幂函数的图象过点(0,0),(1,1) 并在(0,+∞)上为增函数.
❖ ★如果α<0,则幂函数的图象过点(1,1),并在 (0,+∞)上为减函数.
α是常量.
几点说明:
1、y x 中 x 前面的系数为 1,并且后面
没为常数项,而且底数只能是x
2、定义域没有固定,与的值有关.
幂函数与指数函数的对比
式子 指数函数: y=a x
a底数名称 Nhomakorabeax

《数学幂函数》课件

《数学幂函数》课件
《数学幂函数》PPT课件
# 数学幂函数
1. 概述
定义
幂函数是形如y = a^x的函数,其中a是常数,且 a大于0且不等于1。
性质
幂函数的图像可以是上升或下降的曲线,取决 于底数a的值。
2. 幂函数图像Biblioteka 一次幂函数一次幂函数的图像是一条直线,表达了线性关系。
平方函数
平方函数的图像是一个开口向上或向下的抛物线。
2 幂函数的不足
幂函数在某些情况下可能不适用,例如在自然现象的极端情况下或函数定义域的限制。
3 幂函数的发展历程
幂函数的研究历程涵盖了数学、物理、工程等多个领域,由早期的简单应用逐渐发展到 深入理论的探索。
立方函数
立方函数的图像是一个类似于字母"S"的曲线。
高次幂函数
高次幂函数的图像可能会出现多个极值点和变点。
3. 幂函数图像特征
1 斜率
2 凸凹性
幂函数的斜率与底数a有关,a大于1时斜率增 大,a小于1时斜率减小。
幂函数的凸凹性取决于底数a的奇偶性,a为 偶数时凹,为奇数时凸。
3 零点
幂函数的零点可能有多个,取决于方程 a^x=0的解个数。
幂函数在数学和物理领域的理论研究中起到重要作用,如熵函数和波函数等。
5. 习题解析
基础习题
1. 求解方程a^x = 1的解。 2. 画出y = a^x的图像,并分析其特征。
拓展习题
• 证明幂函数的导数与底数a的关系。 • 研究幂函数的渐近线与底数a的关系。
6. 总结
1 幂函数的优点
幂函数能够很好地描述非线性关系,对于一些复杂的现象具有较高的拟合度。
4 渐近线
幂函数的渐近线有两条,y轴为一条垂直渐近 线,x轴为一条水平渐近线。

语文版中职数学基础模块上册4.2《实数指数幂及其运算法则》ppt课件1

语文版中职数学基础模块上册4.2《实数指数幂及其运算法则》ppt课件1
2 3 ( 2) . 3
1 3
1 2 2.(1) ;
2
回顾知识
整数指数幂的运算法则为: (1)
am an =

扩 展
(2) (3) (4)
a m a n __________ ;(a 0)
a
m
n
= =
; .
整数指数幂的 (1)
m n
ab n
其中 ( m、n Ζ ) .
2 3 2
2 3
1 23 3
1 4 2
5 8 4
2 3 33 2
1 3 42 3
11 2
25 3 3 8 ) 44 2 ) 4 (4
1 52 3 2 2 2 4 2 3 4
=4
4
=3 =3
23 12
课程小结
实数指数幂运算:方法规律总结 一、 (1)化根式为分数指数幂 (2)遇乘积化同底数指数幂 二、 对于计算的结果,不要求一定用什么形式,但结果不 能同时含有根号和分数指数,也不能既含有分母又含有负指 数。
3
(1)首先将底数由小数化为分数,有利于运算法则的利用;
2 1 3 (2)首先要把根式的底数化为一致,再将根式化成分数指数
1 2
4 4 )4
1 2 4
5 4 4
2
3
4
4
8
12
(2) 2 3 4 3 8 2 22 4 23 = 2 2 2 3 2 4 幂, 然后再进行化简与计算. =2 =2


1 2 3 2 3 4 23 12
强化理解
1、计算下列各式: (1)、 3 3 9 4 27 (2) 、 (2 4 ) (2

《幂函数》PPT课件

《幂函数》PPT课件
m2 m 1 1
解之得: m 2或m 1
m 2或m 1
二、五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
(4)
1
y x2
(5)
y x1
1
如何画y x3和y x 2的图像呢 ?
幂函数的定义域、值域、奇偶性和单调性,随常 数α取值的不同而不同.
1
y = x y = x2 y= x3 y x 2
(5) y 1 x
思考:指数函数y=ax与幂 函数y=xα有什么区别?
答案(2)(5)
二、幂函数与指数函数比较
名称
式子
常数
x
y
指数函数: y=a x
(a>0且a≠1)
幂函数: y= xα
a为底数 α为指数
指数 底数
幂值 幂值
判断一个函数是幂函数还是指数函数切入点
看未知数x是指数还是底数
指数函数
幂函数
-2 -3
(-2,4)
4
y=x3 (2,4)
y=x2
3
y=x
1
y=x 2
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
幂函数的图象都通过点(1,1) α为奇数时,幂函数为奇函数, α为偶数时,幂函数为偶函数.
-3 在第一象限内,
a >0,在(0,+∞)上为增函数; -4 a <0,在(0,+∞)上为减函数.
解:
幂函数f
(x)
x
1
2的定义域是(0,

中职生数学基础模块上册课《幂函数举例》pptx

中职生数学基础模块上册课《幂函数举例》pptx

幂函数的值域
幂函数的定义:y=x^a,其中 a为常数
特殊情况:当a=0时,y=x^a 的值域为[0,1];当a=1时,
y=x^a的值域为[0,+∞)
值域的求法:根据幂函数的定 义,当x>0时,y=x^a的值域
为(0,+∞);当x<0时, y=x^a的值域为(-∞,0)
幂函数的图像:幂函数的图像 是一条直线,当a>1时,图像 为上升趋势;当0<a<1时,图
幂函数的性质
奇偶性
奇函数:f(x) = f(-x)
1
指数为奇数时,幂函数为 奇函数
4
偶函数:f(x) = f(-x)
2
指数为偶数时,幂函数为 偶函数
5
幂函数的奇偶性:取决于 底数和指数的奇偶性
3
指数为0时,幂函数为常函 数,既不是奇函数也不是
偶函数
6
增减性
幂函数的增减性取决于底数的大小 底数大于1时,幂函数为增函数 底数小于1时,幂函数为减函数 底数等于1时,幂函数为常函数
加法运算的公式为: f(x) = a^x + b^x, 其中a和b为常数,x 为自变量。
加法运算的性质:幂 函数的加法运算满足 交换律、结合律和分 配律。
04
加法运算的应用:幂 函数的加法运算在数 学、物理、工程等领 域都有广泛的应用, 如求函数的最大值、 最小值、零点等。
幂函数的减法运算
01
幂函数的减法运算是指将两个幂函数进行 减法运算,得到新的幂函数。
01
02
03
04
幂函数的定义: f(x) = x^a (a为 常数)
幂函数的性质: 单调性、奇偶性、 周期性等
幂函数的极限: 当x趋向于无穷大 时,f(x)趋向于0 或无穷大

中职教育数学《幂函数》课件

中职教育数学《幂函数》课件

奇偶性 奇函数 偶函数
奇函数
非奇非偶 函数
奇函数
在(-∞,0] 在R上 上是减函 单调性 是增函 数,在(0, 数 +∞)上是
增函数
公共点
在R上 是增函 数
在(0,+∞) 上是增函数
(1,1)
在( -∞,0), (0, +∞)上是 减函数
下面将5个函数的图像画在同一坐标系中
(1) y x (2) y x2 (3) y x3
定义域:[0,)
值 域: [0,)
奇偶性: 非奇非偶函数
单调性:在[0,)上是增函数
x y=x3
y=x1/2
… -2 … -8 …/
-1 0 -1 0 /0
y 8 6 4
2
-3 -2 -1 0 1 -2
-4 -6 -8
12 18 12 y=x3
23 4
3 4… 27 64 …
3 2…
1
y=x 2
x
1
x 水平的射线;
指数小于0,在第一象限为
双曲线型;
归纳:幂函数图象在第一象限的分布情况
1 0
0 1
0 1
0
1
在上 (1,) 任取一点
作 x 轴的
垂线,与
幂函数的
图象交点
越高,
的值就越 大。
小结: 幂函数的性质:
幂函数的定义域、值域、奇偶性和单调性,随 常数α取值的不同而不同.
1.所有幂函数的图象都通过点(1,1);
高中数学必修 ①人教版A
§2.3幂函数
一、幂函数的定义:
一般地,我们把形如 y x 的函数叫做
幂函数,其中 x为自变量, 为常数。
y x 中 x前面的系数是1,后面没有其它项。

中职数学4.2-幂函数ppt课件

中职数学4.2-幂函数ppt课件

可编辑课件PPT
8
练习1、下列函数中,哪几个
函数是幂函数? 答案:(1)(4)
(1)y = 1
x2
(3)y=2x
(2)y=2x2 (4)y=1
(5) y=x2 +2 (6) y=-x3
可编辑课件PPT
9
二、幂函数应用
例1 写出下列函数的定义域:
(1)y = x 3 ;
1
(2)y = x 2 ;
(3)y = x -2 ;
2
(2,4) y=x
1
(-1,1)
(1,1)
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
-3
-4
可编辑课件PPT
19
-6
(-2,4 4 )
3
(2,4) y x 2 =
y=x
2
(-1 1 ,1 (1 ) ,1)
-4
-2
2
4
6
-1
(-1,-1)
x -2 -3 -2 -1 0 1 2 3 -3y=x3 -27 -8 -1 0 1 8 27
可编辑课件PPT
4.2
幂 函 数
1
基本信息
•中文名 杨幂
•外文名 YangMi,Mini •别名 紫曦,幂幂,狐狸,小幂,狐小幂 •国籍 •民族 汉族 •出生日期 1986年9月12日 •毕业院校 北京电影学院 •音乐作品《爱的供养》、《宫锁心玉》 •影视作品《宫》、《仙剑奇侠传三》、《 上海电视节白玉兰奖最佳女演员 •身高 1.68m •生肖 虎 •血型 B型 •体重 45kg •丈夫 刘恺威
V是a的函数
y=x3
(长4)_如a__果_S _一12__个__正方a是形S场的地函的数面积为y=Sx,12 那么正方形的边

幂函数ppt

幂函数ppt

05
幂函数的计算机实现
幂函数在编程中的表示
数学表达式
使用数学表达式表示幂函数,如 `a^b = a * a * ... * a`(b个 a相乘)。
算法实现
介绍常用的幂函数计算算法,如快速幂、迭代乘法、多项式 乘法等。
幂函数计算的性能优化
缓存优化
使用缓存来避免重复计算,提 高计算效率。
数据类型优化
思路2
通过图像观察幂函数的奇偶性和单调性, 并利用性质解决一些问题。
思路4
结合实际生活,分析幂函数的应用场景和 作用,并解决一些实际问题。
THANKS
感谢观看
幂函数在电磁学中的应用
总结词
描述电荷分布
详细描述
在电磁学中,幂函数可以描述电荷分布,如电荷密度、电场强度等物理量。 电荷分布的幂函数形式可以反映电荷分布随位置变化的规律,从而有助于理 解电磁现象的本质。
幂函数在热学中的应用
总结词
描述热辐射
详细描述
热辐射是热力学中一个重要的现象,其辐射强度和辐射温度之间的关系可以用幂 函数表示。幂函数的热辐射公式可以定量地描述物体在不同温度下的辐射特性, 从而在研究物体加热和热交换过程中具有重要应用。
幂函数ppt
xx年xx月xx日
contents
目录
• 幂函数概述 • 幂函数的运算性质 • 幂函数的数学应用 • 幂函数的物理应用 • 幂函数的计算机实现 • 幂函数的相关习题及解答
01
幂函数概述
定义与性质
定义
形如$y=x^a$的函数,其中$a$为常数。
基本性质
幂函数在$(0,0)$点处的导数为0;当$a>0$时,在$(0,+\infty)$区间内单调递 增;当$a<0$时,在$(0,+\infty)$区间内单调递减。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档