制动系统设计计算报告
某车型制动系统设计计算书(后盘)分析解析

目录1 概述 (1)2 引用标准 (1)3 计算过程 (1)3.1整车参数 (1)3.2理想的前、后制动器制动力分配曲线 (1)3.3NA01制动系统性能校核 (3)3.3.1 NA01制动系统基本参数 (3)3.3.2 制动力分配曲线绘制及同步附着系数确定 (4)3.3.3 前、后轴利用附着系数曲线绘制 (5)3.3.4 空、满载制动距离校核 (7)3.3.5 真空助力器失效时制动减速度校核 (7)3.3.6 ESP系统失效制动减速度校核 (8)3.3.7 任一管路失效制动减速度校核 (8)3.3.8 制动踏板力校核 (8)3.3.9 制动主缸排量校核 (9)3.3.10 制动踏板行程校核 (9)3.3.11 驻车制动校核 (10)4 结论 (12)参考文献 (13)1 概述根据NA01乘用车设计开发目标,设计和开发NA01制动系统,要求尽量沿用M2零部件。
NA01制动系统共有三种配置:ESP+前盘后盘式制动器,ABS+前盘后鼓式制动器,比例阀+前盘后鼓式制动器,此三种配置需分别校核其法规要求符合性。
本计算书是根据整车室提供的NA01整车的设计参数(空载质量、满载质量、轴荷、轴距及质心高度),对经过局部改善(制动主缸直径由22.22mm 更改为20.64mm)的制动系统(ESP+前盘后盘式制动器)的适宜性进行校核计算,以选择合适的参数作为NA01制动系统的设计值。
2 引用标准GB 21670-2008 乘用车制动系统技术要求及试验方法。
GB 7258-2004 机动车运行安全技术条件 3 计算过程 3.1整车参数3.2 理想的前、后制动器制动力分配曲线制动时前、后车轮同时抱死,对附着条件的利用、制动时汽车方向稳定性均较为有利,此时的前、后轮制动器制动力1μF 和2μF 的关系曲线,常称为理想的前、后轮制动器制动力分配曲线。
在任何附着系数ϕ的路面上,前、后车轮同时抱死的条件是:前、后制动器制动力之和等于附着力,并且前、后轮制动器制动力分别等于各自的附着力,即:g F m F 21ϕμμ=+……………………………………(1) gg h L h L ϕϕμμ-+=1221F F (2)经计算得:221ϕϕμLh mg L L mg F g +=…………………………(3) 212ϕϕμLh mg L Lmg F g -= (4)式中:1μF 、2μF ——前、后轮制动器制动力,N ; ϕ——路面附着系数; m ——整车质量,kg ; hg ——汽车质心高度,m; L ——汽车轴距,m;1L ——质心至前轴中心线的距离,m;2L ——质心至后轴中心线的距离,m。
制动系统设计计算书

制动系统设计计算书(Φ 式制动器,前:后= :)1.结构简述:XX 系列车型制动系统前后均采用X 式制动器结构,且前后制动器均为XX 式,并具有X 联式双管路制动总泵(阀)的液(气)压制动驱动系统。
3.1 动轴荷计算:当汽车以减速度jt制动时,由于减速度而产生的惯性力,使轴荷分配相应改变:式中: G1'制动时前轴负荷 G2'制动时后轴负荷 jt/g=φ 道路附着系数其中减速度jt为了计算方便,通常取以重力加速度的若干倍。
表一是根据不同的jt/g值计算出汽车空载和满载时动轴荷分配值: 对汽车在不同的减速度jt/g值时前后轴动载荷分配比按下式计算: 前轴动轴荷:G1'/Ga ×100% 后轴动轴荷:G2'/Ga ×100%表二为汽车制动时前后在不同减速度jt/g值时动轴荷分配比:表二(见下页):()0//1=-×-××-×a L G hg G g jt L G a a ()//2=×-××-×L G hg g jt G a G a a4.1.汽车制动时所需的制动力P τ(轴制动力)当汽车以减速度jt/g制动时,前后各自所需的制动力为: 前轴: P τ1=G1'×jt/g ×9.8 (N) 后轴: P τ2=G2'×jt/g ×9.8 (N)4.2.1.汽车前轴制动器所产生的制动力P τ1': 前轴制动扭矩: #######P 0(Nm)#VALUE!P 0(N)式中: M T1:单个前轮能发出的制动扭矩 BEF1:前制动器效率因数X d1:前制动器分泵直径(φ) m X R k1:前轮滚动半径(m)XR r1:前制动器有效半径(m)X4.2.2.汽车后轴制动器所能产生的制动力P τ2':#VALUE!P 0(Nm)#VALUE!P 0(Nm)式中: M T2:单个后轮能发出的制动扭矩 BEF2:后制动器效率因数X d2:后制动器分泵直径m X R k2:后轮滚动半径m XR r2:后制动器有效半径(m)X#VALUE!4.3 同步附着系数:#VALUE!#VALUE!4.4 满载时前后轴附着力矩:(道路附着系数Φ=0.65时的附着力矩)前轴附着力矩:######(N)后轴附着力矩:######(N)4.5 最大管路压力 :产生最大管路压力矩时(Φ=0.65)的管路压力为最大管路压力,故当Φ=0.65时,#VALUE!此时前轮制动所需的油压大于后轮制动所需油压: 即:######P 0 =#VALUE!P 0=######(Pa)4.6 制动踏板力计算:式中:P p :制动踏板力 S m :制动总泵活塞面积总泵直径为: d=XmS m =π/4×d 2=######m 2P 0:制动管路压力 I :踏板杠杆比I=X 故:Pp=######P 0(N)汽车满载时制动管路油压P0为(Φ=0.65):P τ2=G 2'×jt/g ×9.8######P 0 =#VALUE!P p =######(N)因BJ1043VBPE7制动系统采用真空助力机构,所以实际踏板力取决于真空助力器的助力比K,因而实际踏板力为P =P /K(见表四),现该车型真空助力器的K=X 表四:=´=1'1k t R P M ǰj IP S P m p /0´==´=2'2k t R P M ºój ǰj MM t ='1式中: Va:汽车制动时的初速度(Km/h)jt:制动减速度 jt=g ·Φ实际上,在汽车制动时,由踏下踏板到开始产生制动力尚有一段作用时间,取此值为0.2秒,所以际制动距离St必须考虑这一作用时间。
汽车制动系统计算

后
b.
F1
Gb L hg
jd1 max
F1 m
g b L hg
前
F 2
Ga L hg
j d 2 max
F 2 m
g a L hg
制
S
1 3.6
(t1
t2 ) v 2
v2 25.92 jmax
根
a
2
b
L
g g
0 .8
各个设计方案均能满足法规对行车制动性能的要求,同时也满足设计要求。 4 ) 助施力器失效时,制动力完全由人力操纵踏板产生,最大踏板力要求:N1类车700N。 加
△g2—鼓式制动器的蹄、鼓间隙
△g3—鼓式制动器摩擦衬片的厚度公差
(3)储油壶总容量Vmax
空载同步附着系数
0
车满载同步附着系数
' 0
型
标杆
方案
P201-NAM-SD-DP-G3-2
选配方案(四轮盘式)
Fif
Fir
图2 车型的I曲线与β线 ©版权归江淮汽车股份有限公司所有 未经授权禁止复制
第 4 页,共 13 页
制动系统方案设计计算说明书
P201-NAM-SD-DP-G3-2
通 过 1、在空载状态下,地面附着系数为0.8,标杆管路压力达到6MPa,管路压力达到5MPa,选 配方案管路压力达到5MPa,制动器发生抱死,此时后轴早于前轴抱死,这时整车稳定性非常差 。需要ABS进行调节。
n1、n2—前、后制动器单侧油缸数目(仅对盘式制动器而言)
Kv—考虑软管膨胀时的主缸容积系数,汽车设计推荐:轿车 =1.1,货车 =1.3
其中 要根据制动器的类型、参考同类车型确定,对鼓式制动器:汽车设计推荐δ=2-2.5mm;汽车工 程手册推荐3.5-5.5(考虑软管膨胀量及磨损间隙不能自调的影响),公司目前车型均可实现间隙
某车型制动系统设计计算报告.【范本模板】

目录1 概述 (1)1。
1 任务来源 (1)1.2 制动系统基本介绍 (1)1。
3 制动系统的结构简图 (1)1。
4 计算目的 (1)2 制动系统设计的输入条件 (1)2。
1 制动法规基本要求 (2)2.2 整车基本参数 (2)2.3 制动系统零部件主要参数 (2)3 制动系统设计计算 (3)3。
1 前、后制动器制动力分配 (3)3.2 制动减速度及制动距离校核 (10)3。
3 真空助力器主要技术参数 (11)3.4 制动主缸行程校核 (11)3。
5 制动踏板行程和踏板力校核 (12)3.6 驻车制动校核 (12)3.7 应急制动校核 (13)3.8 传能装置部分失效剩余制动力校核 (14)3。
9 制动器能容量校核 (14)4 数据输出列表 (16)5 结论及分析 (16)参考文献 (17)制动系统设计计算报告1概述1.1任务来源根据B35—1整车开发要求,按照确认的设计依据和要求,并依据总布置的要求对制动系统的选型并作相应的计算。
1.2制动系统基本介绍1.8T—AT车型的行车制动系统采用液压制动系统。
前制动器为带有双制动轮缸的通风盘式制动器,后制动器为单制动轮缸的实心盘式制动器。
制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS以防止车辆在紧急制动情况下发生车轮抱死。
驻车制动系统为杠杆式,作用于后轮.ABS控制系统以及匹配计算由供应商完成,本文计算不做讨论。
1.3制动系统的结构简图制动系统的结构简图如图1:1。
带制动主缸的真空助力器总成 2。
制动踏板 3.车轮4.轮速传感器5. 制动管路6. 制动轮缸 7。
ABS控制单元图1 制动系统的结构简图1.4计算目的制动系统计算的目的在于校核前、后制动力,最大制动距离、制动踏板力及驻坡极限倾角等是否符合法规及标准要求、制动系统匹配是否合理。
2制动系统设计的输入条件2.1制动法规基本要求(1)GB 12676—1999《汽车制动系统结构、性能和试验方法》(2)GB 13594—2003《机动车和挂车防抱制动性能和试验方法》(3)GB 7258-2004《机动车运行安全技术条件》表1-1是对相关法规主要内容的摘要。
制动系统性能计算报告(正式)

HFJ6352车制动系统性能分析一、HFJ6352整车参数和符号说明二、GB12676相关要求1.行车制动在产生最大制动作用时的踏板力应不大于500N,制动减速度不小于5.8m/s2。
2.应急制动必须在行车制动系统有一处管路失效的情况下,制动减速度不小于2.9m/s2。
3.驻车制动性能试验,在空载状态下,驻车制动装置应能保证车辆在坡度18%正反两个方向稳定停驻(包括一名驾驶员),且驻车制动力的总和应不小于该车在测试状态下整车重量的20%,手操纵力不大于400N。
三、计算说明1.制动主缸最大液压:制动踏板力最大不得超过500N,真空助力器产生的最大助力为1500N(助力器工作真空度取500mmHg),经踏板比和真空助力作用,最终作用在制动主缸上推力为500×4.2+1500=3600N,则主缸产生的最高液压:P=3450÷(3.14×20.642÷4) =10.76MPa根据制动主缸的工作级别,取最高工作压力为10 MPa 。
2.行车制动性能分析a.同步附着系数前制动器制动力 Fμ1=2×2×μ×P×R1÷r=1086.71 P i后制动器制动力 Fμ2=2×k×P×R2÷r=275.87 P o=63.45 P i +275.87前轮地面制动力 Fφ1= φ×Z1=φ×G÷L×(b+φ×h g)=4811×φ+1458.88×φ2后轮地面制动力 Fφ2= φ×Z2=φ×G÷L×(a-φ×h g)=2931.02φ-1458.88×φ2比例阀输出特性 P o= 0.23×P i+1同步抱死的条件: Fφ1= Fμ1Fφ2= Fμ2根据以上方程可求得空载同步附着系数φ0=1.5同理可求得:满载同步附着系数φ0=1.688不含比例阀时同步附着系数空载:φ0=(β×L-b)/ h g=0.92满载:φ0=(β×L-b)/ h g=1.14b.制动减速度分析(φ=0.8)地面附着系数为φ=0.8<φ0 ,制动开始时,前后制动器制动力Fμ1、Fμ2按β线上升。
制动系统设计计算报告

制动系统设计计算报告引言:制动系统是现代车辆中非常重要的一部分,它对车辆的安全性能起着至关重要的作用。
制动系统的设计需要综合考虑多个因素,如车辆的速度、重量、制动距离等。
本报告将以款小型轿车制动系统设计为例,详细介绍制动系统设计中的相关计算。
设计目标:为确保车辆在不同速度下能够在较短的距离内停下,设计目标是使车辆在制动过程中的平均减速度为4m/s^2设计计算:1.制动力的计算制动力的大小与车辆质量和车辆的速度有关。
根据经验公式,制动力可由以下公式计算得出:制动力=车辆质量*减速度选择减速度为4m/s^2,则制动力可以由车辆质量乘以4得出。
2.制动距离的计算制动距离是指车辆从制动开始到完全停止所需要行驶的距离。
根据经验公式,制动距离可以由以下公式计算得出:制动距离=初速度^2/(2*加速度)在制动过程中,加速度是负值(减速),所以加速度取为-4m/s^2、根据具体车辆的初始速度,可以计算出相应的制动距离。
3.制动盘和制动钳的尺寸计算制动盘和制动钳的尺寸需要考虑车辆的速度和质量。
根据经验公式,制动盘的直径与车速和减速度有关,可以通过以下公式计算得出:制动盘直径=停车速度*车辆质量*系数/制动力在本设计中,选择停车速度为60 km/h,车辆质量为1000 kg,系数为0.7、根据以上参数,可以计算出制动盘的直径。
根据制动盘的直径,可以确定制动钳的尺寸。
制动盘和制动钳的尺寸需要满足制动力的需求,并能够有效散热,以免在制动过程中过热导致制动力减弱。
4.制动液系统的计算制动液的压力和制动钳的工作效果有关。
根据经验公式,制动液的压力可以由以下公式计算得出:制动液压力=制动力/制动钳有效面积制动液压力需要根据制动钳的效率和制动力来选择合适的值。
根据经验,选择制动液压力为5MPa。
结论:根据以上计算结果,制动系统的设计可以满足要求。
制动力、制动距离、制动盘和制动钳的尺寸以及制动液压力的计算都能够保证车辆在制动过程中的安全性。
制动系统毕业设计计算参考

盘式基本参数5.2 凸轮张开力的确定及蹄自锁性校核5.2.1 张开力P1与P2的确定在计算鼓式制动器时,必须建立制动蹄对制动鼓的压紧力与所产生的制动力矩之间的关系。
为计算有一个自由度的制动蹄片上的力矩1Tf T ,在摩擦衬片表面上取一横向单元面积,并使其位于与1y 轴的交角为α处,单元面积为αbRd 。
,其中b 为摩擦衬片宽度,R 为制动鼓半径,αd 为单元面积的包角,如图4-1所示。
由制动鼓作用在摩擦衬片单元面积的法向力为:αααd bR q qbRd dN sin max == (5-1)而摩擦力fdN 产生的制动力矩为ααd f bR q dNfR dT Tf sin 2max ==在由α'至α''区段上积分上式,得)cos (cos 2max αα''-'=f bR q T Tf (5-2) 当法向压力均匀分布时,αbRd q dN p = )(2αα'-''=f bR q T p Tf (5-3)由式(46)和式(47)可求出不均匀系数)cos /(cos )(αααα''-''-''=∆式(46)和式(47)给出的由压力计算制动力矩的方法,但在实际计算中采用由张开力P 计算制动力矩1Tf T 的方法则更为方便。
增势蹄产生的制动力矩1Tf T 可表达如下:111ρfN T Tf = (5-4)式中 1N ——单元法向力的合力;1ρ——摩擦力1fN 的作用半径(见图5-3)。
如果已知制动蹄的几何参数和法向压力的大小,便可用式(17—46)算出蹄的制动力矩。
1N 与张开力1P 的关系式,写出为了求得力制动蹄上力的平衡方程式:0)sin (cos cos 111101=+-+δδαf N S P x01111=+'-N f C S a P x ρ (5-5)式中 1δ——1x 轴与力1N 的作用线之间的夹角;x S 1——支承反力在x1轴上的投影。
轻型汽车制动系统设计计算书

由公式(8)和(9)可得 :
F1 F
F1 F1 F 2
(9)
由于
d12 BF1 r1 2 d12 BF1 r1 d 2 BF2 r2
F (1 ) F 1
(10)
F1 F 2
(11)
故
图1
GA6420SE4 感载比例阀配置制动系统结构简图
4.制动管路 5.制动轮缸 6.六通阀 7.感载比例阀
1. 带制动主缸的真空助力器总成 2.制动踏板 3.车轮
1.4
计算目的
制动系统计算的目的在于校核前、后制动力是否足够,最大制动距离、制动踏板力、驻车制 动手柄力及驻坡极限倾角等是否符合法规及标准要求、制动系统匹配是否合理。 2 制动法规基本要求 1、满足国内最新制动法规对制动效能,包括行车制动系、应急制动系、驻车制动系性能要求, 如表 1 所示:
版本
日期
作者
更改记录
Байду номын сангаас
批准
制动系统设计计算报告
1 1.1 发。 1.2 GA6420SE4 制动系统基本介绍 GA6420SE4 车型的行车制动系统采用液压制动系统, 前制动器为空心盘式制动器, 后制动器为 鼓式制动器,制动踏板为吊挂式踏板,真空助力器为非贯穿式单膜片结构,制动主缸结构为补偿 孔式。基本车型为带六通阀及感载比例阀的双 I 型制动管路布置,配备的感载比例阀具有液压保 护结构,当制动主缸后腔及管路正常工作时,后腔管路液压与前制动器管路不通,当后腔管路失 效时,主缸前腔液压将与后制动器相通,保证后制动器正常工作。驻车制动系统为机械式后鼓式 制动,采用远距离棘轮拉索操纵机构。 1.3 GA6420SE4 制动系统的结构简图 对于装配感载比例阀的制动系统结构,见图 1: 概述 任务来源 根据 xx 汽车有限公司产品规划及新车型开发项目的要求, 进行 GA6420SE4 项目车型的设计开
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制动系统设计计算
报告
文档仅供参考,不当之处,请联系改正。
目录
1 系统概述 .......................................................................... 错误!未定义书签。
1.1 系统设计说明......................................................... 错误!未定义书签。
1.2 系统结构及组成 ..................................................... 错误!未定义书签。
1.3 系统设计原理及规范 ............................................. 错误!未定义书签。
2 输入条件 .......................................................................... 错误!未定义书签。
2.1 整车基本参数......................................................... 错误!未定义书签。
2.2 制动器参数............................................................. 错误!未定义书签。
2.3 制动踏板及传动装置参数 ..................................... 错误!未定义书签。
2.4 驻车手柄参数......................................................... 错误!未定义书签。
3 系统计算及验证 .............................................................. 错误!未定义书签。
3.1 理想制动力分配与实际制动力分配...................... 错误!未定义书签。
3.2 附着系数、制动强度及附着系数利用率 .............. 错误!未定义书签。
3.3 管路压强计算......................................................... 错误!未定义书签。
3.4 制动效能计算......................................................... 错误!未定义书签。
3.5 制动踏板及传动装置校核 ..................................... 错误!未定义书签。
3.6 驻车制动计算......................................................... 错误!未定义书签。
3.7 衬片磨损特性计算 ................................................. 错误!未定义书签。
4 总结.................................................................................. 错误!未定义书签。
5 制动踏板与地毯距离....................................................... 错误!未定义书签。
参考文献 ........................................................................... 错误!未定义书签。
1 系统概述
1.1 系统设计说明
只有制动性能良好、制动系统工作可靠的汽车才能充分发挥其动力性能。
因此,在整车新产品开发设计中制动系统的匹配计算尤为重要。
LF7133是在标杆车的基础上设计开发的一款全新车型,其制动系统是在标杆车制动系统为依托的前提下进行设计开发。
根据项目要求,需要对制动系统各参数进行计算与校核,以确保制动系统的正常使用,使系统中各零部件之间参数匹配合理,而且确保其满足国家相关法律法规的要求。
1.2 系统结构及组成
经双方确认的设计依据和要求,LF7133制动系统采用同国内外大量A级三厢轿车一致的液压制动系统。
制动系统包含以下装置:行车制动系统:根据车辆配置选择前后盘式或前盘后鼓制动器,制动踏板为吊挂式踏板,带真空助力器,管路布置采用相互独立的X型双管路系统;
驻车制动系统:为机械式手动后鼓式制动,采用远距离棘轮拉索操纵机构;
应急制动系统:行车制动系统具有应急特性,应保证在行车制动只有一处管路失效的情况下,满足应急制动性能要求。
LF7133制动系统主要由如下部件组成。
结构简图如图1所示:
图1 制动系统结构简图
1. 真空助力器带制动主缸总成
2.制动踏板
3.车轮
4.轮速传感器
5. 制动管路
6. 制动轮缸
7.ABS控制器
1.3 系统设计原理及规范
本计算报告根据总布置提供的整车参数、制动器与总泵及真空助力器厂家提供的数据、制动踏板、驻车操纵机构选型进行匹配计算,校核前/后制动力、制动效能、制动踏板力、驻车制动手柄力及驻坡极限倾角等,用以验证制动系统设计的合理性。
本报告基于ABS不介入制动作用的前提下进行计算。
制动系统设计规范
1)基本要求:车辆应具备行车制动、应急制动、驻车制动功能。
2)法规要求:
①行车制动性能要求
表1 行车制动性能要求
法规名称车辆类型制动初速度(Km/h)制动距离(m)减速度(m/s2)GB7528 乘用车50 ≤20 ≥5.9 GB21670 乘用车100 ≤70 ≥6.43
②应急制动性能要求
表2 应急制动性能要求
GB 21670- 《乘用车制动系统技术要求及试验方法》规定能使满载车辆在20%的上下坡道上保持静止。
④操纵力要求
GB 7258- 《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,踏板行程不超过120mm,驻车制动操纵手柄力≤400N。
2 输入条件
2.1 整车基本参数
LF7133整车输入参数见表3:
表3 整车输入参数。