基于matlab的四种映射生成的混沌序列

合集下载

基于Matlab的复摆混沌行为研究

基于Matlab的复摆混沌行为研究

毕业论文基于Matlab的复摆混沌行为研究摘要自然界中存在无数的无序、非平衡和随机的复杂系统。

混沌现象出现于非线性系统中,它揭示了有序与无序的统一,确定性与随机性的统一。

混沌运动是非线性动力学系统所特有的复杂运动状态,是一种貌似随机的不规则运动,混沌的发现被誉为继相对论和量子力学后的第三次物理学革命,混沌的研究一直备受学术界的关注。

矚慫润厲钐瘗睞枥庑赖。

Matlab是一个适用于科学计算、工程设计、数值分析等领域的各种计算、演算和仿真分析的高性能的优秀数学软件。

混沌理论研究的是非线性问题,难以用解析式表达,只能采用数值解法,而Matlab在这方面便可展示其强大的潜能。

聞創沟燴鐺險爱氇谴净。

本论文利用了Matlab软件研究经典的混沌现象的特征,并且对混沌的特点以及形成过程进行模拟分析研究;并用Matlab模拟了复摆运动行为及混沌现象,对不同周期作出相图及奇怪吸引子,可以看到随着外驱动力的增加,复摆振动逐渐由倍周期分岔走向混沌。

残骛楼諍锩瀨濟溆塹籟。

关键词:混沌,Matlab,复摆,倍周期分岔,奇怪吸引子THE COMPLEX BEHAVIOR OF CHAOTIC PENDULUM BASED ON MATLAB酽锕极額閉镇桧猪訣锥。

ABSTRACTThere are many disorders, non-equilibrium, random complex systems in the nature. Chaos appears in nonlinear systems, it reveals the unity of order and disorder, certainty and randomness of unity. Chaos is a nonlinear dynamic system unique to the complex state of motion, is a seemingly random, irregular motion, chaos, following the discovery of relativity and quantum mechanics known as the third after the revolution in physics, Chaos has always been of academic attention.彈贸摄尔霁毙攬砖卤庑。

matlab迭代。混沌,原因,分叉MicrosoftWord文档

matlab迭代。混沌,原因,分叉MicrosoftWord文档

matlab迭代。

混沌,原因,分叉MicrosoftWord文档问题与实验3: 一元线性迭代的收敛性条件怎样表述?关于迭代法收敛性的两个判别条件: a 、充分必要条件是:矩阵M 的谱半径(){}1,..,2,1max<==n i M iiλρ()b 、充分条件是:矩阵M 的某个算子范数M<1。

问题与实验4: 在本例中,12<m< bdsfid="72" p=""></m<>,这时迭代序列是收敛的,就本例或选择别的例子,按12<m< bdsfid="77" p=""></m<>和12≥M构造不同的迭代法,通过实验和比较,并给出你对实验结果的解释(如关于收敛性、收敛速度等),当然这需要你首先知道矩阵范数的概念,并且对它有比较好的理解。

设x 是方程组(5)的解,{}mx 是迭代法(6)生成的任一序列,因为f Mx x +=,f Mxx mm +=+1()()()0221x x Mx x Mx x M x x mm m m -==-=-=--- ,设D = diag (a 11, a 22, …, a nn ),将AX = b 改写为: AX = (D – (D - A )) x = b DX = (D - A ) x + bX = (I – D -1A ) x + D -1b记 B = I – D -1A F = D -1 b 则迭代格式的向量表示为F BX Xk k +=+)()1( B称为雅克比迭代矩阵。

由此可知要判断X 是否收敛只需看M 的谱半径是否小于1,既有一其中I 是单位i 矩阵,D 是提取A 的对角线上的元素。

下判断条件:充要条件:(1) (){}1,..,2,1max<==n i M iiλρ.(2)充分条件是:矩阵M 的某个算子范数M<1.并且我们知道当M 越小的时候其收敛的速度越快。

混沌映射MATLAB仿真

混沌映射MATLAB仿真

混沌映射(序列)matlab算法“小全”:Logistic、Henon、帐篷、kent(含混沌二值图像生成函数)1.Logistic(罗切斯特)映射变换核:x n+1=ax n(1−x n)绘图程序:n=64;key=0.512;an=linspace(3.1,3.99,400);holdon;boxon;axis([min(an),max(an),-1,2]);N=n^2;xn=zeros(1,N);for a=an;x=key;for k=1:20;x=a*x*(1-x);%产生公式end;for k=1:N;x=a*x*(1-x);xn(k)=x;b(k,1)=x;%一维矩阵记录迭代结果end;plot(a*ones(1,N),xn,'k.','markersize',1);end;%figure;%imhist(b)实用混沌加密函数:functionichao_ans=ichaos_logistic(varargin)%logistic序列生成算法%函数名:%logistic混沌序列生成函数%参数:%(n,key),n为矩阵阶数,key为迭代初始值。

%(n),n为矩阵阶数,key=0.600。

%()或(n,key,...),n=64,key=0.600。

Switch nargin;case1;n=varargin{1};key=0.600;case2;n=varargin{1};key=varargin{2};otherwisekey=0.600;n=64;endN=n^2;xn=zeros(1,N);a=4;x=key;for k=1:20;x=a*x*(1-x);%产生公式end;for k=1:N;x=a*x*(1-x);xn(k)=x;%一维矩阵记录迭代结果end;c=reshape(xn,n,n);%一维矩阵转换二维矩阵d=zeros(n,n);%二维混沌矩阵调制For a1=1:n;For a2=1:n;ifc(a1,a2)>=0.5;d(a1,a2)=1;else d(a1,a2)=0;end;end;end;%figure;title('logistic映射');%imshow(d);ichao_ans=d;2.Henon(埃农)映射+1=yn+1−ax变换核:{xynn2n+1=bxn绘图程序:a∈(0,1.4)0.2<b≤0.314b=0.3;N=400;an=ones(1,N);xn=zeros(1,N);hold on;boxon;x=0;y=0;for a=0:0.001:1.4for k=1:N;xm=x;ym=y;x=ym+1-a*xm.*xm;y=b*xm;endxn(1)=x;for n=2:N;xm=x;ym=y;x=ym+1-a*xm.*xm;y=b*xm;xn(n)=x;endplot(an*a,xn,'k.','markersize',1);endxlim([0,a]);实用混沌加密函数:functionichao_ans=ichaos_henon(varargin)%埃农(Henon)映射%0.2<key<0.314;理想范围(0.25—0.314)。

matlab混沌,分形

matlab混沌,分形

matlab混沌,分形对于函数f(x)=λsin(πx),λ∈(0,1],使⽤matlab计算随着λ逐渐增⼤,迭代x=f(x)的值,代码如下:function y=diedai(f,a,x1)N=32;y=zeros(N,1);for i=1:1e4x2=f(a,x1);x1=x2;y(mod(i,N)+1)=x2;endend%f=@(a,x)a*x*(1-x);f=@(a,x)a*sin(pi*x);%x0=0.1;hold on;for x0=-1:0.05:1for a=0:0.01:1y=diedai(f,a,x0);for count=1:32plot(a,y(count),'k.');hold on;endendend得到的图像如下:其中横轴为λ,纵轴为x可以看到随着λ的逐渐增⼤,出现了倍周期分叉的情况。

由图中可以看出第⼀个分叉值⼤约在0.3附近,第⼆个在0.73到0.75之间,第三个在0.8到0.85之间,混沌⼤约出现在0.86附近。

接下来编写代码计算分叉值,代码如下:format long;x0=0.1;for a=0.3182:0.0000001:0.3183y=diedai(f,a,x0);if max(y)>0.001disp(a);break;endend得到第⼀个分叉值⼤约为0.3182298format long;x0=0.1;for a=0.7199:0.000001:0.72y=diedai(f,a,x0);if max(y)-min(y)>0.001disp(a);break;endend得到第⼆个分叉值⼤约为0.719911format long;x0=0.1;for a=0.8332:0.000001:0.8333y=diedai(f,a,x0);if abs(y(32)-y(30))>0.001disp(a);break;endend得到第三个分叉值⼤约为0.833267利⽤Feigenbaum常数估计第三个分叉值,得到0.805939分形图周常青画mandelbrot分形图,主要使⽤了三个函数:iter=mandelbrot1(x0,y0,maxIter),⽤来计算迭代后是否收敛,⽅程z=z2+z0。

logistic-tent混沌映射的matlab程序 -回复

logistic-tent混沌映射的matlab程序 -回复

logistic-tent混沌映射的matlab程序-回复您好,以下是关于混沌映射和其在MATLAB中的程序的文章:混沌映射在数学和计算机科学领域中起着重要的作用,它是一种非线性的、不可预测的动态系统。

混沌映射是一类具有确定的演化规律但表现出随机性的非线性映射。

其中一种经典的混沌映射被称为logistictent混沌映射。

在此文章中,我们将详细介绍logistictent混沌映射,并提供一个MATLAB程序,用于生成并可视化该混沌映射。

首先,我们需要理解logistictent映射的定义。

logistictent函数是一种确定性的映射,它使用非线性递归方程来生成混沌序列。

该映射定义如下:X(n+1) = r * X(n) * (1 - X(n))其中,X(n)是当前的输入值,X(n+1)是下一个值,r是一个常数,被称为混沌参数。

通过不同的初始条件和不同的混沌参数,我们可以获得不同的混沌序列。

接下来,我们将使用MATLAB来编写一个程序,用于生成并可视化logistictent混沌映射。

首先,我们需要定义一些初始条件和参数。

定义初始条件和参数X(1) = 0.5; 初始值r = 3.8; 混沌参数N = 1000; 生成的混沌序列的长度现在,我们可以使用一个循环来计算混沌序列。

在每个循环迭代中,我们使用logistictent方程计算下一个值,并将其存储在一个向量中。

计算混沌序列for n = 1:N-1X(n+1) = r * X(n) * (1 - X(n));end此时,我们已经生成了一个包含N个混沌变量的向量。

接下来,我们可以使用MATLAB的绘图功能将生成的混沌序列可视化。

绘制混沌序列plot(X)xlabel('n') x轴标签为迭代次数ylabel('X') y轴标签为混沌变量title('Logistic Tent混沌序列') 图表标题运行以上代码后,MATLAB将绘制logistictent混沌序列的图表。

混沌信号的产生 matlab

混沌信号的产生 matlab

混沌信号的产生及其在Matlab中的实现一、混沌信号的概念与特点混沌是一种在确定性系统中表现出的随机、不可预测的行为。

混沌系统具有以下几个显著特征:1. 灵敏依赖于初值:在混沌系统中,微小的初值变化会导致系统行为的巨大变化,这就是所谓的“蝴蝶效应”。

2. 随机性和周期性:混沌系统表现出随机性和周期性的叠加,使得系统的行为呈现出复杂的、看似无序的特征。

3. 分形结构:混沌系统的轨迹具有分形结构,表现出自相似性和自组织性。

二、混沌信号的产生原理混沌信号的产生通常基于非线性动力系统模型,其中最经典的混沌系统包括 Logistic 映射、Henon 映射等。

混沌信号的产生一般遵循以下步骤:1. 选择合适的混沌系统模型,比如 Logistic 映射:$x_{n+1} =rx_n(1-x_n)$。

2. 选择初值和模型参数,并设定迭代次数。

3. 进行迭代计算,得到混沌信号的时域序列。

三、Matlab 中的混沌信号生成Matlab 是一种强大的科学计算软件,提供了丰富的工具箱和函数,使得混沌信号的产生和分析变得非常简单。

在Matlab 中,可以通过以下几种方法产生混沌信号:1. 直接求解微分方程:利用ode45函数求解混沌系统的微分方程,得到混沌时域序列。

2. 迭代计算:利用for循环结构进行模型的迭代计算,得到混沌信号的时域序列。

3. 利用现成的工具箱:Matlab 提供了一些专门用于产生混沌信号的工具箱,比如 ChaosBox。

四、示例代码以下是一个利用 Logistic 映射产生混沌信号的示例代码:```matlabLogistic 映射参数r = 3.9;时域序列长度N = 1000;初值x0 = 0.1;初始化时域序列x = zeros(1, N);x(1) = x0;迭代计算for i = 1:N-1x(i+1) = r * x(i) * (1 - x(i));end绘制混沌信号时域图plot(x);xlabel('时域');ylabel('信号幅值');title('Logistic 映射产生的混沌信号');```五、混沌信号的应用混沌信号作为一种具有随机性和周期性的信号,具有广泛的应用价值,包括但不限于:1. 加密通信:混沌信号可用于加密通信系统中的信息传输,利用混沌的随机特性可以提高数据的安全性。

基于Matlab的混沌特性分析

基于Matlab的混沌特性分析

基于Matlab的混沌特性分析1. 引言1.1 研究背景混沌理论起源于1960年代,是一种描述复杂系统行为的新理论,揭示了非线性系统中存在的一种无序、不可预测的动态行为。

混沌系统具有高度敏感性和非周期性,表现出随机性和确定性的结合,对于许多领域的研究具有重要的理论和实际意义。

在现代科学和工程领域,混沌系统的分析和控制已经成为一个热门的研究方向。

随着计算机技术的发展,基于Matlab的混沌特性分析方法成为研究混沌系统的有力工具。

Matlab提供了丰富的算法和库函数,可以方便地进行混沌系统建模、仿真和分析。

利用Matlab进行混沌特性分析,可以更深入地理解混沌系统的动力学行为,为系统的控制与优化提供理论支持。

1.2 研究目的研究目的的主要目标是通过基于Matlab的混沌特性分析,探讨混沌系统的特征和建模方法,并利用Matlab提供的分析工具对混沌系统进行详细分析。

通过深入研究混沌系统的特性和行为,可以更好地理解和预测混沌系统的运动规律和特点,为相关领域的研究和应用提供理论支持和参考依据。

本研究旨在探讨基于Matlab的混沌特性分析方法的有效性和可行性,为混沌系统的研究和应用提供一种新的分析途径和工具。

通过对混沌系统的特性进行深入分析和实验研究,可以揭示混沌系统背后的规律和内在机制,为相关领域的发展和应用提供新的思路和方法。

本研究的目的在于通过基于Matlab的混沌特性分析,深入探讨混沌系统的特性和行为,为相关领域的研究和应用提供新的视角和研究方法。

1.3 研究意义混沌系统在现代科学和工程中具有广泛的应用,例如在通信、控制、密码学等领域都有重要的作用。

对混沌系统进行特性分析,能够帮助我们更好地理解和掌握系统的行为规律,为系统的设计和优化提供重要的参考。

混沌系统的特性分析不仅可以帮助我们更好地理解系统的动态行为,还可以为混沌系统的控制和应用提供理论基础。

通过本文基于Matlab的混沌特性分析,我们可以更深入地探索混沌系统的特性和规律,为未来混沌系统的应用和发展提供重要参考。

(完整版)基于MATLAB的混沌序列图像加密程序

(完整版)基于MATLAB的混沌序列图像加密程序

设计题目:基于MATLAB的混沌序列图像加密程序一.设计目的图像信息生动形象,它已成为人类表达信息的重要手段之一,网络上的图像数据很多是要求发送方和接受都要进行加密通信,信息的安全与保密显得尤为重要,因此我想运用异或运算将数据进行隐藏,连续使用同一数据对图像数据两次异或运算图像的数据不发生改变,利用这一特性对图像信息进行加密保护。

熟练使用matlab运用matlab进行编程,使用matlab语言进行数据的隐藏加密,确保数字图像信息的安全,混沌序列具有容易生成,对初始条件和混沌参数敏感等特点,近年来在图像加密领域得到了广泛的应用。

使用必要的算法将信息进行加解密,实现信息的保护。

.设计内容和要求使用混沌序列图像加密技术对图像进行处理使加密后的图像使用matlab将图像信息隐藏,实现信息加密。

三.设计思路1. 基于混沌的图像置乱加密算法本文提出的基于混沌的图像置乱加密算法示意图如图1所示加密算法如下:首先,数字图像B大小为MX N( M是图像B的行像素数,N是图像B的列像素数),将A的第j行连接到j-1行后面(j=2,3, A,M,形成长度为MX N的序列C。

其次,用Logistic混沌映射产生一个长度为的混沌序列{k1,k2,A,kMX N},并构造等差序列D: {1,2,3, A,MX N-1,MX N}。

再次,将所产生的混沌序列{kl, k2. A, kMX N}的M N个值由小到大排序,形成有序序列{k1', k2'. A' kMX N' },确定序列{k1, k2, A, kMX N}中的每个ki在有序序列{k1', k2', A , kMX N' }中的编号,形成置换地址集合{t1 , t2 , A, tM X N},其中ti为集合{1 , 2, A, MX N}中的一个;按置换地址集合{t1 , t2 , A, tM X N}对序列C进行置换,将其第i个像素置换至第ti列, i=1 , 2, A, MX N,得到C'。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相关性分析 Rx=xcorr(x,'biased'); Ry=xcorr(y,'biased'); Rz=xcorr(z,'biased'); Rp=xcorr(p,'biased'); %求互相关函数 Rxy=xcorr(x,y,'biased'); %chebyshev 与 logistic 的互相关 Rxp=xcorr(x,p,'biased'); %chebyshev 与 tent 的互相关 Rxz=xcorr(x,z,'biased'); %chebyshev 与改进型 logistic 序列的互相关 Ryz=xcorr(y,z,'biased'); %logistic 序列与改进型 logistic 序列的互相关
clear;clc; n=128; %序列长度 w=20; %chebyshev 的分形参数 u=4; %logistic 的分形参数 a=2; %改进型 logistic 的分形参数 b=0.3; %Tent 的分形参数 x(1)=0.32; %初值 y(1)=0.32; z(1)=0.32; p(1)=0.32; %以上所给的初值和分形参数满足各自的混沌条件 for i=1:n x(i+1)=cos(w*acos(x(i)));%chebyshev 的映射关系 end for i=1:n %对序列进行 2 值量化 if x(i)>=0 x(i)=1; else x(i)=-1; end end for i=1:n y(i+1)=u*y(i)*(1-y(i));%logistic 的映射关系 end for i=1:n if y(i)>=0.5 y(i)=1; else y(i)=-1; end end for i=1:n z(i+1)=1-a*z(i)^2;%改进型 logistic 的映射关系 end for i=1:n if z(i)>=0 z(i)=1; else z(i)=-1; end end for i=1:n if (p(i)>0 & p(i)<b) %不能写成 0<x(i)<b p(i+1)=p(i)/b; else p(i+1)=(1-p(i))/(1-b);
end end for i=1:n if p(i)>=0.5 p(i)=1; else p(i)=-1; end end subplot(2,2,1); plot(x,'r');title('量化的二值 chebyshev 序列'); axis([0 125 -1.5 1.5]); subplot(2,2,2); plot(y,'g');title('量化的二值 logistic 序列'); axis([0 125 -1.5 1.5]); subplot(2,2,3); plot(z,'b');title('量化的二值改进型 logistic 序列'); axis([0 125 -1.5 1.5]); subplot(2,2,4); plot(p,'y'); title('量化的二值 Tent 序列'); axis([0 125 -1.5 1.5]);
subplot(2,2,1); plot(Rx,'r');title('chebyshev 序列的自相关函数')#39;g');title('logistic 序列的自相关函数'); subplot(2,2,3); plot(Rz,'b');title('改进型 logistic 序列的自相关函数'); subplot(2,2,4); plot(Rp,'y'); title('Tent 序列的自相关函数'); figure; subplot(2,2,1); plot(Rxy,'r');title('chebyshev 序列与 logistic 的互相关函数'); subplot(2,2,2); plot(Ryz,'g');title('logistic 序列与改进型 logistic 的互相关函数'); subplot(2,2,3); plot(Rxz,'b');title('chebyshev 与改进型 logistic 序列的互相关函数'); subplot(2,2,4); plot(Rxp,'y'); title('chebyshev 与 Tent 序列的互相关函数');
相关文档
最新文档