各类混沌的matlab程序实现
matlab迭代。混沌,原因,分叉MicrosoftWord文档

matlab迭代。
混沌,原因,分叉MicrosoftWord文档问题与实验3: 一元线性迭代的收敛性条件怎样表述?关于迭代法收敛性的两个判别条件: a 、充分必要条件是:矩阵M 的谱半径(){}1,..,2,1max<==n i M iiλρ()b 、充分条件是:矩阵M 的某个算子范数M<1。
问题与实验4: 在本例中,12<m< bdsfid="72" p=""></m<>,这时迭代序列是收敛的,就本例或选择别的例子,按12<m< bdsfid="77" p=""></m<>和12≥M构造不同的迭代法,通过实验和比较,并给出你对实验结果的解释(如关于收敛性、收敛速度等),当然这需要你首先知道矩阵范数的概念,并且对它有比较好的理解。
设x 是方程组(5)的解,{}mx 是迭代法(6)生成的任一序列,因为f Mx x +=,f Mxx mm +=+1()()()0221x x Mx x Mx x M x x mm m m -==-=-=--- ,设D = diag (a 11, a 22, …, a nn ),将AX = b 改写为: AX = (D – (D - A )) x = b DX = (D - A ) x + bX = (I – D -1A ) x + D -1b记 B = I – D -1A F = D -1 b 则迭代格式的向量表示为F BX Xk k +=+)()1( B称为雅克比迭代矩阵。
由此可知要判断X 是否收敛只需看M 的谱半径是否小于1,既有一其中I 是单位i 矩阵,D 是提取A 的对角线上的元素。
下判断条件:充要条件:(1) (){}1,..,2,1max<==n i M iiλρ.(2)充分条件是:矩阵M 的某个算子范数M<1.并且我们知道当M 越小的时候其收敛的速度越快。
利用Matlab仿真模拟Rossler混沌系统及混沌控制

第3期郭怡冰等:利用Matlab仿真模拟Rossler混沌系统及混沌控制·19·及XZ平面的轨迹.首先,选择三个积分模块,从上到下排列并分别对应茁,,,,彳的信号输出,这样做的好处是使得模型更加直观,可以直接与系统方程相对应.再根据方程(2),将Y,:的信号输入求和模块,调整符号为减号,并将此求和模块的输出信号作为对应戈的积分模块的输入信号,由此Rossler系统模型中对应茗方程的部分就完成了.同样,将y输入增益模块,乘以增益因子口,其输出口y和茗再输入求和模块,此时的输出就是对应Y的积分模块的输入信号.最后将信号:,茗与Z输人乘法模块、;输入增益模块,其输出茗z与凹加上常数模块输出的常数b,三个同时输入求和模块中,再经过积分模块就是信号厶此外,为了得到直观的模拟结果,将石,Y与髫,z分别输入二维信号显示模块,用于观察输出信号的图像关系.最终得到的Rossler系统模型如图1所示.设定系统模型中各参数值,令o=6=0.2,C:5.7,运行此系统模型,观察XY和XZ的平面轨迹图像.得到图2、图3,分别为仿真时间1000s时系统在XY、XZ平面的混沌轨迹.图1Bossier系统模型同时作为基础的混沌模型,在制作混沌控制模型时,可直接在此混沌模型上加入各种控制器模型,使得建立混沌控制模型的工作更加简便.图3Rossler系统在XZ平面的混沌轨迹1.2混沌控制的仿真模拟延迟反馈控制是于1992年由Pyragas提出的.这种控制器的优点在于:首先,它是基于系统状态的自相似性,用时滞反馈信号近似不稳定周期轨道,从而避免了OGY等方法中目标轨道的确定问题;其次,它采用连续时间激励作为控制信号,而不是OGY法中的间歇脉冲式的微小参数扰动,所以在一定程度上避免了控制对象因系统的涨落和环境噪声而偏离期望轨道;最后,它不需要事先知道系统的任何解析知识,也无需像OGY法那样大量计算机在线分析系统状态,仅使用简单的模拟装置就能实现,所以非常易于工程实现.以Rossler系统为例,施加延迟反馈控制后,原系统变为:皤x+叠ay+KM…h㈤,,(3)同样地,为了便于建设系统模型,将方程(3)由微分形式转变为积分形式,变形后的方程如下:菇=』(一y—z)df,,,=Jr(髫+。
matlab混沌,分形

matlab混沌,分形对于函数f(x)=λsin(πx),λ∈(0,1],使⽤matlab计算随着λ逐渐增⼤,迭代x=f(x)的值,代码如下:function y=diedai(f,a,x1)N=32;y=zeros(N,1);for i=1:1e4x2=f(a,x1);x1=x2;y(mod(i,N)+1)=x2;endend%f=@(a,x)a*x*(1-x);f=@(a,x)a*sin(pi*x);%x0=0.1;hold on;for x0=-1:0.05:1for a=0:0.01:1y=diedai(f,a,x0);for count=1:32plot(a,y(count),'k.');hold on;endendend得到的图像如下:其中横轴为λ,纵轴为x可以看到随着λ的逐渐增⼤,出现了倍周期分叉的情况。
由图中可以看出第⼀个分叉值⼤约在0.3附近,第⼆个在0.73到0.75之间,第三个在0.8到0.85之间,混沌⼤约出现在0.86附近。
接下来编写代码计算分叉值,代码如下:format long;x0=0.1;for a=0.3182:0.0000001:0.3183y=diedai(f,a,x0);if max(y)>0.001disp(a);break;endend得到第⼀个分叉值⼤约为0.3182298format long;x0=0.1;for a=0.7199:0.000001:0.72y=diedai(f,a,x0);if max(y)-min(y)>0.001disp(a);break;endend得到第⼆个分叉值⼤约为0.719911format long;x0=0.1;for a=0.8332:0.000001:0.8333y=diedai(f,a,x0);if abs(y(32)-y(30))>0.001disp(a);break;endend得到第三个分叉值⼤约为0.833267利⽤Feigenbaum常数估计第三个分叉值,得到0.805939分形图周常青画mandelbrot分形图,主要使⽤了三个函数:iter=mandelbrot1(x0,y0,maxIter),⽤来计算迭代后是否收敛,⽅程z=z2+z0。
混沌信号的产生 matlab

混沌信号的产生及其在Matlab中的实现一、混沌信号的概念与特点混沌是一种在确定性系统中表现出的随机、不可预测的行为。
混沌系统具有以下几个显著特征:1. 灵敏依赖于初值:在混沌系统中,微小的初值变化会导致系统行为的巨大变化,这就是所谓的“蝴蝶效应”。
2. 随机性和周期性:混沌系统表现出随机性和周期性的叠加,使得系统的行为呈现出复杂的、看似无序的特征。
3. 分形结构:混沌系统的轨迹具有分形结构,表现出自相似性和自组织性。
二、混沌信号的产生原理混沌信号的产生通常基于非线性动力系统模型,其中最经典的混沌系统包括 Logistic 映射、Henon 映射等。
混沌信号的产生一般遵循以下步骤:1. 选择合适的混沌系统模型,比如 Logistic 映射:$x_{n+1} =rx_n(1-x_n)$。
2. 选择初值和模型参数,并设定迭代次数。
3. 进行迭代计算,得到混沌信号的时域序列。
三、Matlab 中的混沌信号生成Matlab 是一种强大的科学计算软件,提供了丰富的工具箱和函数,使得混沌信号的产生和分析变得非常简单。
在Matlab 中,可以通过以下几种方法产生混沌信号:1. 直接求解微分方程:利用ode45函数求解混沌系统的微分方程,得到混沌时域序列。
2. 迭代计算:利用for循环结构进行模型的迭代计算,得到混沌信号的时域序列。
3. 利用现成的工具箱:Matlab 提供了一些专门用于产生混沌信号的工具箱,比如 ChaosBox。
四、示例代码以下是一个利用 Logistic 映射产生混沌信号的示例代码:```matlabLogistic 映射参数r = 3.9;时域序列长度N = 1000;初值x0 = 0.1;初始化时域序列x = zeros(1, N);x(1) = x0;迭代计算for i = 1:N-1x(i+1) = r * x(i) * (1 - x(i));end绘制混沌信号时域图plot(x);xlabel('时域');ylabel('信号幅值');title('Logistic 映射产生的混沌信号');```五、混沌信号的应用混沌信号作为一种具有随机性和周期性的信号,具有广泛的应用价值,包括但不限于:1. 加密通信:混沌信号可用于加密通信系统中的信息传输,利用混沌的随机特性可以提高数据的安全性。
各类混沌的matlab程序实现

混沌同步模型驱动系统和响应系统都是Lorenz System,只不过初值不同。
驱动系统: dx/dt=a*(y-x)dy/dt=r*x-y-xzdz/dt=x*y-b*z初值(0.1,0.1,0.1)输出信号令S(t)=x(t)响应系统:将S(t)代替x(t)作为激励信号dx/dt=a*(y-x)dy/dt=r*x-y-xzdz/dt=x*y-b*z初值(0.1,0.1,1)最后求响应系统的输出x(t),y(t),z(t)程序:function [Y1] = Lorenz_response(tspan);%%计算处于响应地位的Lorenz系统的数值解,并由此画出其相图yinit = [0.1,0.1,1];% 初始化输入y(1:3) = yinit;tstart = 0; % 时间初始值tstep = 1e-1; % 时间步长wholetimes = 1e2; % 总的循环次数steps = 1; % 每次演化的步数iteratetimes = wholetimes/steps; % 演化的次数S=output;for i=1:iteratetimes;tspan = tstart:tstep:(tstart + tstep*steps);[T,Y1] = ode45(@Lorenz_driven, tspan, y);y = Y1(size(Y1,1),:);y(1)=S(i,1);% 重新定义起始时刻tstart = tstart + tstep*steps;endfigure(1)plot3(Y1(:,1),Y1(:,2),Y1(:,3))function s=output;tstart = 0; % 时间初始值tstep = 1e-1; % 时间步长wholetimes = 1e2; % 总的循环次数% options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);tspan=tstart:tstep:wholetimes*tstep[T,Y] = ode45(@Lorenz_driven,tspan,[0.1 0.1 0.1]);s=Yfigure(3)plot3(Y(:,1),Y(:,2),Y(:,3))function dY=Lorenz_driven(t,Y);a=10;b=8/3;r=60;dY=zeros(3,1);dY=[a*(Y(2)-Y(1));-Y(1)*Y(3)+r*Y(1)-Y(2);Y(1)*Y(2)-b*Y(3)]MatLab常微分方程及常微分方程组的求解(2011-07-08 23:01:48)转载▼分类:编程之Matlab标签:杂谈最近参加了数学建模,对于老师说的Euler算法的不同步长的精度不一样,编写了一个M 函数文件来实现这个精度的比较,把函数附上:function [x,y]= Euler(varargin)%这里使用可变输出输入函数的%varargin{1}为求解常微分方程的表达式%varargin{2}为求解常微分方程的定解条件%需要给出的变量有常微分方程的范围a,b(varargin{3},varargin{4})%n为对这个区间的分割(varargin{5})%xlt写于7月8日%取得算法需要的变量,并附上容易理解的含义变量a = varargin{3};b = varargin{4};%自变量的范围n = varargin{5};%区间的分割次数h = (b - a)/n;%步长Dy = varargin{1}; %常微分方程的表达式y0 = varargin{2}; %常微分方程的定解条件表达式%首先求出所给常微分方程问题的精确解x1 = zeros(n+1,1);y1 = zeros(n+1,1);syms f1; syms x;f1 = dsolve(Dy,y0,'x');x1(1) = a;y1(1) = subs(f1,{x},{x1(1)});for i = 2:(n+1)x1(i) = x1(i-1) + h;y1(i) = double(subs(f1,{x},{x1(i)}));end%利用Euler方法求解近似数值微分解x2 = zeros(n+1,1);y2 = zeros(n+1,1);syms y;x2(1) = a;y2(1) = subs(f1,{x},{a});%获得原方程的初解for i = 2:(n+1)x2(i) = x2(i-1) + h;y2(i) = y2(i-1) + h .* double(subs(Dy(5:end),{x,y},{x2(i-1),y2(i-1)}));%特别记录Matlab中的字符串操作,提取子字符串即A(3:6)...end%返回经过Euler算法算出x与y的值x = x2;y = y2;%画图进行误差比较plot(x1,y1,'r');hold on;plot(x2,y2,'b');特此记录,以后写了新的算法再分享文 - 汉语汉字编辑词条文,wen,从玄从爻。
tent混沌映射matlab代码

一、介绍混沌映射混沌映射是一类非线性动力系统的数学模型,其特点是具有极其敏感的初始条件和参数变化,表现出复杂、不可预测的动态行为。
混沌映射广泛应用于密码学、通信、生物学等领域,具有重要的理论和实际价值。
二、混沌映射的基本模型混沌映射的基本模型可以用迭代函数表示,其一般形式为:Xn+1=f(Xn),其中Xn表示第n次迭代的值,f()为映射函数。
常见的混沌映射包括Logistic映射、Henon映射、Lorenz映射等,它们具有不同的动态特性和应用场景。
三、混沌映射在Matlab中的实现在Matlab中,可以利用迭代方法实现混沌映射的计算和可视化。
以下是一个简单的混沌映射的Matlab代码示例:```matlab定义迭代次数n = 1000;定义参数a = 2;b = 0.5;初始化初始值x(1) = 0.1;y(1) = 0.1;迭代计算for i=1:nx(i+1) = y(i) + 1 - a*x(i)^2;y(i+1) = b*x(i);end可视化plot(x, y)xlabel('X')ylabel('Y')title('Henon Map')```四、混沌映射的参数调节与分析混沌映射的动态行为受参数和初始条件的影响,可以通过调节参数来观察其不同的轨迹和性质。
在Matlab中,可以通过修改参数a、b的数值,以及初始值x(1)、y(1)来进行实验和分析。
五、混沌映射的应用混沌映射在密码学中具有重要的应用,例如可以用于生成密钥序列、乱序数据等。
混沌映射在通信领域、图像处理、随机数生成等方面也有广泛的应用。
在以上的应用中,混沌映射的不可预测性和随机性是其重要的特点,使得其在信息安全领域具有独特的优势。
六、总结与展望混沌映射作为一种重要的非线性动力系统模型,在数学理论和应用领域都具有重要意义。
随着对混沌映射的研究不断深入,其在密码学、通信、生物学等领域的应用将会更加广泛和深入。
基于MATLAB的各类混沌系统的计算机模拟(教学版)

基于MATLAB的各类混沌系统的计算机模拟―――《混沌实验教学平台的设计与实现》初期报告物电05级1A班张丹伟20050003101摘要:本文利用数学软件MATLAB对Lorenz系统等六个重要的混沌模型进行数值计算,同时模拟出各类混沌系统的独特性质,如混沌吸引子,倍周期,初值敏感性,相图,分岔图等。
通过观察和分析上述特性,加深了我们对混沌现象的理解。
关键词:混沌;微分方程;MA TLAB;引言.混沌探秘混沌是非线性系统所独有且广泛存在的一种非周期运动形式, 其覆盖面涉及到自然科学和社会科学的几乎每一个分支。
1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风,并由此提出了天气的不可准确预报性。
为什么会出现这种情况呢?这是混沌在作怪!“混沌”译自英语中“chaos”一词,原意是混乱、无序,在现代非线性理论中,混沌则是泛指在确定体系中出现的貌似无规则的、类随机的运动。
混沌现象是普遍的,就在我们身边,是与我们关系最密切的现象,我们就生活在混沌的海洋中。
一支燃着的香烟,在平稳的气流中缓缓升起一缕青烟,突然卷成一团团剧烈搅动的烟雾,向四方飘散;打开水龙头,先是平稳的层流,然后水花四溅,流动变的不规则,这就是湍流;一个风和日丽的夏天,突然风起云涌,来了一场暴风雨。
一面旗帜在风中飘扬,一片秋叶从树上落下,它们都在做混沌运动。
可见混沌始终围绕在我们的周围,一直与人类为伴。
一.混沌的基本概念1. 混沌: 目前尚无通用的严格的定义, 一般认为,将不是由随机性外因引起的, 而是由确定性方程(内因)直接得到的具有随机性的运动状态称为混沌。
2. 相空间: 在连续动力系统中, 用一组一阶微分方程描述运动, 以状态变量(或状态向量)为坐标轴的空间构成系统的相空间。
混沌系统matlab代码

混沌系统通常指的是非线性、动力学复杂的系统,其行为难以预测。
在MATLAB中,您可以模拟混沌系统的行为。
以下是一个简单的混沌系统(例如,Logistic映射)的MATLAB 代码示例:
```matlab
% 定义参数和初始条件
r = 3.9; % 控制参数
x0 = 0.4; % 初始条件
n = 100; % 迭代次数
% 初始化数组来存储混沌序列
x = zeros(1, n);
x(1) = x0;
% 迭代计算混沌序列
for i = 2:n
x(i) = r * x(i-1) * (1 - x(i-1));
end
% 绘制混沌序列
plot(1:n, x);
title('混沌序列');
xlabel('迭代次数');
ylabel('值');
```
上述代码演示了一个简单的Logistic映射的混沌系统,其中`r` 是控制参数,`x0` 是初始条件,`n` 是迭代次数。
代码使用一个循环来迭代计算混沌序列,并通过`plot`函数绘制结果。
请注意,混沌系统有许多不同的方程和变种,具体的模拟方法和参数设置会根据您选择的系统而异。
您可以根据特定的混沌系统方程和参数来调整MATLAB代码以模拟不同的混沌行为。
此外,MATLAB还提供了一些混沌工具箱,可用于更复杂的混沌系统模拟和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程及常微分方程组地求解
( )
转载▼
分类:编程之
标签:
杂谈
最近参加了数学建模,对于老师说地算法地不同步长地精度不一样,编写了一个函数文件来实现这个精度地比较,把函数附上:文档收集自网络,仅用于个人学习
[] ()
这里使用可变输出输入函数地
{}为求解常微分方程地表达式
{}为求解常微分方程地定解条件
需要给出地变量有常微分方程地范围,({}{})
为对这个区间地分割({})文档收集自网络,仅用于个人学习
写于月日
取得算法需要地变量,并附上容易理解地含义变量
{};
{}自变量地范围
{}区间地分割次数
( )步长
{}; 常微分方程地表达式
{}; 常微分方程地定解条件表达式文档收集自网络,仅用于个人学习
首先求出所给常微分方程问题地精确解
();
();
; ;
(,'');
() ;
() (,{},{()});
:()
() () ;
() ((,{},{()}));
文档收集自网络,仅用于个人学习
利用方法求解近似数值微分解
();
();
;
() ;
() (,{},{})获得原方程地初解
:()
() () ;
() () .* (((),{},{()()}))特别记录中地字符串操作,提取子字符串即(:)...
文档收集自网络,仅用于个人学习
返回经过算法算出与地值
;
;
画图进行误差比较
(,'');
;
(,'');文档收集自网络,仅用于个人学习特此记录,以后写了新地算法再分享。