用Matlab观察分岔与混沌现象
matlab迭代。混沌,原因,分叉 Microsoft Word 文档

问题与实验3: 一元线性迭代的收敛性条件怎样表述? 关于迭代法收敛性的两个判别条件: a 、充分必要条件是:矩阵M 的谱半径(){}1,..,2,1max<==n i M iiλρ()b 、充分条件是:矩阵M 的某个算子范数M<1。
问题与实验4: 在本例中,12<M,这时迭代序列是收敛的,就本例或选择别的例子,按12<M和12≥M构造不同的迭代法,通过实验和比较,并给出你对实验结果的解释(如关于收敛性、收敛速度等),当然这需要你首先知道矩阵范数的概念,并且对它有比较好的理解。
设x 是方程组(5)的解,{}mx 是迭代法(6)生成的任一序列,因为f Mx x +=,f Mxx mm +=+1()()()0221x x Mx x Mx x M x x mm m m -==-=-=--- ,设D = diag (a 11, a 22, …, a nn ),将AX = b 改写为: AX = (D – (D - A )) x = b DX = (D - A ) x + bX = (I – D -1A ) x + D -1b记 B = I – D -1A F = D -1 b 则迭代格式的向量表示为F BX Xk k +=+)()1( B称为雅克比迭代矩阵。
由此可知要判断X 是否收敛只需看M 的谱半径是否小于1,既有一其中I 是单位i 矩阵,D 是提取A 的对角线上的元素。
下判断条件:充要条件:(1) (){}1,..,2,1max<==n i M iiλρ.(2)充分条件是:矩阵M 的某个算子范数M<1.并且我们知道当M 越小的时候其收敛的速度越快。
并且还可以知道当初始值越接近精确解时收敛速度越快。
这是由于迭代的公式所定的。
下面来看另一个例子:X1+2X2+-2X3=1 X1+X2+X3=1 2X1+2X2+X3=1雅可比法的迭代矩阵:A=[1 2 -2; 1 1 1; 2 2 1;] b=[1;1;1;] D=diag(diag(A)); LU=D-A; M=D\LU;p=max(abs(eig(M))) f=D\b; x=[]; z=[];x(:,1)=eye(3,1); N=200000000; for i=1:N;if norm(A*x(:,i)-b)<1e-010;m=i;breakelsex(:,i+1)=M*x(:,i)+f;z=x(:,i+1)endendme=norm(A*z-b)plot([1:length(x)],x)title('JACOBI ITERATION OF LINEAR EQUATIONS')A =1 2 -21 1 12 2 1b = 1 1 1p = 5.8106e-006(谱范数)可以看出是收敛的z=1 0 -1z =-1 1 -1z =-33 1m =4(迭代的次数)e =0(误差的估计)图像是:1 1.52 2.53 3.54-3-2-1123JACOBI ITERATION OF LINEAR EQUATIONSA=[9 -1 -1; -1 8 0; -1 0 9;] b=[7;7;8;] D=diag(diag(A)); LU=D-A; M=D\LU;p=max(abs(eig(M))) f=D\b; x=[]; z=[];x(:,1)=eye(3,1);N=200000000;for i=1:N;if norm(A*x(:,i)-b)<1e-010;m=i;breakelsex(:,i+1)=M*x(:,i)+f;z=x(:,i+1)endendme=norm(A*z-b)plot([1:length(x)],x)title('JACOBI ITERATION OF LINEAR EQUATIONS')A = 9 -1 -1-1 8 0-1 0 9b =7 7 8p =0.1620(谱范数)可以看出是收敛,m =16迭代的次数。
基于Matlab的复摆混沌行为研究

毕业论文基于Matlab的复摆混沌行为研究摘要自然界中存在无数的无序、非平衡和随机的复杂系统。
混沌现象出现于非线性系统中,它揭示了有序与无序的统一,确定性与随机性的统一。
混沌运动是非线性动力学系统所特有的复杂运动状态,是一种貌似随机的不规则运动,混沌的发现被誉为继相对论和量子力学后的第三次物理学革命,混沌的研究一直备受学术界的关注。
矚慫润厲钐瘗睞枥庑赖。
Matlab是一个适用于科学计算、工程设计、数值分析等领域的各种计算、演算和仿真分析的高性能的优秀数学软件。
混沌理论研究的是非线性问题,难以用解析式表达,只能采用数值解法,而Matlab在这方面便可展示其强大的潜能。
聞創沟燴鐺險爱氇谴净。
本论文利用了Matlab软件研究经典的混沌现象的特征,并且对混沌的特点以及形成过程进行模拟分析研究;并用Matlab模拟了复摆运动行为及混沌现象,对不同周期作出相图及奇怪吸引子,可以看到随着外驱动力的增加,复摆振动逐渐由倍周期分岔走向混沌。
残骛楼諍锩瀨濟溆塹籟。
关键词:混沌,Matlab,复摆,倍周期分岔,奇怪吸引子THE COMPLEX BEHAVIOR OF CHAOTIC PENDULUM BASED ON MATLAB酽锕极額閉镇桧猪訣锥。
ABSTRACTThere are many disorders, non-equilibrium, random complex systems in the nature. Chaos appears in nonlinear systems, it reveals the unity of order and disorder, certainty and randomness of unity. Chaos is a nonlinear dynamic system unique to the complex state of motion, is a seemingly random, irregular motion, chaos, following the discovery of relativity and quantum mechanics known as the third after the revolution in physics, Chaos has always been of academic attention.彈贸摄尔霁毙攬砖卤庑。
matlab 混沌 分叉 程序

一、概述Matlab是一种用于数学计算、数据分析和图形可视化的高级编程语言和工具,混沌理论是一种描述动态系统非线性行为的数学理论,而混沌分叉是混沌系统中特有的一种现象。
编写Matlab程序对混沌分叉进行研究即是将这两种领域结合起来,本文将介绍如何使用Matlab 编写混沌分叉程序。
二、混沌分叉理论简介混沌分叉理论是描述混沌系统行为的一个重要方面,其基本原理可简要描述如下:1. 系统的参数变化:在混沌系统中,当改变系统的某些参数时,系统的行为会发生变化,这种变化可能是渐变的,也可能是突然的。
2. 分岔现象:当系统的参数发生变化时,系统的稳定点可能会出现分叉现象,即稳定点从一个点分裂成多个点,这种分叉现象是混沌系统中一个显著的特征。
3. 分形结构:在混沌分叉中,分岔现象可能形成分形结构,这种结构在混沌系统中具有重要的理论和实际意义。
三、Matlab基础知识使用Matlab编写混沌分叉程序需要具备一定的Matlab基础知识,包括但不限于以下内容:1. Matlab基本语法:了解Matlab的基本语法规则,包括变量定义、数组操作、逻辑运算等。
2. Matlab图形绘制:掌握Matlab绘制图形的基本方法,包括绘制曲线、散点图等。
3. Matlab函数编写:了解如何在Matlab中编写自定义函数,并且能够熟练运用函数调用和参数传递。
四、混沌分叉程序的编写编写混沌分叉程序的基本步骤如下:1. 设定系统参数:首先需要定义混沌系统的参数,包括系统的微分方程、初始条件以及需要变化的参数。
2. 编写微分方程:根据所研究的具体混沌系统,编写系统的微分方程,通常为非线性微分方程。
3. 参数变化循环:对系统的某些参数进行变化,并且循环计算系统的轨迹,观察混沌分叉现象。
4. 图形绘制:绘制分叉图、分岔图等用于展示混沌分叉现象的图形。
五、程序示例下面为一个简单的混沌分叉程序示例,以具体的混沌系统为 Logistic映射为例,程序演示了 Logistic 映射参数 r 变化时轨迹的分叉现象。
matlab混沌,分形

matlab混沌,分形对于函数f(x)=λsin(πx),λ∈(0,1],使⽤matlab计算随着λ逐渐增⼤,迭代x=f(x)的值,代码如下:function y=diedai(f,a,x1)N=32;y=zeros(N,1);for i=1:1e4x2=f(a,x1);x1=x2;y(mod(i,N)+1)=x2;endend%f=@(a,x)a*x*(1-x);f=@(a,x)a*sin(pi*x);%x0=0.1;hold on;for x0=-1:0.05:1for a=0:0.01:1y=diedai(f,a,x0);for count=1:32plot(a,y(count),'k.');hold on;endendend得到的图像如下:其中横轴为λ,纵轴为x可以看到随着λ的逐渐增⼤,出现了倍周期分叉的情况。
由图中可以看出第⼀个分叉值⼤约在0.3附近,第⼆个在0.73到0.75之间,第三个在0.8到0.85之间,混沌⼤约出现在0.86附近。
接下来编写代码计算分叉值,代码如下:format long;x0=0.1;for a=0.3182:0.0000001:0.3183y=diedai(f,a,x0);if max(y)>0.001disp(a);break;endend得到第⼀个分叉值⼤约为0.3182298format long;x0=0.1;for a=0.7199:0.000001:0.72y=diedai(f,a,x0);if max(y)-min(y)>0.001disp(a);break;endend得到第⼆个分叉值⼤约为0.719911format long;x0=0.1;for a=0.8332:0.000001:0.8333y=diedai(f,a,x0);if abs(y(32)-y(30))>0.001disp(a);break;endend得到第三个分叉值⼤约为0.833267利⽤Feigenbaum常数估计第三个分叉值,得到0.805939分形图周常青画mandelbrot分形图,主要使⽤了三个函数:iter=mandelbrot1(x0,y0,maxIter),⽤来计算迭代后是否收敛,⽅程z=z2+z0。
基于Matlab的Rossler混沌研究

二、倍周期分岔
x y z y x a * y z b z *( x c)
• 下面将以Rossler 系统在时间 t=0:300;初值 (0.1,0.2,0.3), 参数a=0.2, b=0.2, 改变c大 小来展示其倍周 期分岔特性。
Rossler倍周期分岔进入混沌
物理与工程学院2012届应物专业论文答辩
基于MATLAB的罗斯勒系统的混沌特性 研究
专 业: 应用物理学 班 级: 应物082 答 辩 人: 崔晓鹏
混沌的发现
混沌 混沌的特性 主 要 内 容
初值敏感性
Rossler系 统
倍周期分岔 功率谱分析
混沌的发现
混沌是国内外学术界对非 线性系统研究领域研究非常活 跃的前沿课题。在1963年美国 著名的气象学家洛伦兹在分析 气候数据时发现: 初值十分接 近的两条曲线的最终结果会相 差很大。这是混沌吸引子的第 一个例子,从此拉开了混沌研 究的帷幕。
x y z y x a * y z b z *( x c)
c=5.7 Rossler单周期运行图,t=6
c=5.7 Rossler双周期运行图,t=12
c=5.7 Rossler系统动画演示,t继续增大
c=5.7 多周期运行图以至于混沌, t=1000
三、功率谱分析
Rossler方程
x„,y‟和z„表示对自变量对时 间t求导数。(x,y,z)表示 系统的状态。a,b,c,是 系统参数。方程看上去很简 单,除去第三个方程中的二 次项 z*x,则系统是线性的。 但一个著名的事实是,这个 简单系统存在混沌行为。
混沌系统相图
在经典力学中,一个系统的运 动可以用相空间中的轨道来表示, 混沌系统也可以这样描述,我们将 作Rossler系统的x、y、z关系图即 Rossler系统的相图,以更方便地研 究 Rossler 系 统 。 研 究 参 数 a=0.2,b=0.2,c可变。
基于MATLAB的各类混沌系统的计算机模拟(教学版)

z
20 0 20
50 40 30
z
20 10 0 -20 -10 x 0 10
z
20 10 0 -20 -10 0 y 10 20
4.初值敏感性: 保持初值 x0 和 y0 不变,即 x0=y0=1,改变 z0 为 1.001,千分之一的变化会引起系统 行为的显著改变,如下图所示:
y
Rossler 方 程 X-Z平 面 相 图 (较 短 时 间 后 ) 50 40 30
6. 吸引子: 指相空间的这样的一个点集 s (或一个子空间) , 对 s 邻域的几乎任意一 点, 当 t 时所有轨迹线均趋于 s, 吸引子是稳定的不动点。 7. 奇异吸引子: 又称混沌吸引子, 指相空间中具有分数维的吸引子的集合。 该吸引集 由永不重复自身的一系列点组成, 并且无论如何也不表现出任何周期性。 混沌轨道就运行在 其吸引子集中。 8. 分叉和分叉点: 又称分岔或分支。 指在某个或者某组参数发生变化时, 长时间动力 学运动的类型也发生变化。 这个参数值(或这组参数值)称为分叉点, 在分叉点处参数的微小 变化会产生不同性质的动力学特性, 故系统在分叉点处是结构不稳定的。 9. 周期解: 对于系统 xn 1 f ( xn ) , 当 n 时,若存在 xn i xn , 则称该系 统有周期 i 解 。不动点可以看作是周期为 1 的解, 因为它满足 xn 1 xn 。 10. 初值敏感性: 对初始条件的敏感依赖是混沌的基本特征, 也有人用它来定义混沌: 混沌系统是其终极状态极端敏感地依赖于系统的初始状态的系统。 敏感依赖性的一个严重后 果就在于,使得系统的长期行为变得不可预见。
引言. 混沌探秘
混沌是非线性系统所独有且广泛存在的一种非周期运动形式, 其覆盖面涉及到自然科 学和社会科学的几乎每一个分支。1972 年 12 月 29 日,美国麻省理工学院教授、混沌学开 创人之一 E.N.洛伦兹在美国科学发展学会第 139 次会议上发表了题为《蝴蝶效应》的论文, 提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷 风,并由此提出了天气的不可准确预报性。为什么会出现这种情况呢?这是混沌在作怪! “混沌”译自英语中“chaos”一词,原意是混乱、无序,在现代非线性理论中,混沌 则是泛指在确定体系中出现的貌似无规则的、类随机的运动。 混沌现象是普遍的,就在我们身边,是与我们关系最密切的现象,我们就生活在混沌的 海洋中。一支燃着的香烟,在平稳的气流中缓缓升起一缕青烟,突然卷成一团团剧烈搅动的 烟雾,向四方飘散;打开水龙头,先是平稳的层流,然后水花四溅,流动变的不规则,这就 是湍流;一个风和日丽的夏天,突然风起云涌,来了一场暴风雨。一面旗帜在风中飘扬, 一 片秋叶从树上落下,它们都在做混沌运动。可见混沌始终围绕在我们的周围,一直与人类为 伴。
Matlab实现混沌系统的控制

基于MATLAB 的各类混沌系统的计算机模拟混沌是非线性系统所独有且广泛存在的一种非周期运动形式, 其覆盖面涉及到自然科学和社会科学的几乎每一个分支。
1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风,并由此提出了天气的不可准确预报性。
为什么会出现这种情况呢?这是混沌在作怪!“混沌”译自英语中“chaos”一词,原意是混乱、无序,在现代非线性理论中,混沌则是泛指在确定体系中出现的貌似无规则的、类随机的运动。
混沌现象是普遍的,就在我们身边,是与我们关系最密切的现象,我们就生活在混沌的海洋中。
一支燃着的香烟,在平稳的气流中缓缓升起一缕青烟,突然卷成一团团剧烈搅动的烟雾,向四方飘散;打开水龙头,先是平稳的层流,然后水花四溅,流动变的不规则,这就是湍流;一个风和日丽的夏天,突然风起云涌,来了一场暴风雨。
一面旗帜在风中飘扬,一片秋叶从树上落下,它们都在做混沌运动。
可见混沌始终围绕在我们的周围,一直与人类为伴。
1.混沌的基本概念1. 混沌: 目前尚无通用的严格的定义, 一般认为,将不是由随机性外因引起的, 而是由确定性方程(内因)直接得到的具有随机性的运动状态称为混沌。
2. 相空间: 在连续动力系统中, 用一组一阶微分方程描述运动, 以状态变量(或状态向量)为坐标轴的空间构成系统的相空间。
系统的一个状态用相空间的一个点表示, 通过该点有唯一的一条积分曲线。
3. 混沌运动: 是确定性系统中局限于有限相空间的高度不稳定的运动。
所谓轨道高度不稳定, 是指近邻的轨道随时间的发展会指数地分离。
由于这种不稳定性, 系统的长时间行为会显示出某种混乱性。
4. 分形和分维: 分形是 n 维空间一个点集的一种几何性质, 该点集具有无限精细的结构, 在任何尺度下都有自相似部分和整体相似性质, 具有小于所在空间维数 n 的非整数维数。
怎么用matlab画分叉图,混沌------分岔图绘制不同方法的总结、比较(转)

怎么⽤matlab画分叉图,混沌------分岔图绘制不同⽅法的总结、⽐较(转)经过近期的研究发现,⽬前对于系统单参数分岔图的计算共有以下的⼏种⽅法:1)最⼤值法即对系统微分⽅程(组)进⾏求解,对求解的结果⽤getmax函数进⾏取点,并绘图。
2)Poincare截⾯法对系统参数的每⼀次取值,绘制其Poincare截⾯,进⽽得到其分岔图。
这种⽅法需要注意的是,⾃治系统的Poincare截⾯是选取⼀超平⾯,平⾯上点的分布即构成⼀Poincare截⾯,⾮⾃治系统的Poincare截⾯则是根据系统激励的频率进⾏取点并绘图。
本帖将以Lorenz系统为例,对这两种⽅法进⾏⽐较⾸先对第⼆种⽅法进⾏阐述。
编程如下(matlab)Lorenz系统:function dy = Lorenz(t,y)% Lorenz系统% 系统微分⽅程:% dx/dt = -a(x-y)% dy/dt = x(r-z)-y% dz/dt = xy-bz% a=y(4)% r=y(5)% b=y(6)dy=zeros(6,1);dy(1)=-y(4)*(y(1)-y(2));dy(2)=y(1)*(y(5)-y(3))-y(2);dy(3)=y(1)*y(2)-y(6)*y(3);dy(4)=0;dy(5)=0;dy(6)=0;随r的分岔图求解程序:——按照x=y平⾯取截⾯function Lorenz_bifur_rZ=[];for r=linspace(1,500,1000);% 舍弃前⾯迭带的结果,⽤后⾯的结果画图[T,Y]=ode45('Lorenz',[0,1],[1;1;1;16;r;4]); [T,Y]=ode45('Lorenz',[0,50],Y(length(Y),:));Y(:,1)=Y(:,2)-Y(:,1);% 对计算结果进⾏判断,如果点满⾜x=y,则取点for k=2:length(Y)f=k-1;if Y(k,1)<0if Y(f,1)>0y=Y(k,2)-Y(k,1)*(Y(f,2)-Y(k,2))/(Y(f,1)-Y(k,1)); Z=[Z r+abs(y)*i];endelseif Y(f,1)<0y=Y(k,2)-Y(k,1)*(Y(f,2)-Y(k,2))/(Y(f,1)-Y(k,1)); Z=[Z r+abs(y)*i];endendendendplot(Z,'.','markersize',1)title('Lorenz映射分岔图')xlabel('r'),ylabel('|y| where x=y')结果如图1所⽰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab 实验报告
实验目的:用Matlab 观察分岔与混沌现象。
题目:Feigenbaum 曾对超越函数sin()y x λπ=(λ为非负实数)进行了分岔与混沌的研究,试利用迭代格式1sin()k k x x λπ+=,做出相应的Feigenbaum 图
算法设计:
1、因为λ为非负实数,所以试将λ的范围限制在[0,3],制图时x 的坐标限制在[0,3],考虑到y 的值有正有负,所以把y 的坐标限制在[-3,3]。
2、根据课本上给的例题,编写程序代码来绘图。
程序代码:
clear;clf;
hold on
axis([0,3,-3,3]);
grid
for a=0:0.005:3
x=[0.1];
for i=2:150
x(i)=a*sin(pi*x(i-1));
end
pause(0.1)
for i=101:150
plot(a,x(i),'k.');
end
end
图像:
结果分析:在λ取值在[0,0.3]区间内时,y的值保持在0,然后开始上升,在λ取值在0.75附近时,开始分岔为两支。
从整体上看,随着λ的值越来越大,所产生的迭代序列越来越复杂,可能会随机地落在区间(-3,3)的任一子区间内。
并可能重复,这就是混沌的遍历性。
进一步分析:由于λ的取值空间偏小,考虑扩大其取值范围到[0,6],再进一步观察图像。
程序代码如下:
clear;clf;
hold on
axis([0,6,-6,6]);
grid
for a=0:0.05:6
x=[0.1];
for i=2:150
x(i)=a*sin(pi*x(i-1));
end
pause(0.1)
for i=101:150
plot(a,x(i),'k.');
end
end
图像:
分析:由图像可见,随着 取值范围的增大,图像呈现出周期性的特点。
总结:1、当取值范围比较小,不足以发现图像规律时,可以考虑扩大变量的取值范围。
2、由于图像是由大量点构成的,所以在编程的时候注意循环
语句的应用。