极差、方差与标准差及章小结
方差标准差极差

方差标准差极差嘿,朋友们!今天咱来聊聊方差、标准差和极差这几个有意思的概念。
你想想啊,这世界上的事儿就跟天气似的,有时候阳光明媚,有时候又阴雨绵绵。
数据也是这样,它们可不是规规矩矩排好队的乖宝宝,而是各有各的脾气呢!方差呢,就像是给这些数据的“调皮程度”打个分。
它能告诉我们这些数据到底是乖乖听话呢,还是到处乱跑撒欢儿。
比如说,咱班同学的考试成绩,如果方差小,那就说明大家成绩都差不多,很稳定嘛;要是方差大,那可就热闹了,有的高得离谱,有的低得可怜,差距老大了!这就好像一群小朋友在操场上玩,有的安安静静地坐着,有的满场疯跑,这场景是不是一下子就出来啦?标准差呢,其实就是方差的“好兄弟”。
它呀,就像是把方差这个分数给“标准化”了一下,让我们更好理解和比较。
它就像是给这些数据穿上了一双尺码合适的鞋子,让我们能更清楚地看到它们到底是怎么个走法。
再来说说极差。
极差可简单啦,就是最大数和最小数的差距。
这就好比一场比赛里,第一名和最后一名的差距。
要是极差小,那说明大家水平都挺接近的;要是极差大,那可就是两极分化严重咯!你说要是一场跑步比赛,第一名都快到终点了,最后一名还在半道上慢悠悠地晃荡,这差距得多大呀!咱举个实际例子吧,比如说咱统计一个月里每天的气温。
如果方差小,那说明这个月天气挺稳定的,每天温度都差不多;要是方差大,那可能就是忽冷忽热,一会儿穿短袖,一会儿就得裹棉袄了。
标准差呢,就更直观地告诉我们这种波动有多大。
而极差呢,就是这个月里最高温和最低温的差距,一下子就能让我们知道这个月的天气跨度有多大。
这三个家伙在很多地方都可有用啦!比如在科学研究里,研究人员得靠它们来分析数据,看看有没有啥规律;在商业上,老板们也得用它们来看看自己的生意咋样,是越来越好呢,还是得赶紧想办法改进。
所以啊,可别小瞧了方差、标准差和极差这三个家伙,它们就像是数据世界里的小精灵,帮我们更好地理解和处理那些乱七八糟的数据呢!它们让我们能从一堆看似混乱的数据中找到头绪,发现其中的奥秘。
极差方差与标准差[下学期]--华师大版
![极差方差与标准差[下学期]--华师大版](https://img.taocdn.com/s3/m/8542437658fafab069dc0271.png)
标准差 方差
方差 标准差
2
小结: 1.极差:用一组数据中的最大值减去最小值所得的差
来反映这组数据的变化范围。用这种方法得到的差称 为极差(range)
即:极差=最大值-最小值
2.方差:在一组数据x1,x2,……,xn中,各数据与它们
的平均数 的差的平方的平均数,叫做这组数据的 方差(variance)
思考:
什么样的数能反映一组数据与其平 均值的离散程度?
我们可以用“先平均,再求差,然后平方,最 后再平均”得到的结果表示一组数据偏离平均值的 情况.这个结果通常称为方差(variance).
方差的计算式就是
1 S [(x1 x )2 ( x 2 x ) 2 ... ( xn x ) 2 ] n
表 20.2.1 上海每日最高气温统计表 (单位:℃)
这段时间的 平均气温 2001年
最高气温 最低气温 变化范围
2002年
将观察结果添入表格
思 考 : 什么样的指标可以反映一组数据 变化范围的大小? 我们可以用一组数据中的最大值减去最 小值所得的差来反映这组数据的变化范围。 用这种方法得到的差称为极差(range).
x
1 2 2 2 S [(x1 x ) ( x 2 x ) ... ( xn x ) ] n
2
3.标准差:方差的算术平方根叫做这组数据的
标准差(standard deviation).
1 2 2 2 S [(x1 x) ( x 2 x) ... ( xn x) ] n
极差=最大值-最小值
在生活中,我们常常会和极差打交 道.班级里个子最高的学生比个子最矮的学 生高多少?家庭中年纪最大的长辈比年纪最 小的孩子大多少?这些都是求极差的例子.
标准差方差极差平均差

标准差方差极差平均差标准差、方差、极差、平均差,这些听起来是不是有点让人头疼?别急,让我来给你慢慢唠唠。
咱先说说标准差,它就像是一个班级里同学们成绩的波动情况。
如果标准差小,那说明大家的成绩都比较接近,很稳定;要是标准差大呢,那就是有的同学成绩特别好,有的又特别差,差距挺大的。
你想想,要是一个团队里,大家的表现都很稳定,那多让人放心呀,这标准差就起到了这样一个衡量稳定程度的作用。
再来讲讲方差,它其实和标准差是一伙的,方差就是标准差的平方。
你可以把方差想象成是对波动程度的一种更强烈的表达。
就好像你对一件事情的不满意程度,方差大就像是非常不满意,小呢就表示还挺满意的。
然后是极差,这就简单多啦!极差就是最大值和最小值之间的差距。
就好比你去买衣服,最贵的和最便宜的价格差距,那就是极差呀!极差大,说明价格波动大;极差小,那价格就比较平稳咯。
最后说说平均差,它是每个数据与平均值差值的绝对值的平均值。
这就像是大家一起出去玩,每个人和平均花费的差距。
平均差小,说明大家的花费都差不多;平均差大,那可就有人花得多,有人花得少啦。
嘿,你说这些统计指标是不是还挺有意思的?它们就像是我们生活中的各种衡量标准一样。
比如说,我们评价一个人的性格,是不是也有稳定不稳定之分?就像标准差一样。
我们看一个地区的经济发展,是不是也有差距大小之别?这不就和极差差不多嘛。
在很多时候,我们都需要用这些指标来了解事情的本质。
比如在工作中,看看团队的业绩波动,就能知道是不是需要调整策略;在学习中,通过分析成绩的标准差,就能知道自己的学习状态是否稳定。
这些看似复杂的概念,其实就在我们的生活中无处不在。
它们就像是一个个小工具,帮助我们更好地理解和处理各种信息。
所以啊,别再觉得标准差方差极差平均差这些东西遥不可及啦,它们就在我们身边,而且还挺有用的呢!好好去发现它们的妙处吧,你会发现原来统计学也可以这么有趣,这么贴近生活!。
极差方差标准差

极差、方差和标准差在统计学中,极差、方差和标准差是用来衡量数据分布离散程度的重要指标。
它们能够帮助我们了解数据的变异程度,从而更好地理解和分析数据。
本文将介绍极差、方差和标准差的概念、计算方法以及在实际应用中的意义。
1. 极差极差是最简单的衡量数据分布离散程度的指标,它是数据集中最大值与最小值之间的差值。
极差可以帮助我们判断数据的取值范围,并了解数据的变化幅度。
1.1 计算方法假设有一个包含n个观测值的数据集,极差可通过以下公式计算:Range = Max - Min其中,Max表示数据集中的最大值,Min表示数据集中的最小值。
1.2 例子下面以一个数据集为例来计算极差。
数据集:1, 3, 5, 7, 9最大值为9,最小值为1,因此极差为9 - 1 = 8。
2. 方差方差是衡量数据分布离散程度的常用指标,它能够帮助我们了解数据的分散程度。
方差的值越大,数据集的离散程度就越高。
方差可以帮助我们比较不同数据集之间的差异。
2.1 计算方法假设有一个包含n个观测值的数据集,方差可通过以下公式计算:Variance = (Σ(xi - x̄)^2) / n其中,xi表示第i个观测值,x̄表示数据集的均值,Σ表示求和。
2.2 例子下面以一个数据集为例来计算方差。
数据集:1, 3, 5, 7, 9首先,计算数据集的均值:(1 + 3 + 5 + 7 + 9) / 5 = 5。
然后,计算每个观测值与均值的差的平方,并求和:(1 - 5)^2 + (3 - 5)^2 + (5 - 5)^2 + (7 - 5)^2 + (9 - 5)^2 = 32。
最后,将求和结果除以观测值的个数:32 / 5 = 6.4。
因此,方差为6.4。
3. 标准差标准差是方差的平方根,它是衡量数据分布离散程度的常用指标之一。
标准差能够帮助我们了解数据的分散程度,并与均值进行比较。
标准差的值越大,表示数据的离散程度越高。
3.1 计算方法假设有一个包含n个观测值的数据集,标准差可通过以下公式计算:Standard Deviation = √(Σ(xi - x̄)^2 / n)其中,xi表示第i个观测值,x̄表示数据集的均值,Σ表示求和。
八年级数学下册第二十章数据的分析知识点归纳新版新人教版

第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。
2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。
3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。
4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。
5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。
一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。
极差 方差 标准差

极差方差标准差极差是指一组测量值内最大值与最小值之差,又称范围误差或全距,以R表示。
它是标志值变动的最大范围,它是测定标志变动的最简单的指标。
极差没有充分利用数据的信息,但计算十分简单,仅适用样本容量较小(n<10)情况。
方差是各个数据与平均数之差的平方和的平均数。
在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。
方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方误差(mean squared error,是各数据偏离平均数的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。
平均数相同的,标准差未必相同。
简单来说,标准差是一组数据平均值分散程度的一种度量。
一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0,5,9,14} 和{5,6,8,9} 其平均值都是7 ,但第二个集合具有较小的标准差。
标准差可以当作不确定性的一种测量。
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。
当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。
这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差应用于投资上,可作为量度回报稳定性的指标。
标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。
2极差、方差与标准差点拨极差、方差、标准差

点拨极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.一、极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,实际生活中我们经常用到极差.如一支足球队队员中的最大年龄与最小年龄的差,一个公司成员中最高收入与最低收入的差等都是极差的例子.极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x 1、x 2、x 3、…、x n 的平均数为x ,则该组数据方差的计算公式为: ])()()[(1222212x x x x x x nS n -++-+-= . 三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差. 即标准差=方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.5.典型例析例1 从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下:(单位:cm ) 甲: 21 42 39 14 19 22 37 41 40 25乙: 27 16 40 41 16 44 40 40 27 44(1)根据以上数据分别求甲、乙两种玉米的极差、方差和标准差.(2)哪种玉米的苗长得高些;(3)哪种玉米的苗长得齐.分析:本题既是一道和极差、方差和标准差计算有关的问题,又是利用方差解决实际问题的一道题目.要求极差,只要用数据中最大值减去最小值,求到差值即可.利用方差的计算公式可以求到方差,将方差开平方就得标准差.解: 甲的极差: 42-14=28(cm);乙的极差:44-16=28(cm).甲的平均值:)()(甲cm x 3025404137221914394221101=+++++++++= 乙的平均值:)(31)44274040441641401627(101cm x =+++++++++=乙 甲的方差:)(2.10410)3025()3042()3021(22222cm S =-++-+-= 甲, 乙的方差:)(8.12810)3144()3116()3127(22222cm S =-++-+-= 乙(2)因为甲种玉米的平均高度小于乙种玉米的平均高度,所以一种玉米的苗长的高.(3)因为22乙甲S S ≤,所以甲种玉米的苗长得整齐.例2 市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m )如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测,跳过1.65m 就很可能获得冠军,该校为了获得冠军,可能选哪位运动员参赛?若预测跳过1.70m 才能得冠军呢?解析:本题是一道数据分析有关的实际问题,主要考查数据的平均数、方差的计算方法及处理数据的能力.根据平均数及方差的计算公式可得(1)甲x =)67.165.170.1(81+++ =1.69(m), 乙x =)75.173.160.1(81+++ =1.68(m ). (2)])69.167.1()69.165.1()69.170.1[(812222-++-+-= 甲S =0.0006(m 2), ])68.175.1()68.173.1()68.160.1[(812222-++-+-= 乙S =0.0035(m 2),因为22s s 乙甲,所以甲稳定.(3)可能选甲参加,因为甲8次成绩都跳过1.65m 而乙有3次低于1.65m; 可能选乙参加,因为甲仅3次超过1.70m.。
21.3极差、方差与标准差

根据两段时间的气温情况绘成折线图如下:
25 20 15 10 5 0 2001年 2002年
日
日
日
日
日
日
日 27
21
22
23
24
25
26
结论:2001年的2月下旬的气温变化幅 度大于2002年同期的变化幅度.
28
日
极差=最大值-最小值
问:2001年2月下旬上海的气温的极差是多少?
22-6=16
2002年同期的上海的气温的极差又是多少? 16-9=7
仔细观察
测试次数 小明 小兵 1 13 10
小明和小兵两人参加体育项目训 练,近期的五次测试成绩如下表所示。
2 14 13
3 13 16
4 12 14
5 13 12
平均 13 13
体育项目测试成绩折线图
18 16 14 12 10 8 6 4 2 0 1 2 3 4 5 小明 小兵
从表和图中可以看到,小兵的测试成 绩与平均值的偏差较大,而小明的较小.那么如何加 以说明呢?可以直接将各数据与平均值的差进行累加 吗?在下表中写出你的计算结果。
探索思考
请你提出一个可行的方案,在表 的格子中写上新的计算方案,并将计 算结果填入表中。
1 2 3 4 13 14 13 12 0 1 -1 0 0 1 0 1 5 13 0 0 求和 平均 13 65 0 0 2 65 0 20 0.4 13 0 4
小 明
每次测试成绩
每次成绩—平均成绩
(每次测试成绩-平均成绩)2
S
标准差=
2
2 ,方差 = 标准差 方差
计算问题2中小明、小兵五次测试成绩的 标准差,谁的成绩稳定?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【模拟试题】(答题时间:80分钟)
一、填空题
1. 某出租车公司在“五一”长假期间平均每天的营业额为5万元,由此推断该出租车公司五月份的总营业额约为5×31=155万元.根据所学的统计知识,你认为这样的推断是否合理?答:.(填“合理”或“不合理”)
2. 为了缓解旱情,我省发射增雨火箭,实施增雨作业.在一场降雨中,某县测得10个面
那么该县这10个区域的平均降雨量为mm.
3. 学校举行歌咏比赛,分两场举行,第一场8名参赛选手的平均成绩为88分,第二场4名参赛选手的平均成绩为94分,那么这12名选手的平均成绩是分.
4. 一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的中位数是,众数是.
5. 有5名同学目测同一本教科书的宽度,产生的误差如下(单位:cm):
0,2,-2,-1,1,那么这组数据的极差为cm.
6. 如图是双龙村的种植情况统计图.从图中可以看出,表示水稻种植面积的扇形的圆心角为.
7. 小明骑自行车的速度是15千米/时,步行的速度是5千米/时,如果小明先骑车2小时,然后步行了3小时,那么他的平均速度为千米/时.
8. 小张和小李练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小张和小李两人中新手是.
9. 甲、乙两人进行射击比赛,在相同条件下各射击10次.他们的平均成绩均为7环,10次射击成绩的方差分别是S2甲=3,S2乙=1.2.那么成绩较为稳定的是.(填“甲”或“乙”)10. 数据l1,12,13,14,15的方差是,标准差是.
二、选择题
11. 数据13,19,35,97,96,26的极差为()
A. 6
B. 13
C. 83
D. 84
12. 有6个数,它们的平均数是12,如果在这组数中再添加一个数5,那么这7个数的平均数是()
A. 8.5
B. 10
C. 11
D. 12
13. 六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,这六个数的中位数为()
A. 4
B. 5
C. 6
D. 7
14. 某鞋厂要确定一种运动鞋不同号码的生产数量,在做市场调查时,应向商家了解这种鞋不同号码的销售数量的()
A. 平均数
B. 众数
C. 中位数
D. 方差
15. 在青年歌手大奖赛中,8位评委给选手打分,计算方法是:去掉一个最高分,去掉一个最低分,其余分数的平均分作为该选手的最后得分.已知8位评委给小红所评分数如下:
9.8,9.5,9.7,9.9,9.8,9.7,9.4,9.8,那么小红的最后得分是(精确到0.01)()
A. 9.70
B. 9.71
C. 9.72
D. 9.73
16. 关于下面两个统计图,下列说法,不正确的是()
A. 甲校女生占全校学生总人数的50%;
B. 乙校女生占全校学生总人数的三分之一;
C. 甲校女生一定比乙校女生多;
D. 甲、乙两校女生人数有可能一样多
17. 甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了
甲包装机乙包装机丙包装机
方差(克2)31.96 7.96 16.32
根据表中数据,可以认为三台包装机中,包装的茶叶质量最稳定的是()
A. 甲
B. 乙
C. 丙
D. 无法判断
18. 已知样本x l,x2,x3,x4的方差是2,那么样本x l+3,x2+3,x3+3,x4+3的方差是()
A. 2
B. 3
C. 5
D. 9
三、解答题
19. 某文具店销售甲、乙、丙三种品牌的计算器共360只.如图是该文具店销售计算器数量的扇形统计图.
(1)分别求出购买各品牌计算器的人数;
(2)如果你是文具店经理,这个统计图对你的决策有什么作用?
20. 小谢家买了一辆小轿车,小谢连续记录了七天中每天行驶的路程:
解答下列问题:
⑴小谢家小轿车每月(每月按30天计算)要行驶多少千米?
⑵如果每行驶100千米需汽油8升,汽油每升4.20元.请你求出小谢家一年(一年按12个月计算)的汽油费用为多少元?
21. 某商场新进了一批直径12mm的螺丝,从中抽取了20个螺丝,并规定它们的标准差若大于0.2mm,就可以要求退货.这20个螺丝的直径(单位:mm)如下:
11.8,11.7,12.0,12.1,12.3,12.2,12.0,11.5,12.3,12.1,
12.0,12.2,11.9,11.7,11.9,12.1,12.3,12.2,11.8,11.9.
该商场是否可以退货?
22. 从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件,对其使用寿命进行跟踪调查,结果如下:
甲:3,4,5,6,8,8,8,10;
乙:4,6,6,6,8,9,12,13;
丙:3,3,4,7,9,10,11,12.
(1)求甲、乙、丙各厂家产品使用寿命的平均数、中位数、众数;
(2)三个厂家在广告中都称自己的产品的使用寿命是8年,请你判断厂家在广告中分别运用了平均数、中位数、众数中哪一种特征数?
【试题答案】
一、填空题:
1. 不合理
2. 14
3. 90
4. 8,8
5. 4
6. 90°
7. 9
8. 小李
9. 乙
10. 2,2
二、选择题:
11~14. DCAB
15~18. CCBA
三、解答题:
19. (1)甲72只,乙108只,丙180只;(2)略.
20. (1)1500千米;(2)约6048元.
21. 标准差为0.22,可以退货.
22. (1)平均数:甲6.5,乙8,丙7.375;中位数:甲7,乙7,丙8;众数:甲8,乙6,丙3;
(2)甲:众数,乙:平均数,丙:中位数.。