函数章末整合

合集下载

2018学年高一数学人教A版必修四课件:第一章 三角函数1 章末高效整合 精品

2018学年高一数学人教A版必修四课件:第一章 三角函数1 章末高效整合 精品

2.明确三角函数的定义,牢记三角函数值的符号 (1)定义:角 α 的顶点放在坐标原点,始边与 x 轴非负半轴重合,角 α 的终边 与单位圆的交点为 P(x,y),则 y=sin α,x=cos α,xy=tan α(x≠0). 即①y 叫作 α 的正弦,记作 sin α; ②x 叫作 α 的余弦,记作 cos α; ③xy叫作 α 的正切,记作 tan α.
A.ω=2π,φ=π6 B.ω=π,φ=π6 C.ω=π,φ=π3 D.ω=2π,φ=π3
(2)经过怎样的变换由函数 y=sin 2x 的图象可得到 y=cos x+π4的图象? 解析: (1)由函数的图象可知 A=2,T=4×56-13=2,所以 ω=2Tπ=π,因 为函数的图象经过13,2,所以 2=2sinπ3+φ,得π3+φ=2kπ+π2,k∈Z,因为|φ| <π2,所以取 k=0,所以 φ=π6,所以 ω=π,φ=π6.
(2)利用诱导公式,可以把任意角的正弦、余弦函数值化为锐角三角函数值, 其一般步骤为:负化正(公式三或一)、大化小(公式一)、锐角求值(公式二或四).
化简求值中注意利用角与角之间隐含的互余或互补关系,从而简化解题过 程.
5.探究性质应用,对比周期公式 (1)函数 y=sin x 和 y=cos x 的周期是 2π,y=tan x 的周期是 π;函数 y= Asin(ωx+φ)和 y=Acos(ωx+φ)的周期是|2ωπ|,y=Atan(ωx+φ)的周期是|ωπ|. (2)函数 y=sin x 和 y=cos x 的有界性为-1≤sin x≤1,-1≤cos x≤1;函数 y= tan x 没有最值,其有界性可用来解决三角函数的最值问题. (3)利用函数的单调性比较同名三角函数值的大小时,注意利用诱导公式将角 转化到同一单调区间内.求形如 f(ωx+φ)(f 为 sin,cos,tan)的单调区间时,应 采用整体代换的思想将 ωx+φ 视为整体,求解时注意 x 的范围以及 ω,f 的符号 对单调性的影响.

三角函数章末归纳整合2

三角函数章末归纳整合2

网络构建
专题归纳
解读高考
高考真题
【例4】 如图所示,某市郊外景区内有一 条笔直的公路a经过三个景点A、B、C. 景区管委会又开发了风景优美的景点 D.经测量景点D位于景点A的北偏东 30°方向上8 km处,位于景点B的正北 方向,还位于景点C的北偏西75°方向 上.已知AB=5 km. (1)景区管委会准备由景点D向景点B修建一条笔直的公路, 不考虑其他因素,求出这条公路的长; (2)求景点C与景点D之间的距离.(结果精确到0.1 km)
3>8,应舍去, 所以 x=4 3-3≈3.9,即这条公路的长约为 3.9 km.
AD AB (2)在△ABD 中,由正弦定理得 = ,所以 sin∠ABD sin∠ADB AD 4 sin∠ABD=sin∠CBD= · sin∠ADB= =0.8,所以 cos∠CBD AB 5 =0.6.在△CBD 中,sin∠DCB=sin(∠CBD+∠BDC)= sin(∠CBD+75° )=0.8×0.26+0.6×0.97=0.79,由正弦定理得
(1)已知两角和任意一边,求另两边和另一角; (2)已知两边和其中一边的对角,求其他的边和角.
网络构建 专题归纳 解读高考 高考真题
【例1】 在△ABC 中,a=1,b= 3,A=30° ,求边 c 的长.

a b bsin A 3 由 = ,得 sin B= = . sin A sin B a 2
网络构建
专题归纳
解读高考
高考真题
3.正弦定理、余弦定理常用作为解斜三角形的工具,有时也 用于立体几何中的有关三角形的边、角的计算中.在三角 形中,常与三角函数的有关公式相联系,解决相关问 题.另外,解三角形问题易于与多种知识综合且在实际中 应用广泛,因而是高考考查的一个热点,题型一般是选择 题、填空题,也可能是中档难度的解答题. 4.在近几年的高考中大多数省份都在此知识点命题,估计今 后几年高考中,此知识点仍是考查的重点、热点,学习时 应引起重视.

2014年高中数学(思维启迪+状元随笔)第二章 基本初等函数Ⅰ章末高效整合同步课堂讲义课件 新人教A版必修1

2014年高中数学(思维启迪+状元随笔)第二章 基本初等函数Ⅰ章末高效整合同步课堂讲义课件 新人教A版必修1

(2)由 (1)可知 x + 1 2 1 1 1+ f(x)= log = log (x>1), x - 1 2x- 1 2 2 令 u(x)=1+ (x>1),对任意的 1<x1<x2,有: x- 1 2 2 1 + u(x1)- u(x2)=1+ - x - 1 x - 1 1 2 2x2-x1 = . x1-1x2-1
[规范解答] (1)∵ f(x)为奇函数,∴f(- x)=-f(x), 1+ ax 1- ax x- 1 1 1 1 ∴ log =- log = log . 2- x- 1 2 x- 1 21- ax 1+ ax x- 1 ∴ = , -x-1 1- ax 即 (1+ax)(1-ax)=- (x+ 1)(x-1), ∴a=-1(a= 1 舍去).
1.点击指数运算 有理数指数及其运算是本章的基础内容,要明确运 算法则, 化简或求值是本章知识点的主要呈现方式. (1)在进行幂和根式的化简时,一般是先将根式化成 幂的形式,并尽可能地统一成分数指数幂的形式, 再利用幂的运算性质进行化简、求值或计算,以达 到化繁为简的目的.
(2)根式的运算中, 有开方和乘方两种运算并存的情 况.此时要注意两种运算的顺序是否可换,如当 n m n m a≥0 时, a =( a) ,而当 a<0 时,则不一定可 换,应视 m,n 的情况而定.
2.点击对数运算 (1)同底对数化简的常用方法:将同底的两对数的 和(差)化成积(商)的对数; 将积(商)的对数拆成对数 的和(差),根据题目的条件选择恰当的方法. (2)对常用对数的化简要创设情境,充分利用 lg 5 +lg 2=1 来求解. (3)对多重对数符号的化简,应从内向外逐层化简 求值. (4)对数的运算性质,要注意只有当式子中所有的 对数符号都有意义时,等式才成立.

高中数学(新人教A版)必修第一册:第3章章末 函数概念与性质 课件【精品课件】

高中数学(新人教A版)必修第一册:第3章章末 函数概念与性质 课件【精品课件】

②如果对于定义域I内某个区间D上的 任意两个自变
量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那
减函数 .
么就说函数f(x)在区间D上是
(2)单调性与单调区间
如果函数y=f(x)在区间D上是增函数或减函数,那
么就说函数y=f(x)在这一区间具有(严格
的) 单调性 ,区间D叫做y=f(x)的 单调区间 .
需要在此处列出满足题意的关系式,求出a的限制条件.
例6 若函数f ( x )是定义在R上的偶函数,且在(-,0)上是增函数,并且
f (2a 2 a 1) f (3a 2 2a 1), 求实数a的取值范围.
解 :由条件知f(x)在(0,+ )上是减函数
1 2 8
1 2 1
2
而2a a 1 2(a ) 0, 3a 2a 1 3( a ) 0
1
【解】 (1)当 a=0 时,f(x)=x ,显然是奇函数;
当 a≠0,f(1)=a+1,f(-1)=a-1,f(1)≠f(-1)且 f(1)+f(-1)≠0,
所以此时 f(x)既不是奇函数也不是偶函数.
(2)设∀x1<x2∈[1,2],

x2-x1
1
则 f(x1)-f(x2)=a(x1-x2)(x1+x2)+ x x =(x1-x2)ax1+x2-x x ,
1 2
第三章 函数的概念与性质
章末总结
教学目标及核心素养
教学目标
1.掌握函数的概念;
2.了解分段函数,会画分段函数的图像;
3.理解函数性质并且熟练运用;
x 即x

x 1
所以,
6时,等号成立。

第26章 反比例函数章末核心要点分类整合 人教版数学九年级下册复习课件(55张PPT)

第26章 反比例函数章末核心要点分类整合 人教版数学九年级下册复习课件(55张PPT)
第二十六章 反比例函数
章末核心要点分类整合
1. 双曲线y=kx中k的几何意义:设P是双曲线y=kx上任意一 点,过P向x轴、y轴作垂线,垂足分别为H,G,连接
PO(O为坐标原点),则S△POH=S△POG=|2k|,S矩形PHOG=|k|. 2. 用待定系数法求反比例函数解析式的步骤:一设、二代、
ax+b与反比例函数y=axb(a, b为常数且均不等于0)在同 一坐标系内的图象可能是 图26-1 中的( )
解题秘方:对a,b的取值分四种情况讨论,结合函数图象 进行判断. 解:分四种情况: (1)当a>0,b>0时, 一次函数y=ax+b的图象经过第一、
二、三象限,此时反比例函数y=
ab x
频率f /MHz 10
15
50
波长λ/m
30
20
6
(1)求波长λ关于频率f的函数解析式; 解:设波长λ关于频率f的函数解析式为λ=kf (k≠0). 把(10,30)代入上式,得1k0=30,解得k=300. ∴λ=30f 0.
(2)当f=75 MHz时,求此电磁波的波长λ .
解:当f=75 MHz时,λ=37050=4(m). ∴ 当f=75 MHz时,此电磁波的波长λ为4 m .
解:∵
k=5>0,∴反比例函数y=
5 x
的图象分别位于第一、
三象限,在每个象限内,y随x的增大而减小.
又∵ A(x1,-1),B(x2,1),C(x3,5)都在反比例函数y=5x 的图象上,
∴ A(x1,-1)在第三象限,B(x2,1),C(x3,5)在第一象限, 且x3<x2. ∴ x1<0,x2>x3>0. ∴ x1<x3<x2.
∵ A(-2 ,3),B(3,-2)在一次函数y=ax+b的图象上, ∴ቊ-3a2+a+b=b=-32,,解得ቊab==-1. 1, ∴一次函数的解析式为y=-x+1.

专题63 高中数学三角函数章末复习(原卷版)

专题63 高中数学三角函数章末复习(原卷版)

专题63 三角函数章末复习一 知识系统整合二 规律方法1.在任意角和弧度制的学习中,要区分开角的各种定义,如:锐角一定是第一象限角,而第一象限角不全是锐角,概念要搞清;角度制和弧度制表示角不能混用,如:α=2k π+30°,k ∈Z ,这种表示法不正确. 2.任意角的三角函数,首先要考虑定义域,其次要深刻认识三角函数符号的含义,sin α=yr ≠sin ×α;诱导公式的记忆要结合三角函数的定义去记忆. 3.同角三角函数的基本关系式 sin 2α+cos 2α=1及sin αcos α=tan α,必须牢记这两个基本关系式,并能应用它们进行三角函数的求值、化简、证明,在应用中,注意掌握解题的技巧,能灵活运用公式.在应用平方关系求某个角的另一个三角函数值时,要注意根式前面的符号的确定.4.三角函数的诱导公式诱导公式一至六不仅要正确、熟练地掌握其记忆的诀窍,更要能灵活地运用. (1)-α角的三角函数是把负角转化为正角;(2)2k π+α(k ∈Z)角的三角函数是化任意角为[0,2π)内的角; (3)π2±α,π±α,3π2±α,2π-α角的三角函数是化非锐角为锐角; (4)化负为正→化大为小→化为锐角; (5)记忆规律:奇变偶同,象限定号. 5.正弦函数、余弦函数的图象与性质(1)五点法作图是画三角函数图象的基本方法,要切实掌握,作图时自变量要用弧度制,作出的图象要正规.(2)奇偶性、单调性、最值、周期是三角函数的重要性质,f (x +T )=f (x )应强调的是自变量x 本身加常数才是周期,如f (2x +T )=f (2x ),T 不是f (2x )的周期.解答三角函数的单调性的题目一定要注意复合函数单调性法则,更要注意定义域.6.使用本章公式时,应注意公式的正用、逆用以及变形应用.如两角和与差的正切公式tan(α±β)=tan α±tan β1∓tan αtan β,其变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β)应用广泛;公式cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α的变形公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α,cos 2α=1+cos2α2,sin 2α=1-cos2α2常用来升幂或降幂.7.函数y =A sin(ωx +φ)主要掌握由函数y =sin x 的图象到函数y =A sin(ωx +φ)的图象的平移、伸缩等变换. 注意各种变换对图象的影响,注意各物理量的意义,A ,ω,φ与各种变换的关系. 8.三角函数的应用 (1)根据图象建立解析式; (2)根据解析式作出图象;(3)将实际问题抽象为与三角函数有关的函数模型;(4)利用收集到的数据作出散点图,并根据散点图进行函数模拟.在建立三角函数模型的时候,要注意从数据的周而复始的特点以及数据变化趋势两个方面来考虑.考点一 三角函数的概念1.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.2.若角α的终边所在直线经过点P (-2,3),则有( )A .sin α=21313B .cos α=-21313C .sin α=31313D .tan α=-323.已知角θ的顶点为坐标原点,始边为x 轴的非负半轴.若P (4,y )是角θ终边上一点,且sin θ=-255,则y =_____.4.若角600°的终边上有一点(-4,a ),则a 的值是5.有一个扇形的弧长为π2,面积为π4,则该弧所对弦长为考点二 同角三角函数基本关系和诱导公式的应用1.若cos ⎝⎛⎭⎫3π2-α=-53,则sin(-5π+α)=2.已知1-cos x +sin x1+cos x +sin x =-2,则tan x 的值为3.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ), 且cos α=306,则|a -b |=4.已知tan α=-3,π2<α<π,则sin α-cos α=5.已知角α的终边上有一点P (1,3),则sin (π-α)-sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫3π2-α+2cos (-π+α)的值为6.已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=7.已知3sin (π+α)+cos (-α)4sin (-α)-cos (9π+α)=2,则tan α=8.已知sin(-π+θ)+2cos(3π-θ)=0,则sin θ+cos θsin θ-cos θ=________.9.已知tan α=-43,求下列各式的值:(1)2cos α+3sin α3cos α+sin α;(2)2sin 2α+sin αcos α-3cos 2α.10.已知2cos 2α+3cos αsin α-3sin 2α=1,α∈⎝⎛⎭⎫-3π2,-π.求: (1)tan α;(2)2sin α-3cos α4sin α-9cos α.11.已知tan α=-34.(1)求2+sin αcos α-cos 2α的值;(2)求sin (4π-α)cos (3π+α)cos ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫152π-αcos (π-α)sin (3π-α)sin (-π-α)sin ⎝⎛⎭⎫132π+α的值.12.已知f (α)=sin 2(π-α)·cos (2π-α)·tan (-π+α)sin (-π+α)·tan (-α+3π).(1)化简f (α);(2)若f (α)=18,且π4<α<π2,求cos α-sin α的值;(3)若α=-47π4,求f (α)的值.13.已知-π2<x <0,sin x +cos x =15,则sin x -cos x 的值为________.14.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于15.若sin θ=33,则cos (π-θ)cos θ⎣⎡⎦⎤sin ⎝⎛⎭⎫3π2-θ-1+cos (2π-θ)cos (π+θ)sin ⎝⎛⎭⎫π2+θ-sin ⎝⎛⎭⎫3π2+θ的值为________.16. 已知cos(π+α)=-12,且角α在第四象限,计算:(1)sin(2π-α);(2)sin[α+(2n +1)π]+sin (π+α)sin (π-α)cos (α+2n π)(n ∈Z).考点三 三角恒等变换的综合应用1.化简1-2sin (π+4)cos (π+4)等于( )A .sin4-cos4B .cos4-sin4C .-sin4-cos4D .sin4+cos42.2sin 215°-1的值是3.若sin2α=14,π4<α<π2,则cos α-sin α的值是4.已知α为锐角,cos α=55,则tan ⎝⎛⎭⎫π4+2α=5.在3sin x +cos x =2a -3中,a 的取值范围是A.⎣⎡⎦⎤12,52B.⎝⎛⎦⎤-∞,12C.⎝⎛⎭⎫52,+∞D.⎣⎡⎭⎫-52,-12 6.已知α∈⎝⎛⎭⎫π2,π,sin α=55,求sin ⎝⎛⎭⎫π4+α的值.7.在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 的大小为________.8.在△ABC 中,已知tan A +B2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形9.已知sin α=55,且α为锐角,tan β=-3,且β为钝角,则α+β的值为10.已知α,β,γ∈⎝⎛⎭⎫0,π2,sin α+sin γ=sin β,cos β+cos γ=cos α,则β-α的值为________.11.求值:sin50°(1+3tan10°)-cos20°cos80°1-cos20°.12.化简:2sin130°+sin100°(1+3tan370°)1+cos10°.13.求证:sin θ(1+tan θ)+cos θ⎝⎛⎭⎫1+1tan θ=1sin θ+1cos θ.14.求证:sin α1-cos α·cos αtan α1+cos α=1.15.求证:1+2sin αcos αcos 2α-sin 2α=1+tan α1-tan α.16.求证:tan 2x +1tan 2x =2(3+cos4x )1-cos4x.17.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1.18.已知tan α=43,cos(α+β)=-1114,α,β均为锐角,求cos β的值.19.已知cos ⎝⎛⎭⎫α-β2=-277,sin ⎝⎛⎭⎫α2-β=12,且α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求: (1)cos α+β2;(2)tan(α+β).20.已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值;(2)求tan(α-β)的值.21.已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.22.已知函数f (x )=4tan x sin ⎝⎛⎭⎫π2-x ·cos ⎝⎛⎭⎫x -π3- 3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎡⎦⎤-π4,π4上的单调性.23.已知函数f (x )=(sin x -cos x )sin 2xsin x.(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递减区间.24.已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R).(1)求函数f (x )的最小正周期及单调递增区间; (2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.25.已知sin ⎝⎛⎭⎫α+3π4=513,cos ⎝⎛⎭⎫π4-β=35,且-π4<α<π4,π4<β<3π4,求cos[2(α-β)]的值.考点四 三角函数的图象与性质1.函数y =16-x 2+sin x 的定义域为______________.2.若f (x )是R 上的偶函数,当x ≥0时,f (x )=sin x ,则f (x )的解析式是__________________.3.对于函数f (x )=sin2x ,下列选项中正确的是( )A .f (x )在⎝⎛⎭⎫π4,π2上是递增的 B .f (x )的图象关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为24.函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[0,π])的单调递增区间是5.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝⎛⎭⎫π4=2,则f ⎝⎛⎭⎫3π8=6.在△ABC 中,C >π2,若函数y =f (x )在[0,1]上为单调递减函数,则下列命题正确的是( )A .f (cos A )>f (cosB ) B .f (sin A )>f (sin B )C .f (sin A )>f (cos B )D .f (sin A )<f (cos B )7.已知函数f (x )=2sin ⎝⎛⎭⎫x +π4+φ是奇函数,当φ∈⎣⎡⎦⎤-π2,π2时,φ的值为________.8.若函数f (x )=sin x +a cos x 的图象关于直线x =π6对称,则a =________.9.关于函数f (x )=sin|x |+|sin x |有下述四个结论:①f (x )是偶函数;②f (x )在区间⎝⎛⎭⎫π2,π单调递增;③f (x )在[-π,π]有4个零点;④f (x )的最大值为2,其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④ D .①③10.给出下列4个命题:①函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝⎛⎭⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝⎛⎭⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).11.已知函数f (x )=sin ⎝⎛⎭⎫2x -3π2(x ∈R),下列说法错误的是( ) A .函数f (x )的最小正周期是π B .函数f (x )是偶函数C .函数f (x )的图象关于点⎝⎛⎭⎫π4,0中心对称D .函数f (x )在⎣⎡⎦⎤0,π2上是增函数12.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为13.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≥cos x ,cos x ,sin x <cos x ,下列命题中正确的是( )A .该函数的值域是[-1,1]B .当且仅当x =2k π+π2(k ∈Z)时,函数取得最大值1C .当且仅当x =2k π-π2(k ∈Z)时,函数取得最小值-1D .当且仅当2k π+π<x <2k π+3π2(k ∈Z)时,f (x )<014.函数f (x )=sin x|cos x |在区间[-π,π]内的大致图象是下列图中的( )15.若函数f (x )的定义域为R ,最小正周期为2π,且满足f (x )=⎩⎪⎨⎪⎧cos x ,-π≤x <0,sin x ,0≤x <π,则f ⎝⎛⎭⎫-174π=________.16.已知f (x )=sin 2x +cos x ,x ∈⎣⎡⎦⎤-π3,2π3,则f (x )的值域为________.17.若函数f (x )=3sin(2x +θ)(0<θ<π)是偶函数,则f (x )在[0,π]上的单调递增区间是18.函数f (x )=sin x (1-sin x )1-sin x的奇偶性是( ) A .奇函数B .偶函数C .既是奇函数又偶函数D .非奇非偶函数19.求函数f (x )=2sin 2x +2sin x -12,x ∈⎣⎡⎦⎤π6,5π6的值域.20.已知|x |≤π4,求函数y =-sin 2x +sin x +1的最小值.21.函数f (x )=log 12cos x 的单调递增区间是___________.22.下列函数中,周期为4π的是( )A .y =sin4xB .y =cos2xC .y =tan x 2D .y =sin x 223.已知函数f (x )=log a cos ⎝⎛⎭⎫2x -π3(其中a >0,且a ≠1). (1)求它的定义域;(2)求它的单调区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的周期.24.已知函数f (x )=2sin ⎝⎛⎭⎫2x +π6+a +1(其中a 为常数). ①求f (x )的单调区间;②若x ∈⎣⎡⎦⎤0,π2时,f (x )的最大值为4,求a 的值.26.用“五点法”作出函数y =1-2sin x ,x ∈[-π,π]的简图,并回答下列问题:(1)观察函数图象,写出满足下列条件的x 的区间.①y >1;②y <1.(2)若直线y =a 与y =1-2sin x ,x ∈[-π,π]的图象有两个交点,求a 的取值范围.27.如图是函数y =A sin(ωx +φ)+2(A >0,ω>0,|φ|<π)的图象的一部分,则它的振幅、周期、初相分别是( )A .A =3,T =4π3,φ=-π6B .A =3,T =4π3,φ=-3π4C .A =1,T =4π3,φ=-π6D .A =1,T =4π3,φ=-3π428.函数f (x )=1-2a -2a cos x -2sin 2x 的最小值为g (a )(a ∈R).(1)求g (a );(2)若g (a )=12,求a 及此时f (x )的最大值.29.在已知函数f (x )=A sin(ωx +φ),x ∈R ⎝⎛⎭⎫其中A >0,ω>0,0<φ<π2的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域.30.已知函数f (x )=2sin ⎝⎛⎭⎫2x -π3. (1)求函数f (x )的最小值及f (x )取到最小值时自变量x 的集合;(2)指出函数y =f (x )的图象可以由函数y =sin x 的图象经过哪些变换得到;(3)当x ∈[0,m ]时,函数y =f (x )的值域为[-3,2],求实数m 的取值范围.考点五 三角函数的图象变换问题1.已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 22.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位长度后,得到一个偶函数的图象,则φ的一个可能取值为( )A.π2B.π4C .0D .-π43.将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( ) A .y =2sin ⎝⎛⎭⎫2x +π4 B .y =2sin ⎝⎛⎭⎫2x +π3C .y =2sin ⎝⎛⎭⎫2x -π4D .y =2sin ⎝⎛⎭⎫2x -π3 4.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π2)的图象上的一个最低点为M ⎝⎛⎭⎫2π3,-2,周期为π. (1)求f (x )的解析式;(2)将y =f (x )的图象上的所有点的横坐标伸长到原来的2倍(纵坐标不变),然后再将所得的图象沿x 轴向右平移π6个单位,得到函数y =g (x )的图象,写出函数y =g (x )的解析式.5.如图,是函数y =A sin(ωx +φ)+k (A >0,ω>0)的一段图象.(1)求此函数的解析式;(2)分析一下该函数的图象是如何通过y =sin x 的图象变换得来的?考点六 三角函数的应用1.直角走廊的示意图如图所示,其两边走廊的宽度均为2米,过点P 的一直线与走廊的外侧两边交于A ,B 两点,且与走廊的一边的夹角为θ⎝⎛⎭⎫0<θ<π2.(1)将线段AB 的长度l 表示为θ的函数;(2)一根长度为5米的铁棒能否水平(即铁棒与地面平行)通过该直角走廊?并说明理由.(铁棒的粗细忽略不计)2.福建沿海的超强台风过后,当地人民积极恢复生产,焊接工王师傅每天都很忙碌.今天他遇到了一个难题:如图所示,有一块扇形钢板,半径为1米,圆心角θ=π3,施工要求按图中所画的那样,在钢板OPQ 上裁下一块平行四边形钢板ABOC ,要求使裁下的钢板面积最大.试问王师傅如何确定A 的位置,才能使裁下的钢板符合要求?最大面积为多少?。

2014-2015学年高一数学必修1精品课件:1章 集合与函数概念 章末高效整合1

2014-2015学年高一数学必修1精品课件:1章 集合与函数概念 章末高效整合1

(3) 求函数值要“对号入座”,即先确定自变量所在定义
域,再按对应解析式求值;求函数值对应的 x 值,要将函数值 代入各解析式一一确定.
数学 必修1
第一章 集合与函数概念
知能整合提升 热点考点例析 章末质量评估
8.细解函数的单调性与奇偶性 单调性与奇偶性是函数的两个珠联璧合的重要性质.它们 之间的关系非常密切,相辅相成,但两者之间既有联系又有区 别. (1)单调性与奇偶性的区别 ①函数的单调性是对定义域内的某个区间而言的,函数在
3.空集的透析 空集是不含有任何元素的集合.除了它本身的实际意义 外,在研究集合与集合之间的关系和运算时,必须予以单独考 虑. (1)空集是任何一个集合的子集,是任何一个非空集合的 真子集,因此∅⊆{0}和∅ {0}都成立. (2)对于任意集合A,都有A∩∅=∅,A∪∅=A,∁AA=∅,∁A ∅=A成立.
数学 必修1
第一章 集合与函数概念
知能整合提升 热点考点例析 章末质量评估
5.把握函数概念,重视构成要素 函数的三要素是定义域、对应关系、值域. (1)定义域是使函数表达式有意义的自变量的取值集合. (2)对应关系f可以是解析式、表格、图象,对应函数的三 种表示方法——解析法、列表法、图象法. (3)函数的值域由自变量和对应关系确定.
区间之间应用“和”连接,而不能用“∪”. ②函数奇偶性的判断中应先求定义域,若定义域关于原点 对称,再依据定义判断奇偶性. ③对于奇函数,若它在x=0处有意义,则它的图象必过原
数学 必修1
第一章 集合与函数概念
知能整合提升 热点考点例析 章末质量评估
7.分段函数的深入理解 (1)分段函数是一个函数,而它的解析式表现为多个,依据
定义域来分段.分段函数的定义域是各段定义域的并集,值域

人教A版高中同步训练数学必修第一册精品课件 第5章 三角函数 章 末核心素养整合

人教A版高中同步训练数学必修第一册精品课件 第5章 三角函数 章 末核心素养整合




=2sin(x+ + )+2sin - =-2sin - +2sin - =0.




(方法二)原式=sin xcos +cos xsin +2sin x·cos -2cos xsin






− cos cos x- sin sin x






=sin x+ cos x+sin x- cos x+ cos x-sin x=0.


D.先向左平移 个单位长度,再把所得图象上各点的横坐标伸长

到原来的 2 倍,纵坐标不变
答案:A
解析:由题图知 A=1,最小正周期

T= −

-
=π,

所以 ω= =2.所以 y=sin(2x+φ).


又图象过点 , ,



由“五点法”知 +φ=π,所以 φ=.所以 y=sin + .
f(α)=
.
(-)(--)
(1)化简 f(α);
(2)若 cos


=

,求

f(α)的值;
(3)若 α=-1 920°,求 f(α)的值.
解:(1)由题意,利用三角函数的诱导公式,
[-(+)]
-
化简得 f(α)=
=
=cos
-[-(+)]


所以函数 f(x)的单调递增区间为[kπ-,kπ+] (k∈Z).

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数章末整合知识结构·理脉络要点梳理·晰精华1.函数的定义初中所学习的函数传统定义与高中的近代定义之间的异同点如下:[不同点]传统定义从变量变化的角度,刻画两个变量之间的对应关系;而近代定义,则从集合间的对应关系来刻画两个非空数集间的对应关系.[相同点]两种对应关系满足的条件是相同的,“变量x的每一个值”及“集合A中的每一个数”,都有唯一一个“y值”与之对应.2.函数三种表示方法的优缺点三种表示法的特点(优缺点)比较如下:解析法优点(1)简明、全面地概括了变量间的关系;(2)可以通过解析式求定义域内的任意自变量对应的函数值.缺点不够形象、直观,且有些实际问题的函数关系很难用解析式表示或根本不存在解析式.图像法优点(1)直观、形象地反映出函数关系变化的趋势;(2)便于通过图像研究函数的性质.缺点只能近似地得到自变量对应的函数值,有时误差较大.列表法优点查询方便,不需计算便可直接得出自变量对应的函数值. 缺点(1)只能表示有限个数的函数关系; (2)数较多时使用不方便.⎩⎪⎨⎪⎧0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.) 3.常见函数的值域(1)一次函数y =kx +b (k ≠0)的值域为R . (2)二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为⎣⎡⎭⎫4ac -b 24a ,+∞,当a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a .(3)反比例函数y =kx (k ≠0)的值域为{y ∈R |y ≠0}.4.函数单调性和奇偶性的重要结论(1)当f (x ),g (x )同为增(减)函数时,f (x )+g (x )则为增(减)函数.(2)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性.(3)f (x )为奇函数⇔f (x )的图像关于原点对称;f (x )为偶函数⇔f (x )的图像关于y 轴对称. (4)偶函数的和、差、积、商是偶函数,奇函数的和、差是奇函数,积、商是偶函数,奇函数与偶函数的积、商是奇函数.(5)定义在(-∞,+∞)上的奇函数的图像必过原点即有f (0)=0.存在既是奇函数,又是偶函数的函数f (x )=0.(6)f (x )+f (-x )=0⇔f (x )为奇函数; f (x )-f (-x )=0⇔f (x )为偶函数. 5.函数的零点 (1)函数零点的定义对于函数y =f (x )(x ∈D ),使f (x )=0的实数x 称为函数y =f (x )(x ∈D )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图像与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定如果函数y =f (x )在区间[a ,b ]上的图像是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.素养突破·提技能专题 常见函数模型的应用1.二次函数典例1 已知函数f (x )=ax 2-2ax +2+b (a >0)在区间[2,3]上的值域为[2,5]. (1)求a ,b 的值;(2)若关于x 的函数g (x )=f (x )-(m +1)x 在区间[2,4]上为单调函数,求实数m 的取值范围. 思路探究:(1)二次函数固定区间上求值域,要先判断对称轴与区间端点的关系;(2)单调函数分单调递增和递减两种情况讨论.解析:(1)∵f (x )=a (x -1)2+2+b -a ,且a >0, ∴函数f (x )的图像开口向上且对称轴为直线x =1. ∴函数f (x )在[2,3]上单调递增.∴⎩⎪⎨⎪⎧ f (2)=2,f (3)=5.即⎩⎪⎨⎪⎧ 2+b =2,3a +2+b =5,解得⎩⎪⎨⎪⎧a =1,b =0. (2)由(1)知a =1,b =0,∴f (x )=x 2-2x +2,∴g (x )=x 2-(m +3)x +2.∴函数g (x )的图像开口向上,且对称轴为直线x =m +32.①若g (x )在[2,4]上单调递增,则m +32≤2,解得m ≤1;②若g (x )在[2,4]上单调递减,则m +32≥4,解得m ≥5.故实数m 的取值范围是{m |m ≥5或m ≤1}.归纳提升:解决二次函数在某区间上的最值问题,关键是对函数图像的对称轴与给定区间的相对位置关系进行讨论,一般分为对称轴在区间的左侧、内部、右侧三种情况求解.二次函数的单调性和最值问题是本章的重点知识. 2.分段函数典例2 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0,且f (x )为奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.思路探究:(1)已知函数奇偶性求参数值,可利用奇偶性的定义或特殊值来求解;(2)分段函数各段的单调性可分段判断,并借助于图像来求解.解析:(1)设x <0,则-x >0, ∴f (-x )=-(-x )2+2(-x )=-x 2-2x . ∵f (x )为奇函数, ∴f (x )=-f (-x )=x 2+2x . 又∵当x <0时,f (x )=x 2+mx , ∴m =2.(2)由(1)可知f (x )=⎩⎪⎨⎪⎧-x 2+2x , x >00, x =0x 2+2x , x <0.作出f (x )的图像(如图).要使函数f (x )在区间[-1,a -2]上单调递增,则-1<a -2≤1,即1<a ≤3. ∴实数a 的取值范围为(1,3].归纳提升:分段函数在函数中占有重要的地位,对分段函数的问题要注意以下几点: (1)分段函数的图像问题、求分段函数的解析式、求分段函数的单调区间、求分段函数的值域或最值、解分段函数对应的方程或不等式等的解法均可归纳为“分段处理”四个字. (2)分段函数的求值、分段函数的奇偶性判断,要严格按照分段函数的含义及奇偶性的定义来处理. 3.对勾函数典例3 已知函数f (x )=x +mx,且f (1)=3.(1)直接写出m 的值及该函数的定义域、值域和奇偶性;(2)判断函数f (x )在区间 (0,+∞)上的单调性,并用定义证明你的结论. 解析:(1)m =2,定义域为(-∞,0)∪(0,+∞), 值域为(-∞,-22]∪(22,+∞),为奇函数.(2)f (x )在区间(0,2)上单调递减,在区间(2,+∞)上单调递增.证明:设0<x 1<x 2,则f (x 1)-f (x 2)=x 1+2x 1-x 2-2x 2=(x 1-x 2)(x 1x 2-2)x 1x 2若2<x 1<x 2,则x 1x 2>0,x 1-x 2<0,x 1x 2-2>0, ∴(x 1-x 2)(x 1x 2-2)x 1x 2 <0,即f (x 1)<f (x 2).故函数f (x )在区间(2,+∞)上单调递增.同理,若0<x 1<x 2<2,则f (x 1)>f (x 2),故f (x )在(0,2)上单调递减.归纳提升:形如f (x )=ax +bx(a >0,b >0)的函数的奇偶性、单调性及图像的形状如下:(1)f (x )为奇函数. (2)函数f (x )在⎝⎛⎭⎫-b a ,0和⎝⎛⎭⎫0,b a 上单调递减;在⎝⎛⎭⎫-∞,-b a 和⎝⎛⎭⎫b a ,+∞上单调递增.(3)图像如图所示,这个函数的图像形如两个对勾,因此,我们称它为“对勾”函数. (4)“对勾”函数求值域也可用均值不等式来求解. 专题 函数性质的综合应用 1.函数的单调性与奇偶性的综合应用典例4 函数y =f (x )(x ≠0)是奇函数,且在(0,+∞)上单调递增,若f (1)=0,求不等式f ⎝⎛⎭⎫x -12<0的解集.思路探究:f (x )在(0,+∞)和(-∞,0)上为单调函数,分情况讨论.解析:∵f (x )是奇函数,且f (1)=0,f (x )在(0,+∞)上单调递增.∴f (-1)=-f (1)=0,且f (x )在(-∞,0)上单调递增, ∴不等式f ⎝⎛⎭⎫x -12<0可化为 ⎩⎨⎧x -12>0,f ⎝⎛⎭⎫x -12<f (1)或⎩⎨⎧x -12<0,f ⎝⎛⎭⎫x -12<f (-1),即0<x -12<1或x -12<-1,解得12<x <32或x <-12.所以原不等式的解集是⎩⎨⎧⎭⎬⎫x |x <-12或12<x <32.归纳提升:有关函数奇偶性与单调性的综合问题,主要有比较函数值的大小、解不等式等,关键是利用奇、偶函数的对称性,将不在同一单调区间上的两个自变量的值转化到同一单调区间上,再利用函数的单调性来处理,使问题得以解决. 2.函数的零点与方程根的关系及应用典例5 设a ∈R ,关于x 的一元二次方程7x 2-(a +13)x +a 2-a -2=0有两个实数根x 1,x 2,且0<x 1<1<x 2<2.求a 的取值范围.思路探究:令f (x )=7x 2-(a +13)x +a 2-a -2,其图像是开口向上的抛物线,它在(0,1)和(1,2)区间内与x 轴相交,则有f (0)>0,f (1)<0,f (2)>0. 解析:设f (x )=7x 2-(a +13)x +a 2-a -2,∵x 1,x 2是方程f (x )=0的两个实根,且0<x 1<1<x 2<2, ∴函数f (x )的图像如图所示.∴⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0即⎩⎪⎨⎪⎧a 2-a -2>0,7-(a +13)+a 2-a -2<0,28-2(a +13)+a 2-a -2>0,解得-2<a <-1或3<a <4. ∴a 的取值范围是(-2,-1)∪(3,4).归纳提升:抓住三个二次之间的关系是解此题的关键,将一元二次方程根的分布问题转化为函数零点问题.函数零点的应用主要是利用函数零点存在定理求参数值或范围,体现化归转化思想,数形结合思想.真题精练·悟考情1.(2019·全国 Ⅱ文数)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )= ( D ) A . e -x -1B . e -x +1C . -e -x -1D . -e -x +1解析:当x <0时,-x >0,f (-x )=e -x -1,又f (x )为奇函数,有f (x )=-f (-x )=-e -x +1. 2.(2019·江苏)函数y =7+6x -x 2的定义域是__[-1,7]__. 解析:由题意得到关于x 的不等式,解不等式可得函数的定义域. 由已知得7+6x -x 2≥0 ,即x 2-6x -7≤0,解得-1≤x ≤7, 故函数的定义域为[-1,7].3.(2019·北京理数改编)设函数f (x )=e x +a e -x (a 为常数).若f (x )为奇函数,则a =__-1__. 解析:首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值.若函数f (x )=e x +a e -x 为奇函数,则f (-x )=-f (x ),即e -x +a e x =-(e x +a e -x ), 即(a +1)(e x +e -x )=0对任意的x 恒成立, 则a +1=0,得a =-1.4.(2019·全国Ⅱ卷理数)设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x -1).若对任意x ∈(-∞,m ],都有f (x )≥-89,则m 的取值范围是( B )A .⎝⎛⎦⎤-∞,94B . ⎝⎛⎦⎤-∞,73C . ⎝⎛⎦⎤-∞,52 D . ⎝⎛⎦⎤-∞,83 解析:∵f (x +1)=2f (x ), ∴f (x )=2f (x -1) ∵x ∈(0,1]时,f (x )=x (x -1)∈⎣⎡⎦⎤-14,0 ; ∴ x ∈(1,2]时,x -1∈(0,1],f (x )=2f (x -1)=2(x -1)(x -2)∈⎣⎡⎦⎤-12,0 ; ∴x ∈(2,3]时,x -1∈(1,2],f (x )=2f (x -1)=4(x -2)(x -3)∈[-1,0] , 如图:当x ∈(2,3]时,由4(x -2)(x -3)=-89解得x 1=73,x 2=83,若对任意x ∈(-∞,m ],都有f (x )≥-89,则m ≤73.则m 的取值范围是⎝⎛⎦⎤-∞,73. 故选B .5.(2019·浙江)已知a ∈R ,函数f (x )=ax 3-x ,若存在t ∈R ,使得|f (t +2)-f (t )|≤23,则实数a 的最大值是__43__.解析:存在t ∈R ,使得|f (t +2)-f (t )|≤23,即有|a (t +2)3-(t +2)-at 3+t |≤23,化为|2a (3t 2+6t +4)-2|≤23,可得-23≤2a (3t 2+6t +4)-2≤23,即23≤a (3t 2+6t +4)≤43, 由3t 2+6t +4=3(t +1)2+1≥1,可得0<a ≤43.则实数a 的最大值是43.。

相关文档
最新文档