大数据分析与挖掘课后习题参考答案
数据挖掘第三版第二章课后习题答案

1.1什么是数据挖掘?(a)它是一种广告宣传吗?(d)它是一种从数据库、统计学、机器学和模式识别发展而来的技术的简单转换或应用吗?(c)我们提出一种观点,说数据挖掘是数据库进化的结果,你认为数据挖掘也是机器学习研究进化的结果吗?你能结合该学科的发展历史提出这一观点吗?针对统计学和模式知识领域做相同的事(d)当把数据挖掘看做知识点发现过程时,描述数据挖掘所涉及的步骤答:数据挖掘比较简单的定义是:数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们所不知道的、但又是潜在有用信息和知识的过程。
数据挖掘不是一种广告宣传,而是由于大量数据的可用性以及把这些数据变为有用的信息的迫切需要,使得数据挖掘变得更加有必要。
因此,数据挖掘可以被看作是信息技术的自然演变的结果。
数据挖掘不是一种从数据库、统计学和机器学习发展的技术的简单转换,而是来自多学科,例如数据库技术、统计学,机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成。
数据库技术开始于数据收集和数据库创建机制的发展,导致了用于数据管理的有效机制,包括数据存储和检索,查询和事务处理的发展。
提供查询和事务处理的大量的数据库系统最终自然地导致了对数据分析和理解的需要。
因此,出于这种必要性,数据挖掘开始了其发展。
当把数据挖掘看作知识发现过程时,涉及步骤如下:数据清理,一个删除或消除噪声和不一致的数据的过程;数据集成,多种数据源可以组合在一起;数据选择,从数据库中提取与分析任务相关的数据;数据变换,数据变换或同意成适合挖掘的形式,如通过汇总或聚集操作;数据挖掘,基本步骤,使用智能方法提取数据模式;模式评估,根据某种兴趣度度量,识别表示知识的真正有趣的模式;知识表示,使用可视化和知识表示技术,向用户提供挖掘的知识1.3定义下列数据挖掘功能:特征化、区分、关联和相关性分析、分类、回归、聚类、离群点分析。
3-大数据采集处理与挖掘作业及参考答案[9页]
![3-大数据采集处理与挖掘作业及参考答案[9页]](https://img.taocdn.com/s3/m/4ffdbfde29ea81c758f5f61fb7360b4c2e3f2ad5.png)
项目三大数据采集处理与挖掘任务一大数据采集子任务一报表采集➢作业及思考1.选择任一企业,在金蝶大数据处理平台从东方财富网站中爬取2019和2020年两年的利润表数据做对比。
➢参考答案1.以招商银行为例,招商银行的企业代码(完整股票代码)为sh600036。
在“大数据采集”下的“财务报表”页面中,选择数据源为“东方财富”。
参数中填写年份“2019,2020”,报表类型选择“利润表”,企业代码(完整股票代码)填写“sh600036”。
点击【运行】,运行完成后查看数据结果并下载excel文件。
子任务二电商平台评论的采集➢作业及思考1.获取唯品会上其他任一商品的全部历史评价数据,最热的评论排在最前面。
➢参考答案1.以小米体脂称为例,获取需要分析的爆款产品在唯品会网站上的产品查看链接为:https:///detail-1711297312-6918849116177740352.html 在“大数据采集”下的“电商平台评论数据”页面中,选择数据源为“唯品会”。
参数中填写商品链接为前面查询到的产品链接,评论页数不填写(默认为全部页数),每页评论数选择“30”,按点赞数排序选择“降序”。
点击【运行】,运行完成后查看数据结果并下载excel文件。
任务二大数据处理子任务一数据清洗➢作业及思考1.在以上任务的基础上,删除字段“商品价格”、“商品编号”、“评论标签”和“#”,并将商品名称统一改成“2020款iPad”。
2.删除“匿名vip用户”的评论数据。
➢参考答案1.在“大数据处理”下的“数据清洗”页面中,将任务二-子任务一中下载的文件上传。
配置清洗规则:●去除多余数据:选择“局部清洗”并选择“列删除”,单击规则右侧的“加号”,勾选准备删除的字段“商品价格”、“商品编号”、“评论标签”和“#”,并单击右上角【选择】。
●字符替换:选择“局部清洗”并选择“字符替换”。
单击规则右侧的“加号”,勾选准备替换的字段“商品名称”,并单击右上角【选择】,输入需要替换的字符和替换的字符,即分别填入“2020款 iPad 10.2英寸【壳膜套餐】WLAN版平板电脑”和“2020款iPad”。
大数据分析与挖掘复习 题集附答案

大数据分析与挖掘复习题集附答案大数据分析与挖掘复习题集附答案一、选择题1. 数据挖掘的主要任务是:A. 模式发现和模型评估B. 数据收集和整理C. 数据分析和可视化D. 数据传输和存储答案:A2. 在数据挖掘过程中,数据预处理的目的是:A. 提取有价值的信息B. 去除异常值和噪声C. 构建合适的模型D. 优化数据存储结构答案:B3. 关联规则挖掘是指:A. 发现不同属性之间的关联关系B. 预测未来事件的发生C. 分析数据的变化趋势D. 构建数据的分类模型答案:A4. 在数据挖掘中,分类和聚类的主要区别在于:A. 数据来源的不同B. 目标的不同C. 算法的不同D. 结果的不同答案:B5. 大数据分析的核心挑战是:A. 数据存储和处理速度B. 数据质量和准确性C. 数据安全和隐私保护D. 数据可视化和展示答案:A二、填空题1. __________是指通过对海量数据进行深入分析和挖掘,从中发现有价值的信息。
答案:大数据分析与挖掘2. 在数据挖掘过程中,将数据按照一定的规则进行重新排列,以便更方便地进行分析和挖掘,这个过程称为__________。
答案:数据预处理3. 数据挖掘中的分类算法主要是通过对已有的样本进行学习和训练,从而预测新的样本所属的__________。
答案:类别4. 聚类算法是将相似的数据样本归为一类,不需要事先知道数据的__________。
答案:类别5. 在大数据分析中,数据的__________对于结果的准确性和可靠性至关重要。
答案:质量三、简答题1. 请简要说明大数据分析与挖掘的步骤和流程。
答:大数据分析与挖掘的步骤主要包括数据收集与清洗、数据预处理、模式发现、模型评估和应用。
首先,需要从各个数据源收集所需数据,并对数据进行清洗,去除异常值和噪声。
然后,通过数据预处理,对数据进行规范化、离散化等处理,以便于后续的分析和挖掘。
接着,利用合适的算法和技术,进行模式发现,例如关联规则挖掘、分类和聚类等。
(完整版)数据挖掘概念课后习题答案

(b)(b)由基本方体[student,course,semester,instructor]开始,为列出BigUniversity每个学生的CS课程的平均成绩,应当使用哪些特殊的OLAP操作。
(c)如果每维有5层(包括all),如“student<major<status<university<all”, 该立方体包含多少方体?
合,因为它是松散耦合和 紧密耦合的折中。
第2章数据预处理
2.2假设给定的数据集的值已经分组为区间。区间和对应的频率如下。
年龄
频率
1~5
200
5~15
450
15~20
300
20~50
1500
50~80
700
80~110
44
计算数据的近似中位数值。
2.4假定用于分析的数据包含属性age。数据元组的age值(以递增序)是:13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70。
(a)画出一个等宽为10的等宽直方图;
(b)为如下每种抽样技术勾画例子:SRSWOR,SRSWR,聚类抽样,分层抽样。使用大小为5的样本和层“青年”,“中年”和“老年”。
解答:
(b)为如下每种抽样技术勾画例子:SRSWOR,SRSWR,聚类抽样,分层
抽样。使用大小为5的样本和层“青年”,“中年”和“老年”。 元组:
用箱深度为3的分箱均值光滑对以上数据进行光滑需要以下步骤:
�步骤1:对数据排序。(因为数据已被排序,所以此时不需要该步骤。)
�步骤2:将数据划分到大小为3的等频箱中。
数据挖掘习题答案

数据挖掘习题答案数据挖掘习题答案数据挖掘作为一门重要的技术和方法,广泛应用于各个领域。
在学习数据挖掘的过程中,习题是不可或缺的一部分。
通过解答习题,我们可以更好地理解和掌握数据挖掘的原理和应用。
以下是一些常见的数据挖掘习题及其答案,供大家参考。
一、选择题1. 数据挖掘的目标是什么?A. 发现隐藏在大数据中的模式和关联B. 提供数据存储和管理的解决方案C. 分析数据的趋势和变化D. 优化数据的存储和传输速度答案:A. 发现隐藏在大数据中的模式和关联2. 下列哪个不是数据挖掘的主要任务?A. 分类B. 聚类C. 回归D. 排序答案:D. 排序3. 数据挖掘的过程包括以下几个步骤,哪个是第一步?A. 数据清洗B. 数据集成C. 数据转换D. 数据选择答案:B. 数据集成4. 下列哪个不是数据挖掘中常用的算法?A. 决策树B. 支持向量机C. 朴素贝叶斯D. 深度学习答案:D. 深度学习5. 下列哪个不是数据挖掘的应用领域?A. 金融B. 医疗C. 娱乐D. 政治答案:D. 政治二、填空题1. 数据挖掘是从大量数据中发现________和________。
答案:模式,关联2. 数据挖掘的主要任务包括分类、聚类、回归和________。
答案:预测3. 数据挖掘的过程包括数据集成、数据清洗、数据转换和________。
答案:模式识别4. 决策树是一种常用的________算法。
答案:分类5. 数据挖掘可以应用于金融、医疗、娱乐等多个________。
答案:领域三、简答题1. 请简要介绍数据挖掘的主要任务和应用领域。
答:数据挖掘的主要任务包括分类、聚类、回归和预测。
分类是将数据集划分为不同的类别,聚类是将数据集中相似的样本归为一类,回归是根据已有的数据预测未知数据的值,预测是根据已有的数据预测未来的趋势和变化。
数据挖掘的应用领域非常广泛,包括金融、医疗、娱乐等。
在金融领域,数据挖掘可以用于信用评估、风险管理等方面;在医疗领域,数据挖掘可以用于疾病诊断、药物研发等方面;在娱乐领域,数据挖掘可以用于推荐系统、用户行为分析等方面。
第6章 大数据分析与挖掘习题答案

(1)请阐述什么是大数据分析。
大数据分析的主要任务主要有:第一类是预测任务,目标是根据某些属性的值,预测另外一些特定属性的值。
被预测的属性一般称为目标变量或因变量,被用来做预测的属性称为解释变量和自变量;第二类是描述任务,目标是导出概括数据中潜在联系的模式,包括相关、趋势、聚类、轨迹和异常等。
描述性任务通常是探查性的,常常需要后处理技术来验证和解释结果。
具体可分为分类、回归、关联分析、聚类分析、推荐系统、异常检测、链接分析等几种。
(2)大数据分析的类型有哪些?大数据分析主要有描述性统计分析、探索性数据分析以及验证性数据分析等。
(3)举例两种数据挖掘的应用场景?(1)电子邮件系统中垃圾邮件的判断电子邮件系统判断一封Email是否属于垃圾邮件。
这应该属于文本挖掘的范畴,通常会采用朴素贝叶斯的方法进行判别。
它的主要原理就是,根据电子邮件中的词汇,是否经常出现在垃圾邮件中进行判断。
例如,如果一份电子邮件的正文中包含“推广”、“广告”、“促销”等词汇时,该邮件被判定为垃圾邮件的概率将会比较大。
(2)金融领域中金融产品的推广营销针对商业银行中的零售客户进行细分,基于零售客户的特征变量(人口特征、资产特征、负债特征、结算特征),计算客户之间的距离。
然后,按照距离的远近,把相似的客户聚集为一类,从而有效地细分客户。
将全体客户划分为诸如:理财偏好者、基金偏好者、活期偏好者、国债偏好者等。
其目的在于识别不同的客户群体,然后针对不同的客户群体,精准地进行产品设计和推送,从而节约营销成本,提高营销效率。
(4)简述数据挖掘的分类算法及应用。
K-Means算法也叫作k均值聚类算法,它是最著名的划分聚类算法,由于简洁和效率使得它成为所有聚类算法中最广泛使用的。
决策树算法是一种能解决分类或回归问题的机器学习算法,它是一种典型的分类方法,最早产生于上世纪60年代。
决策树算法首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析,因此在本质上决策树是通过一系列规则对数据进行分类的过程。
数据挖掘第三版第三章课后习题答案

2.1再给三个用于数据散布的常用特征度量(即未在本章讨论的),并讨论如何在大型数据库中有效的计算它们答:异众比率:又称离异比率或变差比。
是非众数组的频数占总频数的比率应用:用于衡量众数的代表性。
主要用于测度定类数据的离散程度,定序数据及数值型数据也可以计算。
还可以对不同总体或样本的离散程度进行比较计算:标准分数:标准分数(standard score)也叫z分数(z-score),是一个分数与平均数的差再除以标准差的过程。
用公式表示为:z=(x-μ)/σ。
其中x为某一具体分数,μ为平均数,σ为标准差。
Z值的量代表着原始分数和母体平均值之间的距离,是以标准差为单位计算。
在原始分数低于平均值时Z则为负数,反之则为正数。
计算:Z=(x-μ)/σ其中μ= E( X) 为平均值、σ² = Var( X) X的概率分布之方差若随机变量无法确定时,则为算术平均数离散系数:离散系数,又称“变异系数”,是概率分布离散程度的一个归一化量度,其定义为标准差与平均值之比。
计算:CV=σ/μ极差(全距)系数:Vr=R/X’;平均差系数:Va,d=A.D/X’;方差系数:V方差=方差/X’;标准差系数:V标准差=标准差/X’;其中,X’表示X的平均数。
平均差:平均差是总体所有单位的平均值与其算术平均数的离差绝对值的算术平均数。
平均差是一种平均离差。
离差是总体各单位的标志值与算术平均数之差。
因离差和为零,离差的平均数不能将离差和除以离差的个数求得,而必须讲离差取绝对数来消除正负号。
平均差是反应各标志值与算术平均数之间的平均差异。
平均差异大,表明各标志值与算术平均数的差异程度越大,该算术平均数的代表性就越小;平均差越小,表明各标志值与算术平均数的差异程度越小,该算术平均数的代表性就越大。
计算:平均差=(∑|x-x'|)÷n,其中∑为总计的符号,x为变量,x'为算术平均数,n为变量值的个数。
(完整word版)数据挖掘课后答案

第一章1.6(1)数据特征化是目标类数据的一般特性或特征的汇总。
例如,在某商店花费1000元以上的顾客特征的汇总描述是:年龄在40—50岁、有工作和很好的信誉等级。
(2)数据区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,高平均分数的学生的一般特点,可与低平均分数的学生的一般特点进行比较.由此产生的可能是一个相当普遍的描述,如平均分高达75%的学生是大四的计算机科学专业的学生,而平均分低于65%的学生则不是.(3)关联和相关分析是指在给定的频繁项集中寻找相关联的规则.例如,一个数据挖掘系统可能会发现这样的规则:专业(X,“计算机科学”)=〉拥有(X,”个人电脑“)[support= 12%,confidence = 98%],其中X是一个变量,代表一个学生,该规则表明,98%的置信度或可信性表示,如果一个学生是属于计算机科学专业的,则拥有个人电脑的可能性是98%。
12%的支持度意味着所研究的所有事务的12%显示属于计算机科学专业的学生都会拥有个人电脑。
(4)分类和预测的不同之处在于前者是构建了一个模型(或函数),描述和区分数据类或概念,而后者则建立了一个模型来预测一些丢失或不可用的数据,而且往往是数值,数据集的预测。
它们的相似之处是它们都是为预测工具:分类是用于预测的数据和预测对象的类标签,预测通常用于预测缺失值的数值数据。
例如:某银行需要根据顾客的基本特征将顾客的信誉度区分为优良中差几个类别,此时用到的则是分类;当研究某只股票的价格走势时,会根据股票的历史价格来预测股票的未来价格,此时用到的则是预测。
(5)聚类分析数据对象是根据最大化类内部的相似性、最小化类之间的相似性的原则进行聚类和分组。
聚类还便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。
例如:世界上有很多种鸟,我们可以根据鸟之间的相似性,聚集成n类,其中n可以认为规定. (6)数据演变分析描述行为随时间变化的对象的规律或趋势,并对其建模。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 规则“牙刷 → 防晒霜”与“{牙刷,防晒霜} → {凉鞋}”的置信度分别是多少?
(2) {牙刷}和{防晒霜}是独立的吗?
(3) 计算 Lift (牙刷, 太阳镜) 。
请对比 Apriori 算法和 FP-Growth 算法异同,给出两种算法各自的优点以及
不足。
5. 请设计程序实现显示递归挖掘<a>-投影数据库的过程,数据集采用表 3-34 的
数据清洗:负责解决填充空缺值、识别孤立点、去掉噪声和无关数据等问
题;
数据集成:负责解决不同数据源的数据匹配问题、数值冲突问题和冗余问
题;
数据变换:将原始数据转换为适合数据挖掘的形式。包括数据的汇总、聚
集、概化、规范化,同时可能需要对属性进行重构;
数据归约:负责搜小数据的取值范围,使其更适(max − min) + min
−
其中 max,min 是各个特征的共享数据,由用户设定。处理后数据所处范
围为[min,max]。
4
from pyspark import SQLContext
from pyspark.context import SparkContext
果目标是得到容量为 n(n < m)的样本,下面两种抽样方案有什么区别?(假
定使用有放回抽样)
(1)从每组随机地选择 × /个元素。
(2)从数据集中随机地选择 n 个元素(不考虑元素属于哪个组)。
第二章 习题答案
1
无法保证数据挖掘的结果的有效性。
数据预处理主要包括数据清洗、数据集成、数据变换、数据归约等内容。
等宽划分,划分为 4 个箱,宽度可取 20(并不唯一),所以 16 在第 1
个箱内。
(3)将上述记录按序如下排列:6,11,12,14,16,36,51,56,73,93,205,216.
等深划分,划分为 3 个箱,即按上述顺序,每 4 个记录放入一箱。第 2
个箱的数据为 16,36,51,56。平均值平滑法,则这四个数取均值为:
2
原数据服从正态分布,经过 Z-score 后,服从标准正态分布 N(0,1),由正态
1 − P(0 − 3 *1 ≤ X ≤ 0 + 3 *1) 1 - 0.9973
分布的 3 σ 原则可知, P(X > 3) =
=
= 0.00135
2
2
3
MaxabsScaler:利用被处理特征的特征值中最大绝对值进行处理。处理公
model.transform(df).show()
print('MinMax')
miScaler=MinMaxScaler(inputCol='Features',outputCol='Feature_MinMax')
model_=miScaler.fit(df)
model.transform(df).show()
39.75。即第 2 个箱的值为 39.75。
(4)将上述记录按序如下排列:6,11,12,14,16,36,51,56,73,93,205,216.
等宽划分,划分为 3 个箱,宽度可取 42(并不唯一),此时第 2 个箱的
数据为 51,56,73,93。对于 56,距离最小边界为 51;对于 73,距离最小边
{防晒霜}在 5000 个事务中出现;
{凉鞋}在 4000 个事务中出现;
{太阳镜}在 2000 个事务中出现;
{牙刷,防晒霜}在 1500 个事务中出现;
{牙刷,凉鞋}在 1000 个事务中出现;
{牙刷,太阳镜}在 250 个事务中出现;
{牙刷,防晒霜,凉鞋}在 600 个事务中出现。
回答如下问题:
第 2 章 习题
1.
2.
3.
4.
5.
6.
7.
8.
如果在没经过预处理的数据集合上进行数据挖掘的话,会有哪些问题?
假设原始数据服从正态分布,那么经过 z -score 变换后的标准分大于 3 的概
率有多大?
试分析 Spark 预处理 MaxabsScaler、MinMaxScaler 的处理方法,并给出处理
(Vectors.dense(3.7,1.85,113,10000),),
(Vectors.dense(2.5,1.74,141,3200),),
(Vectors.dense(3.6,1.69,156,8000),),
(Vectors.dense(4,1.82,178,9000),),
(Vectors.dense(3.3,1.90,114,15000),),
bucketedData = bucketizer.transform(dataFrame)
bucketedData.show()
7
(1)简单随机抽样:从总体 N 个单位里抽出 n 个单位作为样本(可以重
复抽样,也可以不重复抽样),最常用的抽样方式,参数估计和假设检
验主要依据的就是简单随机样本;
(2)系统抽样:将总体中的所有单位(抽样单位)按一定顺序排列,在规
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import MaxAbsScaler
from pyspark.ml.feature import MinMaxScaler
sc=SparkContext('local')
spark=SQLContext(sc)
7000
3
3
1.73
135
5500
4
2.8
1.80
120
4000
5
3.7
1.85
113
10000
6
2.5
1.74
141
3200
7
3.6
1.69
156
8000
8
4
1.82
178
9000
9
3.3
1.90
114
15000
10
3.2
1.75
160
6500
假设 12 个销售价格记录如下:6,11,205,14,16,216,36,51,12,56,73,93。
取鸢尾花数据集(/~mlearn/MLRepository.html),利用
pyspark 中的 Bucketizer 函数,对四个数值型属性分别进行数据离散化。
为了调查某个微信小程序受众人群分布情况,可采用哪些抽样方法?哪种方
法效果更好?请分析原因。
给定 m 个元素的集合,这些元素划分成了 k 组,其中第 i 组的大小为 。如
后数据的取值范围。
如题表 2-1 所示,从某个毕业班抽取出的 10 个同学的个人情况数据,包含
4 项特征:成绩绩点、身高、体重、工作月薪。利用两种以上的方法对每个
特征进行预处理。
题表 2-1
序号 成绩绩点 身高(m) 体重(斤) 工作月薪(元/月)
1
3.2
1.78
130
6000
2
3.5
1.76
122
from pyspark.sql import SparkSession
import pandas as pd
df=pd.DataFrame(load_iris().data,columns=['f1','f2','f3','f4'])
sc=SparkContext('local')
spark=SparkSession(sc)
每次扫描题表 3-1 中的数据库后得到的所有频繁项集。在频繁项集的基础上,
产生所有的强关联规则。
题表 3-1
TID
商品
A,B,C,
1
D,E
2
A,B,D,E
3
B,C,D
4
C,D,E
5
A,C,E
6
A,B,D
某商店统计了上个季度 10000 笔交易记录,给出如题表 3-2 所示的统计信息:
题表 3-2
{牙刷}在 6000 个事务中出现;
题表 3-3
4.
No.
Outlook
Temperatur
e
Humidit
y
1
sunny
hot
high
2
dataFrame=spark.createDataFrame(df)
splits=[min(df['f1']),4.8,5.4,max(df['f1'])]
bucketizer = Bucketizer(splits=splits, inputCol='f1', outputCol='Buc_f1')
N * mk
N * m1 N * m2
= m1 : m2 ```: mk ,保持原分组比例,一定程度降
:
:```:
m
m
m
低了抽样的误差(当分组有效时),便于了解总体内不同分组的情况。
第三章 习题
1.
2.
3.
1.
2.
3.
4.
5.
6.
7.
8.
请举例说明“Apriori Property”。
设最小支持度为 33.3%,最小置信度为 50%。按照 Apriori 算法的步骤,给出
5
(1)将上述记录按序如下排列:6,11,12,14,16,36,51,56,73,93,205,216.
等深划分,划分为 4 个箱,即按上述顺序,每 3 个记录放入一箱,所以