计算机X线断层扫描
电子计算机X线断层扫描(CT)习题及答案

电子计算机X线断层扫描(CT)一、头颅疾病A1型题1.下列对CT临床应用的概述中,不正确的是()A.颅脑肿瘤的检查:首选普通X线,次选CT检查B.肝脏肿瘤的检查:首选超声,次选CT检查C.脑梗死的检查:首选CT,次选脑血管造影D.椎间盘突出的检查:首选CT,次选脊髓造影E.骨肿瘤的检查:首选普通X线,次选CT检查2.以下选项中,哪项不是腔隙性脑梗死的CT影像学表现待征()A.以基底节区和丘脑区为好发部位B.平扫呈类圆形低密度灶,直径10~15mmC.占位效应明显D.病灶可以多发E.可以出现强化,以第2~3周最明显3.以下选项中哪项不是急性期脑内血肿的CT 影像学表现特征()A.发病时间在1周内B.平扫为肾形或椭圆形均匀高密度影C.血肿密度高达100Hu以上D.血肿周围有低密度水肿区E.血肿大时占位效应明显4.以下选项中,哪项不是急性脑挫裂伤的CT影像表现待征()A.损伤区边缘模糊的低密度区B.低密度区内的点片状出血C.蛛网膜下腔出血D.脑软化灶形成E.侧脑室受压变小、移位5.颅底骨折的首选检查方法是()A.轴位CTB.三维CT重建C.冠状位CTD.MRIE.X线平片6.以下选项中,哪项不是急性硬膜外血肿的CT影像表现待征()A.颅骨内板下双凸形高密度区,边界锐利B.血肿范围较大,经常跨越颅缝C.血肿密度均匀,也可因为混有血清、脑脊液或气体而呈混杂密度D.可见占位效应,中线结构移位,侧脑室变形、移位E.血肿可伴有局部颅骨骨折7.急性硬膜下血肿的典型CT影像特征是()A.颅板下方双凸透镜样高密度影,范围局限B.颅板下方双凸透镜样高密度影,范围广泛C.颅板下方新月样高密度影,范围局限D.颅板下方新月样高密度影,范围广泛E.脑沟、脑池内铸型高密度影8.蛛网膜下腔出血的直接CT影像征象是()A.脑室扩大B.脑沟、脑池密度增高C.脑内血肿D.基底节区高密度影E.脑水肿9.以下选项中,哪项不是非典型脑胀肿的CT影像表现特征()A.平扫只显示低密度,未显示等密度脓肿壁B.脓肿壁强化不连续C.部分呈环状强化,部分呈片状强化D.多环重叠,或分房状强化E.包膜显示完整、光滑、均匀、薄壁之特点10.室管膜瘤的CT影像表现特征是()A.位于侧脑室B.平扫肿瘤多呈等或高密度,散在点状钙化C.多数肿瘤增强后无明显强化D.不会发生于脑实质内E.肿瘤内无囊变区11.以下选项中,哪项不是室管膜瘤的CT影像表现特征()A.脊髓增粗,密度均匀降低B.肿瘤边界模糊,与正常分界欠清C.囊变较常见D.钙化常见E.增强后肿瘤实质部分轻度或不强化12.以下选项中,哪项不是脑膜瘤的典型CT影像表现特征()A.平扫大多数为高密度,少数为等或低密度B.多数肿瘤密度均匀,边界清楚C.增强扫描均匀一致强化D.全瘤以囊性为主,呈低密度E.周围可有水肿13.以下选项中,哪项不是脑胶质瘤的CT影像表现特征()A.病灶多位于白质B.多呈低密度C.病灶边界不清D.可为不规则环形伴壁结节强化E.常伴相邻的硬脑膜强化14.下列选项中,哪项不是脑颜面血管瘤病的CT影像学征象()A.患侧大脑半球顶枕区表面有弧带状或锯齿状钙化B.钙化周围可见脑梗死灶,偶见脑内出血灶C.伴随脑发育不全的脑沟增宽、脑室扩大和体积缩小D.增强扫描可显示皮质表面软脑膜的异常血管E.常并发脑膜瘤、神经病及其他先天畸形15.炎性假瘤的CT检查,根据病变部位的不同分为四型,哪项不是其分型()A.泪腺型B.泪囊型C.眼外肌型D.弥漫型E.肿块型A2型题1.患者男,36岁,头痛、发热1周,脑脊液检查提示蛋白含量增高。
X线电子计算机断层扫描装置(CT)的原理及其常见故障

技术与检测Һ㊀X线电子计算机断层扫描装置(CT)的原理及其常见故障达志鹏摘㊀要:根据X线电子计算机断层扫描装置(CT)的基本工作原理ꎬ介绍该设备整机结构及主要部件功能ꎬ分析其在临床使用中常见的故障ꎬ并给出最优的维修策略ꎬ从而降低设备的维修成本ꎮ关键词:X线电子计算机断层扫描装置(CT)ꎻ原理ꎻ故障诊断ꎻ检修一㊁X线电子计算机断层扫描装置(CT)是利用精确准直的X线束㊁γ射线㊁超声波等ꎬ与灵敏度极高的探测器一同围绕人体的某一部位做一个接一个的断面扫描ꎬ具有扫描时间快ꎬ图像清晰等特点ꎬ可用于多种疾病的检查的医疗器械ꎮ检查时X线电子计算机断层扫描装置(CT)是通过X射线束对人体某部一定厚度的层面进行扫描ꎬ由探测器接收透过该层面的X射线并输入计算机处理ꎬ根据人体不同组织对X线的吸收与透过率的不同分析数据进行处理后ꎬ就可摄下人体被检查部位的断面或立体的图像ꎬ发现体内任何部位的细小病变ꎮ由于X线电子计算机断层扫描装置(CT)诊断它的特殊诊断价值尤其是是在肿瘤诊断上价值ꎬ已成为各医院放射科必备的诊断设备ꎮ二㊁基本原理CT是用X射线束对人体某部一定厚度的层面进行扫描ꎬ由探测器接收透过该层面的X射线ꎬ转变为可见光后ꎬ由光电转换变为电信号ꎬ再经模拟/数字转换器(analog/digitalconverter)转为数字ꎬ输入计算机处理ꎮ盘中ꎮ经数字/模拟转换器(digital/analogconverter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块ꎬ即像素(pixel)ꎬ并按矩阵排列ꎬ即构成CT图像ꎮ所以ꎬCT图像是重建图像ꎮ每个体素的X射线吸收系数可以通过不同的数学方法算出ꎮ它根据人体不同组织对X线的吸收与透过率的不同ꎬ利用灵敏度极高的仪器对人体进行测量ꎬ然后将测量所获取的数据输入电子计算机ꎬ电子计算机对数据进行处理后ꎬ就可摄下人体被检查部位的断面或立体的图像ꎬ发现体内任何部位的细小病变ꎮ三㊁设备结构X线电子计算机断层扫描装置(CT)是由扫描系统㊁数据采集系统㊁计算机及图像重建系统三部分组成ꎮ其中扫描系统包括扫描机架㊁扫描床㊁X线管芯(球管)㊁套管组件㊁高压发生器㊁准直器㊁X线过滤器ꎮ数据采集系统包括探测器㊁数据通道㊁数据通道选择开关㊁数据缓冲器以及软件和硬件系统ꎮ实际操作中球管和探测器的较为复杂需要返厂维修或更换ꎮ四㊁常见故障及处理(一)故障现象一设备曝光后工作站显示图像有伪影1.故障分析(1)探测器损坏:探测器的某一个或某些损坏或探测效率降低引起ꎮ(2)X射线管(球管)辐射输出降低:射线量不足导致剂量降低ꎮ(3)X射线管(球管)位置或准直器的调整不佳:造成剂量的不足ꎮ2.故障的排查与维修(1)X线管(球管)辐射能力的降低是产生环状伪影的重要原因之一ꎮ此时X线管(球管)的射线输出不稳定ꎬ时高时低ꎮ因此应当判断环状伪影是由X线管引起ꎮ(2)判断是否积分电路损坏:积分电路的损坏可能是单一的也可能是成组的ꎮ积分电容最容易损坏的是电路板上的滤波电容(击穿)ꎮ(3)检查是否调整的原因:X线管(球管)的准直器的位置调整不佳导致X线管(球管)发出的X射线相当一部分被准直器阻拦而不能穿透人体到达探测器ꎮ这种情况下表现的是辐射量明显不足ꎮ在探测器没有明显的损坏的情况下有可能X线管(球管)和准直器的位置调整不佳导致伪影的产生ꎮ需要重新进行调整定位ꎮ但是调整后需要做大量的校正ꎮ(二)故障现象二扫描床不能升降ꎬ操作台显示器没有任何故障代码ꎮ1.故障分析(1)限位开关:限位开关损坏导致扫描床无法升降:(2)步进电机:步进电机损坏或电机齿轮卡死ꎮ2.故障的排查与维修(1)该机为了安全起见在扫描床安装了限位开关ꎬ按下限位开关后导通松开后断开ꎬ发现扫描床有明显的下降后又不能升降ꎬ将扫描床手动摇至底端后按机架升床按钮故障消失ꎮ(2)由资料可知扫描床的水平移动是由步进电机带动皮带而实现的ꎬ步进电机的供电来自由机架ꎮ拆开扫描床上的盖板ꎬ仔细观察后发现步进电机齿轮被来自病人身上掉落的发卡卡住ꎬ将发卡清理干净故障排除ꎮ五㊁结语X线电子计算机断层扫描装置(CT)在实际使用中很难达在理想环境下工作ꎬ因此需要医学工程师定期为其保养ꎬ主要是清理灰尘ꎬ从而提高设备的使用寿命ꎮ在维修设备时ꎬ应从原理着手ꎬ从结构分析ꎬ熟悉模块结构ꎬ分清模块功能ꎬ逐级排除问题ꎬ从而提高自身的维修能力ꎮ参考文献:[1]石明国.现代医学影像技术学[M].西安:陕西科学技术出版社ꎬ2007.[2]贾克斌.数字医学图像处理㊁存档及传输技术[J].科学出版社ꎬ2006.[3]余晓锷ꎬ卢广文.CT设备原理/结构与质量保证[M].北京:科学出版社ꎬ2005.作者简介:达志鹏ꎬ新疆维吾尔自治区人民医院医疗器械中心ꎮ941。
计算机断层扫描

正常组织的CT值
CT值(Hu) 0±10 3~8 13~32 64~84 50~65或略低 类别 水 脑脊液 血液 出血 脾脏 CT值(Hu) 50~70 -20~-80 80~300 -600~-800 400以上 类别 肝脏 脂肪 钙化 肺组织 骨 皮质
3;1000共2000个分度,而 人眼不能分辨这样微小灰度的差别,仅能分辨16个灰阶。为 了提高组织结构细节的显示,能分辨CT值差别小的两种组织, 操作员根据诊断需要调节图像的对比度和亮度,这种调节技术 称为窗技术--窗宽、窗位的选择。 窗宽是指显示图像时所选用的CT值范围。窗宽的宽窄直接 影响图像的对比度;窄窗宽显示的CT值范围小,可分辨密度 较接近的组织或结构,如脑组织;反之,窗宽加宽的CT值幅 度大,对比度差,适用于分辨密度差别大的结构如肺、骨质。 窗位是指窗宽上、下限CT值的平均数。窗位的高低影响图 像的亮度;窗位低图像亮度高呈白色;窗位高图像亮度低呈黑 色。
CT的检查过程
• 病人准备(胃肠道准备,对比剂过敏试验,呼吸训练,心理准备等) • 定位(选择适当的扫描体位) • 扫描定位像 • 进行断面扫描 • 进行图像的传输,存储和打印 • 在图像处理工作站上进行图像高级后处理(2D, 3D, Perfusion, Cardiac IQ)
一般检查可在5-10分钟内完成
CT常用高级后处理方法
• 随着螺旋CT的迅速发展,CT可进行连续的大范围
薄层容积数据采集,从而能够进行多角度、多方 位的显示,增加有效的诊断和定位信息。目前常 用的CT高级后处理方法有: MPVR, MIP, Curve, SSD, Navigator 等
MPR(多层面重建 )
• 计算机将横断面图像上的二维体素重组后获得冠 状位、矢状位、斜位和曲面重建图像。用于显示 病变形态及与周围组织、器官的 解剖关系
CT扫描机原理

CT扫描机的特点: 常规的 X 光成像技术利用的是光影原理,从人体一侧照射“光 线”,此时,人体另一侧的胶片可记录骨骼的轮廓,阴影只能反映物 体轮廓的一部分。 在CT扫描仪中,X光束围绕着患者的身体进行运动,从数百个角 度进行扫描。计算机负责收集所有信息,并将这些信息合成为人体三 维图像。
CT扫描仪看起来像是一个竖立的大圆圈饼。患者躺在一个平台上,随 平台慢慢通过一个洞,进入仪器中。X射线管安装在洞边缘一个可移 动的圆环上。在圆环与X射线管相对的位置上安装了一列X射线探测器。 电机驱动圆环进行转动,使X射线管和X射线探测器围绕躯体进行旋转。 每一次完整的旋转都可扫描出人体上一个狭窄的水平“断层”。控制 系统将平台向洞里推进一些,扫描下一个断层。通过这种方式,机器 以螺旋式的运动路线记录X光断层的信息
CT扫描机,即所谓电子计算机X线断层扫描机(简称X—CT或CT),就 是利用x射线对人体进行断层扫描后,由探测器收得的模拟信号r再变 成数字信号,经电子计算机计算出每一个像素的衰减系数,再重建图 像,而能显示出人体各部位的断层结构的装置。
CT 扫描机以断层的图像形式,较清晰地显示人体组织的细微差别。 CT要区分不同的密度组织,则用CT值来表示,其范围取—1000至十 1000,以空气为—1000,水
CR

计算机X射线成像系统(Computed Radiography,简称CR).——————————常用的医疗设备简称:CR:计算机X线摄影系统DR:数字X射线摄影系统DSA:数字减影血管造影设备CT:电子计算机X射线断层扫描系统ECT:发射单光子计算机断层扫描仪MRI:核磁共振成像系统CR ( Computed Radiography), 计算机X线摄影。
CR的工作原理:第一步、X线曝光使IP影像板产生图像潜影;第二步、将IP板送入激光扫描器内进行扫描,在扫描器中IP板的潜影被激化后转变成可见光,读取后转变成电子信号,传输至计算机将数字图像显示出来,也可打印出符合诊断要求的激光相片,或存入磁带、磁盘和光盘内保存。
CR系统结构相对简单,易于安装;IP影像板可适用于现有的X线机上,直接实现普通放射设备的数字化,提高了工作效率,为医院带来很大的社会效益和经济效益。
降低病人受照剂量,更安全。
CR对骨结构,关节软骨及软组织的显示明显优于传统的X 片成像;易于显示纵膈结构,如血管和气管;对肺结节性病变的检出率高于传统X线成像;在观察肠管积气、气腹和结石等含钙病变优于传统X线图像;用于胃肠双对比造影在显示胃小区,微小病变和肠粘膜皱襞上,CR(数字胃肠)优于传统X线图像。
DR( Digital Radiography), 数字化X 线摄影,系统由数字影像采集板(探测板,Flat Pannel Dector, 就其内部结构可分为CCD、非晶硅、非晶硒几种)、专用滤线器BUCKY数字图像获取控制X线摄影系统数字图像工作站构成。
其工作原理是在非晶硅影像板中,X线经荧光屏转变为可见光,再经TFT薄膜晶体电路按矩阵像素转换成电子信号,传输至计算机,通过监视器将图像显示出来,也可传输进入PACS网络。
DR 技术从X 线探测器成像原理可分为非直接转换和直接转换两类。
第一代非直接转换采用的增感屏加光学镜头耦合的CCD(电荷耦合器)来获取数字化X线图像。
医用x线ct扫描机架工作原理

医用X线CT(Computed Tomography,计算机断层扫描)扫描机架是一种医疗设备,用于进行人体内部的断层扫描和图像重建。
以下是医用X线CT扫描机架的基本工作原理:
X射线发射:CT扫描机架内部包含一个X射线发射器。
这个发射器会产生一束细且平行的X 射线束。
病人定位:患者被安置在CT扫描机架的扫描床上,以确保所需区域位于X射线束的路径上。
扫描床通常可以沿着水平和垂直方向移动。
X射线扫描:X射线发射器会在一个圆形轨道上旋转,围绕患者进行一系列的旋转扫描。
每个扫描角度上,X射线通过患者的身体,然后被探测器阵列接收。
探测器阵列:CT扫描机架的对面设有一个探测器阵列。
探测器阵列由许多个探测器组成,每个探测器都能测量通过患者身体的X射线的强度。
数据采集:探测器阵列会将每个扫描角度上的接收到的X射线数据转换为电信号,并将其传输给计算机进行进一步处理。
重建算法:计算机会利用重建算法对接收到的X射线数据进行处理。
这些算法通过数学计算和信号处理技术,将二维的扫描数据转换为三维的图像数据。
图像重建:最终,通过计算机对接收到的X射线数据进行重建,生成横断面图像,显示出患者身体内部的组织结构和病变情况。
医用X线CT扫描机架的工作原理基于通过旋转的X射线源和探测器阵列的配合,获得多个角度的扫描数据,再通过计算机进行重建,从而生成高分辨率的三维图像。
这些图像可以用于医生进行诊断和治疗计划的制定。
计算机X线断层扫描技术与骨科诊断

值随肿瘤 性质不同而有所 区别 。 115 椎体 及附件病变 虽然 C .I T的诊 断率较 x线平片有 显著提高 ,但不 宜作 为常规 检查方 法。仅对某 些平 片上显 示困难又 有怀 疑时才行 C T扫描 。 12 髋关节疾患 主要用 于诊 断髋部肿瘤 、髋关 节破 坏性 .
病损。此外对 于先 天性髋 关节脱 位和全 关节 置换术后 出现 的并 发症及股 骨头坏死等亦有诊 断价值 。 13 骨与关 节软组织肿瘤 . 对 骨盆肿瘤显 示尤其清晰。对 恶性骨肿瘤能判 断与周 围血 管的关 系 ,考虑 能否保 留肢体 进行瘤段截除 。对鉴 别脊椎 转移瘤 与骨 质疏松 引起椎 体压 缩骨 折有 一定 的帮助 。对脊椎肿瘤还可 以利用 C T帮助穿刺 活检 的定位 。
的新鲜血液 C T值 (0~ 0 U)与脊髓 及脑 脊液有 明显 区 5 9H 别 ,故起到类 似造影 剂 的作 用 ,而不 一定需要 作造影 剂增
强扫描。
体 的侵犯和伤害。但是 ,人 体 内有 些器 官对 x射 线的 吸收 差别很小 ,X射线对那些前后重 叠组织 的病 变就难 以发现 。 16 9 3年 ,美国物理学 家科 马克发现人 体不 同的组织 对 x线 的透过率有所不 同,在 研究 中还 得 出了一 些有关 的计算 公
李家权
云南省 罗平县 中医院 , 云南 罗平 6 5 0 580
【 要】 c 摘 T的出现是计算机技术应用于传统 x线摄影领域 的结果 ,是将影像 检查技术带 人一个新 的划时代 的阶段 。c T应用到 医
学l床已有 3 多年的历史 ,这期间 c 临 O T的硬 、软件技术经历了几次大的革命性进步 ,其应用范围有 了很 大的扩展 ,在骨科诊断领域有着广 泛 的应用 。其发展必定也将把骨科疾病诊断技术带入一个新的高度。
计算机断层成像技术

、各代CT扫描机
1、First Generation
One detector Translation-rotation Parallel-beam
Finely collimated x-ray beam Single radiation detector Translate-rotate motion 180 translations with 1 rotation between translation Single image projection per translation Five minute image time Head image only, not capable of body imaging
showing cyst (confirmed) 囊肿
Hounsfield and EMI CT
4分钟可生成图像。
CT scanner 结构图
4.1 概述
一、CT的用途
医学诊断 辅助治疗 工业CT
二、CT的优点 三、CT的局限
显示真正的断层图像 图像清晰、密度分辨率高 操作简单、安全 有些病变不适宜 成分、生物、化学结构 造价高
2320x射线能量150kv以下常用电压420kvx射线强度150ma左右2ma左右放射性同位素不采用60co源高能直线加速器不采用10mev以上扫描和结构方式病人静止检测对象运动x光机和探测器运动x光机和探测器保持静止工业ct装置和医用ct装置的区别医用ct装置工业ct装置08
计算机断层成像技术
X射线计算机断层成像(X-ray computed tomography,简称X-CT)从 根本上克服了上述困难,是80多年来X射线 诊断学上的一次重大突破。
▪ B、正电子发射CT(PET) kV is a reflection of the energy level of the x-ray beam
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成像原理
CT机CT是用X射线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X射线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。
图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel)。
扫描所得信息经计算而获得每个体素的X射线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。
经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素(pixel),并按矩阵排列,即构成CT图像。
所以,CT图像是重建图像。
每个体素的X射线吸收系数可以通过不同的数学方法算出。
CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。
折叠编辑本段发展历史
CT原理自从X射线发现后,医学上就开始用它来探测人体疾病。
但是,由于人体内有些器官对X线的吸收差别极小,因此X射线对那些前后重叠的组织的
病变就难以发现。
于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X线技术检查人体病变的不足。
1963年,美国物理学家科马克发现人体不同的组织对X线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。
1967年,英国电子工程师亨斯菲尔德(Hounsfield)在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。
首先研究了模式的识别,然后制作了一台能加强X
射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。
后来,他又用这种装置去测量全身,获得了同样的效果。
1971年9月,亨斯菲尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。
10月4日,医院用它检查了第一个病人。
患者在完全清醒的情况下朝天仰卧,X线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。
这次试验非常成功。
1972年第一台CT诞生,仅用于颅脑检查,4月,亨斯菲尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。
1974年制成全身CT,检查范围扩大到胸、腹、脊柱及四肢。
第一代CT机采取旋转/平移方式(rotate/translate mode)进行扫描和收集信息。
由于采用笔形X线束和只有1~ 2个探测器,所采数据少,所需时间长,图像质量差。
第二代CT机扫描方式跟上一代没有变化,只是将X线束改为扇形,探测器增至30个,扩大了扫描范围,增加了采集数据,图像质量有所提高,但仍不能避免因患者生理运动所引起的伪影(Artifact)。
第三代CT机的控测器激增至300~ 800个,并与相对的X线管只作旋转运动
(rotate/rotate mode),收集更多的数据,扫描时间在5s以内,伪影大为减少,图像质量明显提高。
第四代CT机控测器增加到1000~ 2400个,并环状排列而固定不动,只有X线管围绕患者旋转,即旋转/固定式(rotate/stationary mode),扫描速度快,图像质量高。
第五代CT机将扫描时间缩短到50ms,解决了心脏扫描,是一个电子枪产生的电子束(electron beam)射向一个环形钨靶,环形排列的探测器收集信息。
推出的64层CT,仅用0.33s即可获得病人的身体64层的图像,空间分辨率小于0.4mm,提高了图像质量,尤其是对搏动的心脏进行的成像。