基于柔性薄膜的电子器件的设计制备与发展
柔性电子技术的创新与应用研究

柔性电子技术的创新与应用研究柔性电子技术是一种基于柔性基底材料制造的电子器件和系统的技术,具有轻薄、可弯曲和可拉伸等特点,为电子设备的应用提供了更加灵活多样的可能性。
随着科技的不断进步,柔性电子技术在各个领域的研究与应用也日益广泛。
1. 柔性电子技术的创新柔性电子技术的创新主要体现在以下几个方面:首先是材料创新。
柔性电子器件需要使用柔性基底材料,因此研发可弯曲、可拉伸的材料是创新的重点。
目前,一些新型材料如聚合物、塑料、金属薄膜等被广泛应用于柔性电子技术领域,为电子器件的制造提供了基础。
其次是制造工艺创新。
柔性电子器件的制造工艺与传统的硅基电子器件存在差异。
柔性基底上的电子器件需要在柔性条件下制备,因此需要实现全新的制造工艺。
研究人员通过探索新的制造方法,如印刷、喷墨、溅射等技术,不断改进器件制造工艺,提高生产效率和器件性能。
另外是器件设计创新。
柔性电子器件的设计需要充分考虑材料的柔性和可塑性,使其能够适应各种场景和条件下的应用需求。
设计人员通过优化材料的可塑性、器件的结构以及电路的布局,实现了越来越多的创新设计。
2. 柔性电子技术的应用研究柔性电子技术在以下领域的应用研究日益成熟:首先是可穿戴设备领域。
柔性电子技术的发展使得可穿戴设备得以实现更加灵活、轻便的设计。
智能手环、智能手表、智能眼镜等可穿戴设备已经成为人们生活中的常见物品。
柔性电子技术的创新为可穿戴设备提供了更多的功能和更好的舒适性,使其在健康监测、运动追踪、支付等方面发挥了重要作用。
其次是柔性显示技术领域。
柔性显示技术通过将显示器件制作在柔性基底上,实现了可弯曲和可折叠的显示屏。
这一技术的应用范围非常广泛,可应用于智能手机、电子书、电子纸等电子设备中,为用户提供更加便捷、舒适的使用体验。
另外是智能健康监测领域。
柔性电子技术的创新为智能健康监测设备的研发提供了新思路。
通过柔性传感器的应用,可实现对心率、体温、呼吸等身体指标的实时监测和记录,为医疗健康领域提供了更加便携、舒适的解决方案。
基于有机半导体的柔性电子器件制备与应用研究

基于有机半导体的柔性电子器件制备与应用研究近年来,随着新兴科技的迅速发展,这个领域也涌现出了许多的创新技术。
其中,基于有机半导体的柔性电子器件无疑是最引人注目的一个。
一、什么是有机半导体?有机半导体是指通过将有机材料制成薄膜或纤维等形态后,使其呈现出半导体的导电性能。
它通常由镰刀形的分子构成,其中有机分子通过共价键或范德华键的形式进行连接,形成晶格。
有机半导体的晶体结构与金属和无机半导体都有所不同。
晶体结构倾向于是两维或三维的。
由于分子间的距离较大,电子的传输通常是通过法向电子跃迁(Hopping)来实现的。
有机半导体可以分为两类,一类是聚合物半导体,另一类是小分子有机半导体。
聚合物半导体通常是通过在实验室中合成出一种高分子材料,如聚苯乙烯、聚三氟乙烯、聚丙烯等,然后将这些高分子结合成电子传输链的形式。
小分子有机半导体由分子单元组成,通常是利用溶液法、真空蒸发等方法制备。
二、柔性电子器件的优势柔性电子器件是指能够弯曲变形的电子器件。
由于它们具有轻质、薄、韧性好等优点,因此相比传统的电子器件而言,柔性电子器件有着许多明显的优势。
它们可以灵活地适应各种曲面物体,具有良好的低温加工性能、便携性、耐冲击性等优点,因此被广泛应用于可穿戴电子产品、智能家居、医疗等各个领域。
而基于有机半导体的柔性电子器件则更具优势。
有机半导体制成的薄膜可以非常轻巧、柔软,并可以应用于不同的底材。
由于它们是非晶体或多晶体的形式存在,因此更加均匀和灵活。
此外,它还有着高效率、低功耗、低成本等优点。
三、基于有机半导体的柔性电子器件制备与应用应用于多种场合的基于有机半导体的柔性电子器件还在不断涌现,比如:1. OLED柔性显示屏有机发光二极管(OLED)由一个由多个薄层水平组成的器件构成。
它们通常是由一种类型的有机发光材料、电极和支撑基底组成。
OLED屏幕具有极高的对比度、高分辨率和宽视角,在全彩显示方面具有非常广泛的应用前景,而柔性的形态更是有着广泛应用的潜力。
柔性电子器件设计与制造工艺

柔性电子器件设计与制造工艺柔性电子器件是指采用柔性基底材料进行设计和制造的电子器件。
相比于传统的刚性电子器件,柔性电子器件具有重量轻、可弯曲、可卷曲等特点,适用于众多领域,如可穿戴设备、可卷曲显示器和智能医疗器械等。
本文将介绍柔性电子器件的设计原理和制造工艺。
一、柔性电子器件设计原理柔性电子器件的设计原理是基于柔性基底材料的特性开展的。
柔性基底材料常见的有聚酰亚胺(PI)、聚氨酯(PU)和聚甲基丙稀酸甲酯(PMMA)等。
根据不同的器件设计需求,选择适合的柔性基底材料,并通过特定的工艺来实现柔性电子器件的设计。
在柔性电子器件的设计过程中,需考虑以下几个因素:1.器件功能:确定器件的主要功能,如传感、存储或通信等。
2.材料选择:选择适合的柔性基底材料,并考虑材料的导电、绝缘和耐久性等性能。
3.电路布线:根据器件功能要求,设计合理的电路布线方式,确保信号的稳定传输。
4.组装方式:确定组装方式,如黏贴、印刷或激光刻蚀等,以实现电子元件的固定和连接。
二、柔性电子器件制造工艺柔性电子器件的制造工艺主要包括柔性基底加工、电路制备、封装和加工等多个环节。
1.柔性基底加工柔性基底加工是整个制造过程的基础。
首先,根据设计图纸,将柔性基底材料进行裁切,得到合适尺寸的基底片。
然后,进行清洗和表面处理,以提高材料表面的附着性和稳定性。
2.电路制备柔性电子器件的电路制备方式多种多样,常见的有印刷电路板(PCB)制备、印刷电子、薄膜转移和裸片制程等。
(1)PCB制备:将导电墨水通过印刷方式直接印刷在基底片上制备电路。
该方式适用于简单电路和大面积器件制备。
(2)印刷电子:利用特定的印刷工艺,在柔性基底上印刷电子元件,如电容器、电感器和电阻器等。
该方式适用于柔性基底上的复杂电路制备。
(3)薄膜转移:利用特殊的薄膜材料,将电路图案从载体上转移到柔性基底上。
该方式适用于高精度和高密度电路的制备。
(4)裸片制程:将芯片直接粘合在柔性基底上,形成电子器件。
柔性电子器件制备与封装技术

柔性电子器件制备与封装技术随着科技的不断发展,柔性电子器件作为一种新兴的技术越来越受到重视。
相比于传统的硬性电子器件,柔性电子器件具有更轻薄灵活的特点,能够适应各种曲面并且具备弯曲性能。
因此,柔性电子器件广泛应用于可穿戴设备、可折叠屏幕、传感器等领域。
柔性电子器件的制备过程主要包括材料选择、工艺设计、功能封装等步骤。
首先,材料的选择对于柔性电子器件的性能起着至关重要的作用。
目前,常用的柔性电子材料主要有有机高分子材料和无机纳米材料两大类。
有机高分子材料具有较好的柔韧性和可塑性,能够承受一定的变形而不破裂,因此被广泛应用于柔性电子器件的制备中。
而无机纳米材料由于其良好的导电和导热性能,被广泛应用于柔性电子器件的导电层或导热层。
在柔性电子器件制备过程中,工艺设计起着至关重要的作用。
由于柔性电子器件具有较高的柔韧性和可塑性,因此需要将其制备在柔性基底上。
在制备过程中,需要考虑柔性基底的选择、工艺参数的优化以及制备设备的改进等方面。
选择合适的柔性基底材料能够提高器件的可靠性和稳定性。
而通过对工艺参数的优化,可以进一步提高器件的性能和制备效率。
此外,制备设备的改进也是提高柔性电子器件制备质量的重要手段。
除了制备过程外,柔性电子器件的封装技术也是制备过程中不可忽视的环节。
封装技术的主要目的是对制备好的器件进行保护,防止其受到损坏或腐蚀。
同时,封装技术还要保证器件的稳定性和使用寿命。
目前,常用的柔性电子器件封装技术主要有有机材料封装、热塑性封装和无机材料封装等。
有机材料封装主要是采用高分子材料封装器件,具有较好的柔韧性和可塑性。
热塑性封装则是采用热塑性树脂材料对器件进行封装,具有较好的耐高温性能和机械强度。
而无机材料封装则是采用无机材料进行封装,具有较好的抗氧化性能和硬度。
总之,柔性电子器件制备与封装技术是该领域中的两个关键环节。
通过选择合适的材料和优化工艺参数,可以提高柔性电子器件的性能和制备效率。
而通过合理的封装技术,能够保护器件并提高器件的稳定性和使用寿命。
柔性电子器件的设计与制造技术研究

柔性电子器件的设计与制造技术研究近年来,随着科技的迅速进步,柔性电子器件作为新兴领域备受关注。
与传统刚性电子器件相比,柔性电子器件具有较高的柔韧性和可变形性,可以应用于各个领域,如可穿戴设备、智能健康监测等。
柔性电子器件的设计与制造技术研究已成为当前科学界和工业界关注的热点。
首先,柔性电子器件的设计是实现器件性能的关键。
传统电子器件在设计上更注重性能和功耗,而柔性电子器件的设计需要考虑其在弯曲和拉伸等变形状态下的可靠性。
因此,设计师需要在器件材料、结构和电路布局等方面进行创新。
目前,常见的柔性电子器件设计方法包括薄膜传输、纳米材料、可伸缩电路等。
例如,研究人员利用纳米材料制作电极薄膜,使其具有更好的柔性和可拉伸性,并将其应用于柔性显示器件。
其次,柔性电子器件的制造技术研究也是实现其商业化应用的核心。
柔性电子器件的制造过程与传统的刚性电子器件存在较大差异。
传统电子器件制造需要在平板材料上进行加工,而柔性电子器件的制造需要考虑材料的柔韧性和可伸缩性。
目前,常用的柔性电子器件制造方法包括印刷、喷墨打印、溅射和薄膜转移等。
例如,印刷技术可实现大面积、高通量的柔性电子器件制造,喷墨打印技术可在柔性基底上精确描绘电路图案。
随着柔性电子器件的研究和应用不断深入,相关技术也在不断创新和发展。
例如,近年来,聚合物材料和碳纳米管等新型材料的引入,为柔性电子器件的设计和制造提供了更多可能性。
此外,利用纳米技术和3D打印技术,可以实现更复杂的柔性电子器件结构和功能。
柔性电子器件的设计和制造技术研究也为其他领域提供了新的思路和方法。
例如,在生物医学应用中,柔性电子器件可以与人体组织无缝贴合,实现更精确的生物信号检测和治疗。
然而,柔性电子器件的设计与制造技术研究面临一些挑战。
首先,柔性电子器件制造过程中的材料选择和组装技术需要不断改进,以提高器件的可靠性和稳定性。
其次,大规模制造柔性电子器件的成本较高,需要研发更经济高效的制造方法。
柔性电子器件的材料与工艺研究

柔性电子器件的材料与工艺研究柔性电子器件是指可以弯曲、折叠、拉伸等形变变形的电子器件。
相较于传统的硬性电子器件,柔性电子器件具有更好的适应性和可塑性,并可以应用于更广泛的领域,如可穿戴电子设备、智能医疗、环境监测等。
柔性电子器件的材料与工艺研究是实现其商业化应用的关键之一。
柔性电子器件的材料研究主要包括基底材料、导电材料、绝缘材料和功能材料。
基底材料是柔性电子器件的支撑材料,其物理性质直接影响器件的柔性和可靠性。
目前常用的基底材料有聚酰亚胺薄膜、聚酯薄膜等。
导电材料是柔性电子器件中最为关键的材料之一,其导电性能直接影响器件的性能和稳定性。
常用的导电材料有金属、导电聚合物等。
绝缘材料主要用于隔离不同层次之间的导电材料,以防止短路和漏电等问题。
功能材料是指在柔性电子器件中起到特定功能的材料,如光敏材料、储能材料等。
柔性电子器件的工艺研究主要包括制备工艺和加工工艺。
制备工艺是指将各种材料制备成柔性电子器件所需的各个部分,并将它们组装起来形成完整的器件的过程。
目前常用的制备工艺有印刷技术、溶液法、薄膜沉积技术等。
加工工艺是指对制备好的柔性电子器件进行加工,以满足不同应用需求。
常用的加工工艺有微影技术、激光加工技术等。
随着柔性电子器件技术的不断发展,其商业化应用也越来越广泛。
目前,柔性电子器件已经应用于智能手环、智能手表、智能眼镜等可穿戴设备中,并且在医疗领域也有着广泛的应用,如血压计、心电图仪等。
此外,柔性电子器件还可以应用于环境监测领域,如温度传感器、湿度传感器等。
总之,柔性电子器件的材料与工艺研究是实现其商业化应用的关键之一。
随着柔性电子器件技术的不断发展,相信它将会在更多领域得到广泛应用,并为人们带来更多便利和创新。
柔性电子器件的发展与应用

柔性电子器件的发展与应用柔性电子器件是近年来备受关注的热门领域,它以其灵活、轻薄、可弯曲的特点,引领着科技创新的浪潮。
本文将探讨柔性电子器件的发展历程、应用领域以及未来前景。
一、发展历程柔性电子器件的发展可以追溯到20世纪70年代,当时科学家们开始研究利用聚合物材料制作柔性电子元件。
然而,由于材料性能的限制和制造工艺的不成熟,柔性电子器件的商业化应用一直受到限制。
随着纳米技术和材料科学的进步,柔性电子器件得以迎来快速发展。
研究人员们通过改进材料的特性,例如提高导电性和可伸缩性,成功地制造出了更加灵活和可靠的柔性电子器件。
同时,新的制造工艺和技术也为柔性电子器件的生产提供了更多的可能性。
二、应用领域柔性电子器件的应用领域十分广泛。
在医疗领域,柔性传感器可以用于监测患者的生命体征,如心率、血压和体温等,为医生提供实时数据,帮助他们进行诊断和治疗。
此外,柔性电子器件还可以用于制造可穿戴设备,如智能手环、智能手表等,实现个人健康管理。
在智能手机和平板电脑等电子产品领域,柔性显示屏的应用也逐渐增多。
相比传统的玻璃显示屏,柔性显示屏更加轻薄,可以折叠和弯曲,为用户提供更加便携和舒适的使用体验。
此外,柔性电子器件还可以应用于能源领域。
研究人员们正在开发利用柔性太阳能电池板和柔性储能设备来收集和存储能源的技术,以满足可再生能源的需求。
三、未来前景柔性电子器件的未来前景非常广阔。
随着技术的进一步发展,我们可以预见到柔性电子器件在更多领域的应用。
例如,柔性电子皮肤可以用于机器人和人机交互领域,实现更加自然和灵活的交互方式。
柔性电子器件还可以应用于智能家居领域,实现智能家居设备的自动化控制。
此外,随着人工智能和物联网的发展,柔性电子器件也将成为连接各种设备的重要组成部分。
我们可以想象到未来的智能城市中,各种设备和传感器都将采用柔性电子器件,实现信息的互联互通。
总之,柔性电子器件的发展和应用前景非常广阔。
它不仅为传统电子产品提供了更多的可能性,还为新兴领域的创新提供了新的解决方案。
柔性电子器件设计与制备技术研究

柔性电子器件设计与制备技术研究柔性电子器件是一种能够弯曲、拉伸或扭曲的电子设备,它具有轻薄、柔软、可穿戴和可屈曲等特点。
随着科技的不断发展,柔性电子器件已经成为电子工业的热点研究领域。
本文将对柔性电子器件的设计与制备技术进行研究,并探讨其在不同领域中的应用。
一、柔性电子器件设计技术柔性电子器件设计是制备柔性电子产品的基础,它要求在保持器件性能的同时,兼顾器件的柔性和可穿戴性。
柔性电子器件设计技术主要涉及以下几个方面:1. 基于材料的设计:选择适合柔性电子器件的材料至关重要。
常见的柔性电子器件材料包括有机聚合物、碳基材料、金属纳米线、柔性玻璃等。
设计者需要根据不同的器件功能,选择合适的材料来实现柔性和可穿戴性。
2. 结构设计:柔性电子器件的结构设计与传统硬性电子器件有所不同。
设计者需要考虑器件的弯曲、拉伸、扭曲等形变,以及电子组件的布局和连接方式。
合理的结构设计可以提高器件的柔性度和可靠性。
3. 功耗管理:柔性电子器件通常运行在低功耗状态下,设计者需要考虑如何降低器件的功耗,延长电池寿命。
优化电路结构和使用低功耗电子元器件是降低功耗的有效手段。
二、柔性电子器件制备技术制备柔性电子器件的技术是实现柔性电子器件商业化的关键。
柔性电子器件制备技术主要包括以下几个方面:1. 材料制备:柔性电子器件的制备过程中需要使用特定的材料。
对于有机材料,可以通过溶液法、蒸发法、喷墨等方法制备柔性电子器件所需的有机材料薄膜。
对于材料的选择和制备方法则需要根据具体的器件要求进行优化。
2. 加工工艺:柔性电子器件的加工工艺是制备柔性电子产品的关键。
常见的柔性电子器件加工工艺包括胶卷切割、激光切割、微影技术等。
合理选择加工工艺可以提高柔性电子器件的加工效率和可靠性。
3. 封装技术:柔性电子器件的封装是保护器件和延长器件寿命的重要环节。
常见的柔性电子器件封装技术包括薄膜封装、柔性塑料封装、柔性玻璃封装等。
合适的封装技术可以提供良好的电性性能和机械强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究进展:可延展柔性无机电子器件
可延展柔性电池
(NATURE COMMUNICATIONS 4:1543, 2013)
高达 200%-250% 的延展性
研究进展:可延展柔性无机电子器件
可延展柔性电池
(NATURE COMMUNICATIONS 4:1543, 2013)
研究进展:柔性电子器件的制备和集成方法
ACS Nano 2011
实现了波浪构型的柔性可延展铁电薄膜器件制备。 自2011年发表以来被引用10次。
32
研究进展:柔性结构破坏的大变形分析理论
理论和实验分了柔性结构界面破坏的三 种模式及其演化趋势 Adv. Func. Mater. 2008
从断裂力学角度提出了界面滑 移破坏的的表征方法 Appl. Phys. Lett., 2010
科学难点
可延展柔性结构
如何实现脆性无机薄膜器 件的可延展柔性?
如何设计无机薄膜与柔性 基体的集成结构?
pre 研究思路 利用力学屈曲变形使得互 连导线或薄膜出现波浪状
无机薄膜或互连导线
pre
聚合物柔性基体 无机薄膜或互连导线 聚合物柔性基体
13
基于分形的互连可展结构 及基体表面微结构布控
科学问题二:高速柔性薄膜器件的转印实现 及其界面物理机理
技术突破:薄膜器件稳定性和失效准则
21
三、国内的情况和研究条件
22
研究进展:可延展柔性无机电子器件
柔性无机μLED
(PNAS 105: 18675-18680, 2008)
通过力学机理设计的柔性无机mLED具比有机LED具有更高的亮 度、更长的寿命; 比传统无机LED具有更低的成本和高的延展性。
20
5.具有柔性互连导线的高速薄膜器件的延迟机制 与可靠性研究 研究内容:
高速可延展无机薄膜器件互连 导线延迟模型
高速可延展无机薄膜器件互连 导线可靠性评估 薄膜/基体系统的稳定性与可 靠性
大变形
裂纹
滑移
L-dL
界面强度在大变形情况下的演 化及失效过程
脱粘
科学贡献:高速可延展无机薄膜器件互连导线延迟机理
9
GDP
20000 0
4 0 2008 2009 2010 2011 2012
二、面临的技术挑战
10
高速柔性薄膜电子器件设计制备与集成的挑战
难点与挑战:
基于无机薄膜的电子器件可延 展柔性化? 如何将脆性无机薄膜与柔性基 体集成? 大变形及疲劳载荷下薄膜器件 是否失效?
器件或连线
柔性无机微纳电子器件原理 Flexible ICs
科学难点 如何实现脆性薄膜与柔性 基体的转印集成? 如何控制大变形下无机薄 膜/柔性基体间的界面失 效? 研究思路 调控无机薄膜/柔性基体 界面的粘附特性 大变形
异质界面
柔性器件
利用断裂力学确定界面失 效准则
14
科学问题三:柔性环境下无机薄膜器件的 高速电子学性能与退化机理
科学难点
如何保证可延展柔性环境 下无机薄膜的电学性能及 其可靠性? 研究思路 通过理论分析无机薄膜在 变形下的电学性能 通过实验与理论计算结合 方式确定多场耦合作用下 的无机薄膜的电学性能
electronics
front side tattoo after transfer
backside of tattoo
after integration onto skin
after deformation
仿表皮的的电子原件具有与皮肤相近的模量,在无需外加粘结剂的 情况下,在各种工况下(褶皱、弯曲)与人体皮肤保持很好的的接触。
(PNAS 105: 18675-18680, 2008)
电子路板的延展性高达 140% 可扭转、弯曲
研究进展:可延展柔性无机电子器件
大脑上超柔的电路
1 cm 75mm
(Nature Materials 9: 511-517, 2010)
25mm
unwrapped 2.8mm
2.8mm
unwrapped
碳纳米管:
高的电子迁移率, 比较稳定 高温生长, 电异质性
Nature (2008) Nature Nano. (2007)
6
高速柔性无机薄膜电子器件设计原理
基本 原理
刚性材料通过 结构化力学设 计实现柔性
PDMS Si
mother wafer: Si
pre dL L
PDMS
pre
电子学功能部件依然采用无机材料从而保证高速功能 通过力学及几何设计使得电子器件具备柔性可延展 大变形不改变器件电子学性能
18
3.满足柔性基体集成的高速薄膜器件的微纳制备技术研究 研究内容:
小型化、薄膜器件的外延结构 设计和生长技术 小型化、薄膜器件的器件结构 设计和制备技术 面向精确转印的衬底剥离和微 结构支撑技术
衬底剥离后的微支撑结构
科学贡献:薄膜材料的微型化设计和制备研究 技术突破:满足转印的衬底剥离技术和微支撑结构
中 比 3 重 ( 0 % )
电 子 信 息 制 造 业 收 入 ( 亿 元 )
2008 2009 2010 2011 2012
100000 80000 60000 40000
28 24
增 20 长 率 16 ( % 12 )
8
电子信息制造业一直保持增长,但增长率在降低,高速 柔性电子技术能够促进信息产业革新和升级。
17
2.高速柔性薄膜器件的高效、大规模转印集成技术研究 研究内容:
柔性基体表面微结构设计实 现界面粘附力调控的机理 薄膜与柔性基体转印结合过 程及控制参数
转印机理
大规模局部主动控制的转移 印刷集成方法
大规模转印
科学贡献:基于界面可控粘附的转印理论与集成方法 技术突破:实现高效高成品率的转印技术
可供生物集成电子器件的半导体材料
Science (2001) PNAS (2001)
?
a-Si poly-Si 10 100 Si GaAs 1,000 10,000 1
0.1
聚合物:
溶液处理工艺 性能较差小分来自材料:性能接近于a-Si 真空沉积
单晶材料:
需要研究固有的电荷传输; 易碎,集成工艺存在挑战
蓝光有机LED外部量子 效率为4.8%,使用寿命 小于15000小时; 蓝光无机LED外部量子 效率达到60%,使用寿 命达到50000小时以上
(Kim等2010年报道)
有机电子器件的电学性能与无机电子器件相比,相差数倍 5 不能利用有机半导体实现高频高速特性!
无机电子器件可伸展柔性的重要意义
15
主要研究内容
① 力学介入的可延展柔性高速薄膜器件集 成化设计研究 ② 高速柔性薄膜器件的高效、大规模转印 集成技术研究 ③ 满足柔性基体集成的高速薄膜器件的微 纳制备技术研究
④ 柔性/刚性异质界面对高速薄膜器件集成 及电子学性能的调控机理研究
⑤ 具有柔性互连导线的高速薄膜器件的延 迟机制与可靠性研究
器件或连线
柔性化
二氧化硅 硅 介电质 硅
柔性基体 “柔性”电子器件
11
传统 “非柔性”电子器件
关键科学问题
高速薄膜器件的可延展柔性化与集成化设计理论
高速柔性薄膜器件的转印实现及其界面物理机理
柔性环境下无机薄膜器件的高速电子学性能与 退化机理
12
科学问题一:高速薄膜器件的可延展柔性化 与集成化设计理论
CPDMS
多功能医用导管利用结构的高延展性(高达100%),实现了 将多种功能的芯片集成于导管头上,减小了微创手术的创伤。
研究进展:可延展柔性无机电子器件
仿表皮的柔性电子器件
(Science 333, 838-843, 2011)
bare skin
skin patch
deform relax
electronics 0.5cm tattoo
7.0mm
wrapped wrapped 0.3 cm 75mm wrapped
电路的柔性使得其在湿润的条件 下与大脑不规则表面实现非常好 的全面接触
研究进展:可延展柔性无机电子器件
可调电子眼
(Nature 454, 748-753, 2008) (PNAS 108(5), 1788-1793, 2011)
新生婴儿护理与健康监测
现在
未来采用柔性电子技术
4 14, 113 (2012). Ann. Rev. Biomed. Eng.
有机柔性电子器件的电学性能发展瓶颈
有机太阳能电池能量转 换效率8.3%; 无机太阳能电池能量转 换效率41.1%
(美国National Energy Renewable Laboratory)
研究进展:可延展柔性无机电子器件
柔性无机μLED
(Science 325: 977-981, 2009)
通过力学机理设计的柔性无机mLED具比有机LED具有更高的亮 度、更长的寿命; 比传统无机LED具有更低的成本和高的延展性。
研究进展:可延展柔性无机电子器件
可延展柔性电路板
(Science 320:507-511, 2008)
LED 1mm
1mm
electrode
tactile sensor Catheter Sensors 5mm 500mm deflate inflate rabbit heart 500mm electrode
electrode
5 mm
temp sensor
lesion electrode lesion
将电子元件转移印刷到曲面上,实现与人眼相似的功能,同 时通过内压的调控微调镜头曲面的曲率,实现镜头的缩放。