《计算方法》插值方法

合集下载

计算方法第四章 插值法

计算方法第四章  插值法
《 计 算 方 法 》
4
3
xi 4 yi 2
9 16 3 4
2
0
4
7
9
16
第4章 插值法
应用背景
造函数表:三角函数、对数 预测:鸡蛋价格、城市用水量
《 计 算 方 法 》
数控加工:造船、飞机机翼骨架、服装 样片、模具加工、刀具 计算机辅助设计:潜水艇、汽车造型
服装样片
第4章 插值法
实际问题中,f (x)多样,复杂,通常只能观测到一些离散 数据;或者f (x)过于复杂而难以运算。这时我们要用近似函数 φ(x)来逼近f (x)。
《 计 算 方 法 》
φ (x)= y0
第4章 插值法
§2 线性插值与二次插值
2.1 线性插值
线性插值是代数多项式插值的最简单的形式。假设
《 计 算 方 法 》
给定了函数f (x)在两个互异点x0,x1的值,即
x x0值)
y y0 x0
y1
x1
x
第4章 插值法
现要用一线性函数
满足插值条件:
y( xi ) = yi , i = 0,1, 2
22
第4章 插值法 例:已知函数 y=f (x)的观测数据为
x
《 计 算 方 法 》
1 0
2 -5
3 -6
4 3
y
试求拉格朗日插值多项式。
第4章 插值法
《 计 算 方 法 》
( x 2)( x 3)( x 4) 解 :p3 ( x ) = 0 (1 2)(1 3)(1 4) ( x 1)( x 3)( x 4) ( 5) (2 1)(2 3)(2 4) ( x 1)( x 2)( x 4) ( 6) (3 1)(3 2)(3 4) ( x 1)( x 2)( x 3) 3 (4 1)(4 2)(4 3) = x3 4 x2 3

《计算方法》第四章 插值方法

《计算方法》第四章 插值方法

满足插值条件
P n (x ) a 0 a 1 x a n x n
Pn(xi)yi
Return 13
§4.2 拉格朗日多项式 /* Lagrange Polynomial */
1. 构造线性插值基函数的方法:
n= 1
已知 x0 , x1 ; y0 , y1 ,求 L1(x)= a0 +a1x使得 L1( x0 ) y0 , L1( x1) y1
R n(x)f(x)L n(x)
24
➢ Lagrange插值法的插值余项
设节点 ax0x1xnb,且 f 满足条件 f Cn[a,b], f (n1)在[a , b]内存在 , 截断误差(或插值余项):
R n(x)f(x)L n(x)f(( n n 1)1 ()!) n 1(x) , (a,b)
计算方法
第四章 插值方法
计算方法课程组
华中科技大学数学与统计学院
1
§4 插值方法
§4.1多项式插值问题的一般提法 §4.2 拉格朗日(Lagrange)插值 §4.3 差商与差分及其性质 §4.4 牛顿插值公式 §4.5 分段插值法 §4.6曲线拟合的最小二乘法
2
§4.0 引言
插值法是广泛应用于理论研究和生产实践的重 要数值方法, 它是用简单函数(特别是多项式或分 段多项式)为各种离散数组建立连续模型;为各种 非有理函数提供好的逼近方法。众所周知,反映 自然规律的数量关系的函数有三种表示方法:
y0 = f (x0) , …, yn = f (xn), 由此构造一个简单易算的近似函数
p(x) f(x),满足条件: p(xi) = f(xi) (i = 0, … n)。 这里的 p(x) 称为f(x) 的插值函数。 最常用的插值函数是 …?

计算方法Chapter01 - 插值方法

计算方法Chapter01 - 插值方法

若函数族
中的函数 ( x) 满足条件
( xi ) = f ( xi ),
i = 0,1,, n
( 1)
n ( x ) x f ( x ) 则称 为 在 中关于节点 i i =0 的一个插值函数。
f ( x) ——被插值函数; [a, b] ——插值区间;
xi in=0 ——插值节点; 式(1)——插值条件.
x12 x1n
2 n x2 x2
范德蒙行列式
x
2 n


n n
V=
x
0 i j n

( x j xi )
10
插值多项式的存在唯一性(续)
V= ( x j xi ) 0 i j n
由于 x0 , x1 , x2 , ..., xn 是 n 1 个互异的节点,即:
求插值函数(x)的问题称为插值问题。
5
插值问题
于是人们希望建立一个简单的而便于计算的函数 (x) 使其近似的代替 f (x)。
y 被插值函数 f (x) 插值函数 (x)
插值节点 0 x0 x1 x2 x3
… …… xn x
6
插值区间
多项式插值问题
对于不同的函数族Φ 的选择,得到不同的插值问题
( x0 , y0 ) 0
p2(x)
x0
x1
x2
x
19
抛物线插值(续)
p2 ( x ) = y0l0 ( x ) y1l1 ( x ) y2l2 ( x )
( x x1 )( x x2 ) ( x0 x1 )( x0 x2 )
( x x0 )( x x2 ) ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) ( x2 x0 )( x2 x1 )

计算方法(2)-插值法

计算方法(2)-插值法



2
2
yk1 2

f (xk

h
2
),
y
k

1 2

f (xk

h) 2
21
3.牛顿向后插值公式
Nn (xn

th)

yn

tyn

t(t 1) 2!
2
yn



t(t

1)


(t n!

n

1)

n
yn
(t 0)
插值余项
Rn
(xn

th)

t(t
1) (t (n 1)!
Nn (x0

th)

y0

ty0

t(t 1) 2!
2
y0Leabharlann 插值余项t(t

1)


(t n!

n

1)
n
y0
Rn (x0

th)

t(t
1) (t (n 1)!
n)
h n1
f
(n1) ( ),
(x0 , xn )
20
二.向后差分与牛顿向后插值公式
杂.

根据f(x)函数表或复杂的解析表达式构
造某个简单函数P(x)作为f(x)的近似.
2
2.问题的提法
1)已知条件 设函数y f (x)在区间[a,b]上
连 续, 且 在n 1个不 同点a x0 , x1, , xn b 上 分 别 取 值y0 , y1, , yn

计算方法 插值法

计算方法 插值法

例见 P.74 例 1。 (2) 差商与牛顿基本插值多项式 考虑到拉格朗日插值的缺点:增加新的结点,需重新计算,工作量较大! 改进的方向:选取形式: a 0 + a1 ( x − x0 ) + a 2 ( x − x0 )( x − x1 ) + L + a n ( x − x0 )( x − x1 ) L ( x − xn −1 ) ; (称之为 n 次牛顿插值多项式) 记 N n ( x) = a 0 + a1 ( x − x0 ) + a 2 ( x − x0 )( x − x1 ) + L + a n ( x − x0 )( x − x1 ) L ( x − x n −1 ) 为了给出 a i 简明计算表达式,引入差商(或均差)概念。 定义 1.
第二章 插值与拟合
§1.插值概念与基础理论
(1) 提法: 给定函数表 x y = f ( x) x0 y0 x1 y1
K K
xn yn
其中假定 f ( x) 在区间 [a, b] 上连续,设 x0 , x1 , L, x n 为区间 [a, b] 上 n + 1 个互不相同的 点,要求在一个性质优良、便于计算的函数类 {P ( x)} 中,选一个使 P ( xi ) = y i (i = 0,1,L, n) L (*) 的函数 P( x) 作为 f ( x) 的近似,这就是最基本的插值问题。 [a, b] 称为插值区间; x0 , x1 , L, x n 为插值节点; {P ( x)} 称为插值函数类;(*)称为插 值条件; P( x) 称为插值函数;求插值函数 P( x) 的方法称为插值法。 本章取 Pn ( x) = a 0 + a1 x + L + a n x n ,其中 a 0 , a1 , L, a n 为实数, Pn ( x) 为次数不超 过 n 的插值代数多项式,相应的插值问题称为 n 次代数多项式插值。

计算方法插值法(均差与牛顿插值公式)

计算方法插值法(均差与牛顿插值公式)

为f ( x)关于节点 x0 , xk 一阶均差 (差商)
2018/11/7
5
2018/11/7
6
二、均差具有如下性质:
f [ x0 , x1 ,, xk 1 , xk ]

j 0
k
f (x j ) ( x j x0 )( x j x j 1 )(x j x j 1 )( x j xk )
2018/11/7
27
fk fk 1 fk 为f ( x)在 xk 处的二阶向前差分
2
依此类推
m f k m1 f k 1 m1 f k
为f ( x)在 xk 处的m阶向前差分
2018/11/7
28
差分表
xk f k 一阶差分 x0 f 0 x1 f 1 二阶差分 三阶差分 四阶差分
2018/11/7
31
等距节点插值公式
一、牛顿前插公式
2018/11/7
32
2018/11/7
33
二、牛顿插值公式与拉格朗日插值相比
牛顿插值法的优点是计算较简单,尤其是增加 节点时,计算只要增加一项,这是拉格朗日插值 无法比的. 但是牛顿插值仍然没有改变拉格朗日插值的 插值曲线在节点处有尖点,不光滑,插值多 项式在节点处不可导等缺点.
2018/11/7
25
2018/11/7
26
§
2.3.4 差分及其性质
一、差分
fk , 定义3. 设f ( x)在等距节点xk x0 kh 处的函数值为 k 0 ,1, , n , 称
f k f k 1 f k
k 0,1,, n 1
为f ( x)在 xk 处的一阶向前差分

计算方法-插值方法

计算方法-插值方法

这里
li(x)
n ji
(x xj) (xi x j )
j0
ai,bi ,ci,di为待定系数,分别由Li(xi)=1 和Li′(xi)=0
及hi′(xi)= 1 (i=0,1,2……,n)确定.
21
Li
x
1
2x
xi
n
k 0 k i
xi
1
xk
li2
x
hi x x xi li2 x
,
x
( 6
, ) 3
= 0.7660444…
外推 /* extrapolation */ 的实际误差 0.01001
利用
x1
4
,
x2
3
sin 50 0.76008,
0.00538
R~1
5
18
0.00660
内插 /* interpolation */ 的实际误差 0.00596
12
n= 2
L2 ( x)
注:若不将多项式次数限制为 n ,则插值多项式不唯一。
n
例如 P( x) Ln ( x) p( x) ( x xi ) 也是一个插值 i0
多项式,其中 p( x)可以是任意多项式。
7
拉格朗日多项式 /* Lagrange Polynomial */
求 n 次多项式 Pn ( x) a0 a1 x an xn 使得
0.00607001
15
Hermite插值简介
前述插值问题:要求被插函数与插值多项式在节点取
相同值,
Lagrange型插值条件
P
(
n
x
i
)
f (xi)
(i 0,1, ,n)

计算方法插值法

计算方法插值法
1)
Rn ( x ) K ( x) ( x - xi )
i 0
n
考察 j ( t ) Rn ( t ) - K ( x ) ( t - x i )
i0
n
j(t)有 n+2 个不同的根 x0 …
f (n ( x ) - L(nn

1)
xn x, j ( n1) ( x ) 0, x (a, b)
x - x0 y x1 - x 0 1
l ( x) y
i 0 i
1
i
l0(x)
l1(x)
n1
希望找到li(x),i = 0, …, n 使得 li(xj)=ij ;然后令
Pn ( x )
l (x) y
i0 i
n
i
,则显然有Pn(xi) = yi 。
每个 li 有 n 个根 x0 … xi-1, xi+1 … xn li ( x) Ci ( x - x j )
插值法 比较古老, 常用的方法。 当未知函数 y = f(x) 非常复杂时,在一系列节 点 x0 … xn 处测得函数值: y0 = f(x0) … yn = f(xn) 由此构造一个简单易算的近似函数 P(x) f(x), 满足条件P(xi) = f(xi) (i = 0, … n),称P(x) 为f(x) 的插值函数。 最常用的插值函数是多项式
项式是唯一存在的。 证明:
i 0, ... , n 的 n 阶插值多
若除了Ln(x) 外还有另一 n 阶多项式 Pn(x) 满足 Pn(xi) = yi 。 考察 Qn ( x) Pn ( x) - Ln ( x) , 则 Qn 的阶数 n 而 Qn 有 n + 1 个不同的根 x0 … xn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档