高中数学—线性变换与二阶矩阵

合集下载

线性变换与二阶矩阵 课件

线性变换与二阶矩阵  课件

x' y'
k1x, k2 y.
对应的二阶矩阵为
k1 0
0 k2 .
4.投影变换
设l是平面内一条给定的直线.对平面内的任意一点P作直线l
y p(x, y)
的垂线,垂足为点P' , 则称点P' 为点P在直线l上的投影.
将平面上每一点P变成它在直线l上的投影P' , 这个变换称为 关于直线l的投影变换.
例1 在直角坐标系xoy内,将每个点绕原点O按逆时针
方向旋转300的变换称为旋转角是300的旋转变换. (1)求点A(1,0)在这个旋转变换作用下的像A'; (2)写出这个旋转变换的表达式.
(1) A'( 3 , 1) 22
(2)x'
3 x 1 y, 2 2 (2)
y'
1 2
x
3 y. 2

x' y,
y'
x.
0 对应的二阶矩阵为 1
10.
一般地,我们把平面上的任意一点P变成它关于直线l的对称点 P'的线性变换叫做关于直线l的反射.
探究
在直角坐标系xoy内,直线l过原点,倾斜角为.
你能求出关于直线l的反射变换的坐标变换公式吗?
3.伸缩变换 在直角坐标系xoy内,将每个点的横坐标变为 原来的k1倍,纵坐标变为原来的k2倍,其中k1, k2 均为非零常数,我们称这样的几何变换为伸缩变换.
q2,且A B,求p, q, x, y.
在直角坐标系xoy内,每个点都绕原点O按逆时针方向旋转
1800.设点P(x, y)经过旋转后变成点P(' x', y' ), x', y'与x, y

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第1课时 线性变换、二阶矩阵及其乘法

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第1课时 线性变换、二阶矩阵及其乘法

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法1. (选修42P 34习题第1题改编)求点A(2,0)在矩阵⎣⎢⎡⎦⎥⎤1 00-2对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤1 00-2表示横坐标保持不变,纵坐标沿y 轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0)2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4. 解得⎩⎪⎨⎪⎧m =2,k =-4.3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2, ∴ T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011 对应的变换作用下得到的图形.解:设点(x ,y)是直线x +y =5上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0011的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0011⎣⎢⎡⎦⎥⎤x y=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=0y′=x +y .因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得到的图形是点(0,5).1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的一个平面点(向量)(x′,y ′),则称T 为一个变换,简记为T :(x ,y )→(x′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′. 一般地,对于平面向量的变换T ,如果变换规则为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规则,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y (a 、b 、c 、d∈R )的矩阵形式,反之亦然.2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k(k>0)确定的变换T M 称为(垂直)伸压变换. (3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律. [备课札记]题型1 求变换前后的曲线方程例1 设椭圆F :x 22+y24=1在(x ,y )→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.解:变换矩阵为⎣⎢⎡⎦⎥⎤1201,任取椭圆上一点(x 0,y 0),则⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0+2y 0y 0,令⎩⎪⎨⎪⎧x′=x 0+2y 0,y ′=y 0, 则⎩⎪⎨⎪⎧x 0=x′-2y′,y 0=y′. 又点(x 0,y 0)在椭圆F 上,故(x′-2y′)22+y′24=1,所以2x′2-8x′y′+9y′2-4=0,即F′的解析式为2x 2-8xy +9y 2-4=0. 变式训练设M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12001,试求曲线y =sinx 在矩阵MN 变换下的曲线方程. 解:MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设(x ,y)是曲线y =sinx 上的任意一点,在矩阵MN 变换下对应的点为(x′,y ′). 则⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x′=12x ,y ′=2y ,即⎩⎪⎨⎪⎧x =2x′,y =12y′,代入y =sinx 得12y ′=sin2x ′,即y′=2sin2x ′.即曲线y =sinx 在矩阵MN 变换下的曲线方程为y =2sin2x. 备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6). (1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6,所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1a b 4对应的变换作用下得到直线m :x -y -4=0,求实数a 、b 的值.解:(解法1)在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A 、B 在矩阵M 对应的变换作用下分别对应于点A′、B′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤-2-2b ,所以A′的坐标为(-2,-2b); ⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以B′的坐标为(-2a ,-8).由题意A′、B′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧(-2)-(-2b )-4=0,(-2a )-(-8)-4=0,解得a =2,b =3.(解法2)设直线l :x +y +2=0上任意一点(x ,y)在矩阵M 对应的变换作用下对应于点(x′,y ′).因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以x′=x +ay ,y ′=bx +4y.因为(x′,y ′)在直线m 上,所以(x +ay)-(bx +4y)-4=0,即(1-b)x +(a -4)y -4=0.又点(x ,y)在直线x +y +2=0上,所以1-b 1=a -41=-42,解得a =2,b =3.题型3 平面变换的综合应用例3 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34. (1) 验证:(MN )α=M (N α);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012,所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为N α=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (N α)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (N α).(2) 因为MN =⎣⎢⎢⎡⎦⎥⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012, 所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤100-1,N =⎣⎢⎢⎡⎦⎥⎥⎤12222. 解:由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤1220-22,∴ ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F 的方程为2x +y +1=0.3. (2013·福建)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1201对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解:(1) 设直线l :ax +y =1上任意一点M(x ,y)在矩阵A 对应的变换作用下的象是M′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y , 得⎩⎪⎨⎪⎧x′=x +2y ,y ′=y. 又点M′(x′,y ′)在l′上, 所以x′+by′=1,即x +(b +2)y =1.依题意⎩⎪⎨⎪⎧a =1.b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1. (2) 由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0.又点P(x 0,y 0)在直线l 上,所以x 0=1,故点P 的坐标为(1,0). 4. 在线性变换⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x′=x +y ,y ′=2x +2y ,而x +y =k ,所以⎩⎪⎨⎪⎧x′=k ,y ′=2k (k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k ,2k).1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→MC ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤-1-2-34,向量α=⎣⎢⎡⎦⎥⎤57,β=⎣⎢⎡⎦⎥⎤68.(1) 求向量3α+12β在T M 作用下的象;(2) 求向量4M α-5M β.解:(1) 因为3α+12β=3⎣⎢⎡⎦⎥⎤57+12⎣⎢⎡⎦⎥⎤68=⎣⎢⎡⎦⎥⎤1521+⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1825,所以M ⎝ ⎛⎭⎪⎫3α+12β=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤1825=⎣⎢⎡⎦⎥⎤-6846.(2) 4M α-5M β=M (4α-5β)=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤-10-12=⎣⎢⎡⎦⎥⎤34-18. 3. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,∴ ⎩⎪⎨⎪⎧a -b =-1c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2,解得⎩⎪⎨⎪⎧a =1b =2和⎩⎪⎨⎪⎧c =3d =4 ,∴ M =⎣⎢⎡⎦⎥⎤1234, ∵ ⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,且m :2x′-y′=4, ∴ 2(x +2y)-(3x +4y)=4,即x +4 =0,∴ 直线l 的方程为x +4 =0.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换:反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x,-y),变换前后关于x 轴对称;M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-1 0 0-1:点的变换为(x ,y )→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y )→(y,y);M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝⎛⎭⎪⎫x +y 2,x +y 2.请使用课时训练(A )第1课时(见活页).。

线性变换与二阶矩阵PPT课件

线性变换与二阶矩阵PPT课件

二阶矩阵的逆
总结词
二阶矩阵的逆是一个特殊的矩阵,它与原矩阵相乘等于单位矩阵。
详细描述
二阶矩阵的逆是一个重要的概念,它是一个与原矩阵互为逆元的特殊矩阵。如果一个二阶矩阵与其逆矩阵相乘等 于单位矩阵,则这个逆矩阵是存在的。求逆矩阵的方法有多种,如高斯消元法、伴随矩阵法等。在某些情况下, 如行列式值为零时,矩阵可能没有逆矩阵。
平移矩阵与平移操作
• 平移矩阵:平移矩阵也是二阶矩阵的一种,用于 表示平移操作。其一般形式为
平移矩阵与平移操作
```
| 0 1 ty |
| 1 0 tx |
平移矩阵与平移操作
```
其中,tx和ty分别表示在x轴和y轴方
平移操作:平移操作是指通过平移矩阵
向上的平移距离。
对向量进行变换,使向量在指定的方向
03
线性变换与二阶矩阵的关系
线性变换的矩阵表示
线性变换是数学中的一种重要概念,它描述了一个向量空间 中的向量通过一个线性映射变为另一个向量空间的过程。在 矩阵表示中,线性变换可以用一个矩阵来表示,该矩阵的行 和列分别对应于输入和输出空间的基向量。
线性变换的矩阵表示具有一些重要的性质,例如矩阵乘法对 应于线性变换的复合,矩阵的转置对应于线性变换的共轭, 以及矩阵的逆对应于线性变换的逆。
二阶矩阵与线性变换的转换
二阶矩阵是数学中一种常见的矩阵类型,它由四个数字组成,可以用来表示一个 线性变换。通过选择适当的基向量,可以将一个线性变换转换为二阶矩阵,反之 亦然。
二阶矩阵与线性变换的转换关系是线性的,即对于任意两个线性变换A和B,以及任 意标量k,有kA=AkB=BkA。
二阶矩阵在几何变换中的应用
通过矩阵变换,可以改变向量的长度、方向和位置,从而实现二维空间中的几何变 换。

高中数学 第1课时 二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换教案 新人教A版选修42

高中数学 第1课时 二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换教案 新人教A版选修42

第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。

一、二阶矩阵 1.矩阵的概念①OP → =→的坐标排成一列,并简记为⎣⎢⎡⎦⎥⎤2 3 ⎣⎢⎡⎦⎥⎤2 3 ②某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下:③ 概念一:象⎣⎢⎡⎦⎥⎤2 3 80908688⎡⎤⎢⎥⎣⎦23324m ⎡⎤⎢⎥-⎣⎦的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列. 名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。

②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。

③行矩阵:[a 11,a 12](仅有一行)④列矩阵:⎣⎢⎡⎦⎥⎤a 11 a 21 (仅有一列)⑤向量a →=(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ⎡⎤⎢⎥⎣⎦,在本书中规定所有的平面向量均写成列向量x y ⎡⎤⎢⎥⎣⎦的形式。

练习1: 1.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥⎦⎤⎢⎣⎡-=21z y B ,若A=B ,试求z y x ,,— 2 —3 —⎣⎢⎡⎦⎥⎤80 90 86 88 23324x y x y ++⎧⎨-+⎩简记为23324m ⎡⎤⎢⎥-⎣⎦2.设23x A y ⎡⎤=⎢⎥⎣⎦,2m n x y B x y m n ++⎡⎤=⎢⎥--⎣⎦,若A=B ,求x,y,m,n 的值。

概念二:由4个数a,b,c,d 排成的正方形数表a b c d ⎡⎤⎢⎥⎣⎦称为二阶矩阵。

a,b,c,d 称为矩阵的元素。

①零矩阵:所有元素均为0,即0000⎡⎤⎢⎥⎣⎦,记为0。

②二阶单位矩阵:1001⎡⎤⎢⎥⎣⎦,记为E 2.二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦的乘积为ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦练习2: 1.(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-131021= (2) ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-311021=2.⎥⎦⎤⎢⎣⎡2101⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-11,求⎥⎦⎤⎢⎣⎡y x三、二阶矩阵与线性变换 1.旋转变换问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。

新人教A版高中数学教材目录(必修+选修)【很全面】

新人教A版高中数学教材目录(必修+选修)【很全面】

人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。

高中数学—线性变换的基本性质

高中数学—线性变换的基本性质

向量 则11直的线直l 的线向. 量方程为
x y
=
1 0
t
1 2
,
2.
过点 M0(x0,
y0) 且平行于向量 v =
v1 v2
的直线
l 的向量方程为: OX =OM0 tv, tR, 即
x y
=
x0 y0
t
v1 v2
,
tR,
其中 X(x, y) 是直线上的任意一点.
试利用直线的向量方程来求解下列问题:
一条直线经过线性变换后, 所得的像是一条直线 或一个点.
如: 一条垂直于 x 轴的直线, 关于 x 轴的投影变
换, 它的像就是这条直线与 x 轴的交点.
y
l
A
O
x
性质2: 二阶矩阵对应的变换 (线性变换) 把 平面上的直线变成直线 (或一点).
对性质 2 的证明我们简述如下:
设 P1, P2 是直线上的两点, 则存在实数 l, m, 使 P1P2 = lOP1 mOP2,
变换所得的①式表示的是以 Ai , Aj 为邻边的
平行四边形区域. 下面我们将对 Ai , Aj 进行讨论.
1. 恒等变换
把平面上任一点变成它本身的几何变换称为恒等
变换, 记为 I. 恒等变换公式应为
y
x y
=பைடு நூலகம்=
x, y.
1 j
恒等变换 I 对应的矩阵是单位矩阵
O i1 x
E2=
1 0
0. 1
(2) A(ab) =AaAb.
由性质 1 很容易推出下面的定理.
定理 1: 设 A 是一个二阶矩阵, a, b 是平面上
的任意两个向量, l1, l2 是任意两个实数, 则 A(l1al2b) =l1Aal2Ab.

高中数学选修4-2矩阵与变换ppt版

高中数学选修4-2矩阵与变换ppt版

a b x bx ax+by + = ,这是矩阵 与向量 的乘 y d y cx+dy c d +
5.线性变换的基本性质 . 性质 1.设 A 是一个二阶矩阵,α,β 是平面上的任意两个向 设 是一个二阶矩阵, , 是任意实数, 量,λ 是任意实数,则 ①A(λα)=λAα. =
理科
│知识梳理
a A= = c x b = ,a=y ,规定二阶矩阵 A 与向量 a 的乘积为 d

ax+by + 向量 ,记为 cx+dy +
Aa
a 或 c
bx , d y
即 法.
a Aa= = c
理科
│要点探究
【点评】 要理解二阶矩阵变换的定义,熟悉五种常 点评】 要理解二阶矩阵变换的定义, 见的矩阵变换,明确矩阵变换的特点. 见的矩阵变换,明确矩阵变换的特点.
理科
│要点探究
变式题 已知变换 T 把平面上的点 A(2,0),B(3,1)分 , 分 别变换成点 A′(2,1),B′(3,2),试求变换 T 对应的矩阵 M. , ,
理科
│二阶矩阵与平面图形的变换
理科
│知识梳理
知识梳理
1.二阶矩阵的定义 . (1)由 4 个数 a,b,c,d 由 ,,, 矩阵. 矩阵. (2)元素全为 0 元素全为
1 矩阵 0 0 的二阶矩阵 0 a 排成的正方形数表 c
b 称为二阶 d
0 0 . 称为零矩阵, 称为零矩阵,简记为 0
0 E 称为二阶单位矩阵, 称为二阶单位矩阵,记为 2 . 1
理科
│知识梳理
2.几种特殊线性变换 . (1)旋转变换 旋转变换 直线坐标系 xOy 内的每个点绕原点 O 按逆时针方向旋 转 α 角的旋转变换的坐标变换公式是

人教版高中数学选修 4-2矩阵变换 第一章 第一节 线性变换与二阶矩阵

人教版高中数学选修 4-2矩阵变换 第一章 第一节 线性变换与二阶矩阵

一般地,在线性变换下,是否仍然由平面上的直线变成直线,三角形变成三角形呢?教学目标知识与能力了解矩阵的概念掌握五类特殊的线性变换及其二阶矩阵过程与方法情感态度和价值观用代数方法表示几何变换,进而就可以从代数的角度研究几何变换体验在直角坐标系中线性变换与二阶矩阵之间的一一对应关系教学重难点重点1.二阶矩阵的概念2.线性变换及其对应的二阶矩阵难点线性变换与二阶矩阵之间的一一对应关系(一)几种特殊线性变换及其二阶矩阵旋转变换反射变换伸缩变换投影变换切变变换1.旋转变换探究将直角坐标系所有点绕原点沿逆时针方向旋转一个角度α.设平面内点P (x,y )经过旋转后变成点 ()y ,x P ′′′ 那么如何用P 的坐标(x,y )表示 的坐标 ?P ′()y ,x ′′得到:x ’=-x, y ’=-y.① ①称为旋转角为180°的旋转变换的表达式 P ’是P 在这个旋转变换的像. O 180°PP′ y x如图,在直角坐标系x o y 内,点P (x,y )绕原点O 按逆时针方向旋转180°,变成点 ().y ,x P ′′′例1 在直角坐标系x o y 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换.(1)求点A (1,0)在这个旋转变换下的像A ′;(2)写出这个旋转变化的表达式. A(1,0) O30° A ′y x 图1 图2 O yx (x,y ) P α30° ().y ,x P ′′′的横坐标和纵坐标为点解:如图A ,′123= 23×1= °30=cos OA x °30=sin OA y 21=21×1=)21,23(′(1,0)A A 为在这个旋转变换下的像点θ=θ=rsin y rcos x (2) 如图2,分别连接OP ,OP ’,设OP = OP′=r,.OP ,x 为终边的角以轴的正半轴为始边是以记θ∴()()°30+θ=′°30+θ=′sin r y cos r x即: yx y yx x 23+21=′2123=′-② 23212123-即得到正方形数表: 由两角和的三角函数公式得:,cos y sin x y ,sin y cos x x °30+°30=′°30°30=′-其中系数a,b,c,d 均为常数,则称③的几何变换为线性变换. ③式叫做这个线性变换的坐标变换公式.dycx y by ax x +=′+=′③线性变换③与dc b a 一一对应 在平面直角坐标系x O y 中,很多平面变换(平面内有点构成的集合)到它自身的映射都具有下列形式定义 由4个数a,b,c,d 排成的正方形数表 称为二阶矩阵dc b a 数a,b,c,d 称为矩阵的元素.零矩阵: 0000记为: 单位矩阵: 1001记为: 0E2.反射变换平面上的任意一点P 变成它关于直线l 的对称点P ’的线性变换叫做关于直线l 的反射. 例:在直角坐标系xOy 内,任意点P(x,y)关于直线y=x 的对称点为P ’(x ’,y ’).则相应 的坐标变换公式是: x ’=y,y ’=x.对应的二阶矩阵是 0113.伸缩变换在直角坐标系xOy内,将每个点的横坐标变为原来的k1倍,纵坐标变为原来的k2,其中k1 ,k2均为非零常数,称这样的几何变换为伸缩变换.定义伸缩变换的坐标变换公式为: x’=k1x,y’=k2y.对应的二阶矩阵:k k2 14.投影变换设l是一条给定的直线.对平面内任意一点P作直线l的垂线,垂足为P’,称点P’为点P在直线l上的投影.PlαP’定义平面上每一点P变成它在直线l上的投影P’,这个变换称为关与直线l的投影变换.在直角坐标系xOy 内,任意点P 关于x 轴的投影变换的坐标变换公式为: x ’=x,y ’=0.对应的二阶矩阵: 00015.切变变换如图,在直角坐标系xOy 内,将每一点P (x,y )沿与x 轴平行的方向平移ky 各单位变成P ’,其中k 为常数,称这类变换为平行于x 轴的切变变换. O y xP (x,y )P ’(x+ky ,y ) 定义平行与x轴的切变变换的坐标变换公式为:x’=x+ky,y’=y.1k对应的二阶矩阵:1抢答平行于y 轴的切变变换的坐标公式?x ’=x,y ’=kx +y.对应的二阶矩阵: 11k(二)变换、矩阵的相等2π3+2π3=′2π32π3=′cos y sin x y sin y cos x x-x ’=x,y ’=-x.旋转角为 的旋转变换的坐标变换公式 2π3即:2π32π32π32π3cos sin sincos -0110-对应的二阶矩阵:即:x ’=x,y ’=-x.)(-)(-)(-)-(-2π+2π=′2π2π=′cos y sin x y sin y cos x x 旋转角为 的旋转变换的坐标变换公式 2π-即:)(-)(-)(--)(-2π2π2π2πcos sin sin cos 0110-即: 对应的二阶矩阵:观察1.旋转变换的坐标变换公式2.对应的二阶矩阵1.旋转角度定义设σ,ρ是同一直角坐标平面内的两个线性变换.若对平面内任意点P,都有σ(P)= ρ(P),则这两个线性变换相等,记为σ=ρ.设σ,ρ所对应的二阶矩阵分别为A = ,B = .若σ=ρ,则a 1=a 2,b 1=b 2,c 1=c 2,d 1=d 2.这时我们称二阶 矩阵A 与二阶矩阵B 相等.d c b a 2222d c b a 1111定义课堂练习.y ,x ,q ,p B A ,q p p q B ,x y x A ,求且--例:设=2+=23+3=解:由矩阵定义: .x ,q p y ,p ,q x 2=+=23==+3--.q ,p ,y x 1=3=2=2=-,-课堂小结1.几种特殊的线性变换:旋转变换、反射变换、伸缩变换、投影变换、切变变换(要求:理解并掌握各变换所对应的坐标变换公式及其对应的二阶矩阵.)课堂小结2.变换和矩阵的相等(1)变换相等:对应坐标变换公式和二阶矩阵相等(2)矩阵相等:对应系数相等注:两个线性变换相等当且仅当对应的二阶矩阵相等教材习题答案1.(1)坐标变换公式为:对应的二阶矩阵: .y x y ,y x x 22+22=′2222=′-22222222-(2)坐标变换公式为: .x y ,y x =′=′-对应的二阶矩阵: 10012.设P (x,y)是平面直角坐标系x O y 内的任意一点,则它关于原点O 的对称点 为 ∴坐标变换 公式为 对应的二阶矩阵为 ..y y ,x x --=′=′1001--(),y ,x P ′′′3.(1)点 在这个投影变换下的像为();03′,A ()12,A(2)设P (x ,y )是平面直角坐标系xOy 内的任意一点,则它在这个变换下的像为P ’(x +y ,0),因此,坐标变换公式是 1001对应的二阶矩阵是 .y ,y x x 0=′+=′.Z k ,R R .k ∈其中2π32π3+π2=45.由X = Y ,得x = 3 , y =-9 , z = 0.6.设P (x 0 , y 0)是平面直角坐标系xOy 内的任意一点,它关于直线l :y =2x 的投影变换下的像为P ’(x ’,y ’). 易得:过点P (x 0,y 0)垂直于直线的斜率为k =-1/2.于是,直线方程为:().x x y y 0021=---(),x x y y ,x y 0021=2=---解方程组:得直线l :y =2x 与直线y -y 0=-1/2(x -x 0)的坐标((x 0+2y 0)/5,(2x 0+4y 0)/5).∵M 是线段PP ’的中点,所以,y y x y ,x y x x 00000054+2×2=′52+×2=′--即: .y x y ,y x x 53+4=′54+3=′0000-∴坐标变换公式: .y x y ,yx x 53+4=′54+3=′-对应的二阶矩阵: 53545453-(2)对应的坐标变换公式: .y B A )B A (x B A AB y ,y B A ABx B A )A B (x 222222222222++2=′+2+=′-----对应的二阶矩阵:B A )B A (B A AB B A AB B A A B 222222222222++2+2+-----。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绕原点 O 按逆时针旋转 270 和按顺时针旋转 90 的
坐标变换公式以及对应的二阶矩阵. 看看它们有什么
关系?
旋转角为 270 时,
坐标变换公式:
二阶矩阵:
x y
= =
x cos 270 x sin 270 +
ysin ycos
270, 270.
01 -1 0
x y
= =
y, - x.
(二) 变换、矩阵的相等
2. 怎样根据条件求上述变换的变换公式?
2. 反射变换
一般地, 我们把平面上的任意一点 P 对应到它关 于直线 l 的对称点 P 的线性变换叫做关于直线 l 的反 射.
如点 P(x, y) 关于 x 轴的反射 P(x, y), 其反射变
换公式为 x=x,
y P(x, y)
y= -y.
与之对应的二阶矩阵是
-1 0
0 1
.
O
x
练习(补充). 请写出在直角坐标系 xOy 内, 任一 点 P(x, y) 关于直线 x+y=0 的反射变换公式及对应的
【课时小结】
5. 线性变换对应的矩阵
线性变换
x y
= =
ax + by, cx + dy.
对应的矩阵为二阶矩阵
ab c d.
旋转变换
x y
= =
xcosa xsina +
ysina ycosa
, .
对应的矩阵为
cosa sina
-sina cosa
.
(第二课时)
第一课时 第二课时
1. 反射变换、伸缩变换、投影变换、切 变变换分别是怎样的变换?
例3. 设 A= 1 y
x-1 , 0
B=
p-1 2
求 p, q, x, y.
解: ∵A=B, ∴对应元素相等, 即
1= p-1,
x -1= -2,
y
=
2,
0 = q.
解得 p =12,
x = -1,
y
=
2,
q = 0.
-2 q
,
且 A=B,
第 1、2、5 题.
1. 在直角坐标系 xOy 内, 如果把原点 O 按逆时
4. 什么叫矩阵? 旋转变换对应的矩阵是 怎样的?
5. 二阶矩阵零矩阵和单位矩阵是怎样的? 6. 相等矩阵的充要条件是什么?
引言: 数学中经常通过引入新的工具, 建 立不同对象之间的联系来研究问题. 如, 引入 平面直角坐标系后, 通过方程来研究平面曲线; 建立空间坐标系后, 通过向量来研究立体图形 等. 本讲就是通过引入新的工具—矩阵, 用它 来研究一些几何变换.
例1. 在直角坐标系 xOy 内, 将每个点绕原点 O
按逆时针方向旋转 30 的变换称为旋转角是 30 的旋
转变换.
(1) 求点 A(1, 0) 在这个旋转变换作用下的像 A;
(2) 试写出这个旋转变换的表达式.
解: (1) 设点 A 的坐标为 (x, y). y
∵|OA| = |OA|=1,
A
∴x= |OA|cos30=cos30=
解: 此反射变换是绕原点O旋转180的旋转变换.
其变换公式为
x y
= =
x cos180 x sin180 +
ysin180, ycos180.
xy
= =
-
x, y.
对应的矩阵为
-1 0
0 -1
.
5. 设 X= 2 x
9, 0
Y=
2 3
-y z
,
且 X=Y,
求 x, y, z.
解: ∵X=Y,
则对应元素相等, 即
3 2
,
O A(1, 0) x
y=
|OA|sin30=sin30=
1 2
.
因此点 A(1,
0) 在旋转变换下的像是 A(
3 2
,
12).
例1. 在直角坐标系 xOy 内, 将每个点绕原点 O
按逆时针方向旋转 30 的变换称为旋转角是 30 的旋
转变换.
(1) 求点 A(1, 0) 在这个旋转变换作用下的像 A;
P(x, y) 绕着原点 O 按逆时针方向旋转 180 后得到点
P(x, y), 点 P 与点 P 是怎样的对称? 两点的坐标有
什么关系? 点 P 与点 P 关于原点 O 成
y P(x, y)
中心对称. x= -x, y= -y. ①
O
x
P (x, y)
① 式称为旋转角为180的旋转变换表达式. 我们 称 P 是 P 在这个旋转变换作用下的像.
如: 点 P(x, y) 与点 P (x , y ) 关于 x 轴
对称, 两点存在一个什么样的变换关系? 怎样 用矩阵来表示这个关系? 如果这两点关于原点 成中心对称, 它们又是怎样的关系? 用矩阵的 工具又怎样表示它们?
(一) 几类特殊线性变换及其二阶矩阵
1. 旋转变换
问题 1. 如图, 在平面直角坐标系 xOy 内任一点
1 0
0 -1
.
O
x
P(x, y)
2. 反射变换
一般地, 我们把平面上的任意一点 P 对应到它关 于直线 l 的对称点 P 的线性变换叫做关于直线 l 的反 射.
如点 P(x, y) 关于 y 轴的反射 P(x, y), 其反射变 换公式为
x= -x, y= y.
y P(x, y)
P(x, y)
与之对应的二阶矩阵是
的第一列、第二列. 矩阵通常用大写的英文字母 A,
B, C, … 表示.
元素为 0 的二阶矩阵
0 0
0 0
称为零矩阵,
简记为 0.
矩阵 1 0
0 1
称为二阶单位矩阵,
记为 E2.
像例 1(2) 样, 设 |OP| = r, 以 x 轴正半轴为始边,
OP 为终边的角为 q, 点 P(x, y) 绕点 O 按逆时针方向
sin30)
=
1 2
x
+
3 2
y.
在例 1(2) 中, P 是坐标平面内的任意点, P 是 P
的 30 角的旋转变换. 即坐标平面内 30 角的旋转变
换的表达式为
x y
= =
3
2
1 2
x
x +
-
1 2
3
2
y, y.
变换关系由 x, y 的系数确定, 即我们所要研究的
只是系数. 我们把这些系数按原来的顺序写出来, 并
旋转 a 角得 P(x, y) 的旋转变换 (通常记为Ra) 的坐
标变换公式是
x y
= =
xcosa xsina
+
ysina ycosa
, .
对应的二阶矩阵是
cosa sina
-sina cosa
.
y P(、矩阵的相等
问题2. 请写出在直角坐标系 xOy 内, 每个点 P
y.
对应的矩阵为
2 2
-
2 2
.
22
22
1. 在直角坐标系 xOy 内, 如果把原点 O 按逆时
针方向旋转 a 角的旋转变换记为 Ra , 试给出下列旋
转变换的坐标变换公式以及对应的矩阵:
(1) R45;
(2) R90;
(3) R360.
解: (2) 坐标变换公式为
xy
= =
x cos 90 x sin 90 +
x y
= =
x cos 360 x sin 360 +
y sin 360, ycos360.
xy
= =
x, y.
对应的矩阵为
1 0
0 1
.
2. 如果一个几何变换把直角坐标系 xOy 内任意 一点变成这一点关于坐标原点 O 的对称点, 那么称这
个几何变换为关于坐标原点 O 的反射变换, 试求出这 个反射变换的变换公式及其矩阵.
(2) 试写出这个旋转变换的表达式.
解: (2) 设平面内任一点 P(x, y),
y
旋转变换为 P(x, y).
P(x, y) P(x, y)
∴x= |OP|cos(q +30)
q
= |OP|(cosq cos30 - sinq sin30) O
x
=
3 2
x
-
1 2
y,
y= |OP|sin(q +30)
ysin(-90), ycos(-90).
01 -1 0
x y
= =
y, - x.
两个变换公式, 二阶矩阵都相同.
一般地, 设 s, r 是同一个直角坐标平面内的两个
线性变换. 如果对平面内任意一点 P, 都有s(P)=r(P),
则称这两个线性变换相等, 简记为 s=r.
设 s,
r 所对应的二阶矩阵分别为 A=
y
旋转变换为 P(x, y).
P(x, y) P(x, y)
∴x= |OP|cos(q +30)
q
于是=得|O这P个|(c旋os转q c变os换30的 -表s达inq式s为in30) O
x
y= =
=||OO xPPy23||=s=(xsin1i2-n2(3xqq12+x+cy-o,32s031230yy) .,+cosq
=
|OP|(sinq
cos30+cosq
sin30)
=
1 2
x
+
3 2
y.
例1. 在直角坐标系 xOy 内, 将每个点绕原点 O
相关文档
最新文档