线性变换二阶矩阵及其乘法
高考数学一轮复习-矩阵与变换课件-新人教A

规律方法 已知 A=ac db,求特征值和特征向量,其步骤为: (1)令 f(λ)=( -λc-(a)λ-d-)b=(λ-a)(λ-d)-bc=0,求出特征 值 λ; (2)列方程组( -λc-x+a) (xλ--db)y=y=0,0; (3)赋值法求特征向量,一般取 x=1 或者 y=1,写出相应的 向量.
y)变成点 A′(13,5),试求 M 的逆矩阵及点 A 的坐标.
解 由 M=21 - -31,得|M|=1, 故 M-1=--11 32.
从
而
由
2 1
-3 -1
x y
=
13 5
得
x y
=
-1 -1
3 2
13 5
=
--11××1133++32××55=-23,故yx==-2,3,∴A(2,-3)为所求.
矩阵 M=2b a1所对应的变换将直线 x-y=1 变换成 x+2y =1,求 a,b 的值. 解 设点(x,y)是直线 x-y=1 上任意一点,在矩阵 M 的作 用下变成点(x′,y′),则2b a1xy=xy′′,
所以xy′′==b2xx++ya.y, 因为点(x′,y′),在直线 x+2y=1 上,所以
①对于特征值 λ1=-1, 解相应的线性方程组x2+ x+y=2y=0,0得一个非零解xy==-1,1. 因此,α=1-1是矩阵 A 的属于特征值 λ1=-1 的一个特征向量; ②对于特征值 λ2=3,解相应的线性方程组2-x-2x2+y=2y0=,0 得一个非零解xy==11., 因此,β=11是矩阵 A 的属于特征值 λ2=3 的一个特征向量.
因此,由 AX=B,同时左乘 A-1,有 A-1AX=A-1B=2-1-3213=-5 7. 即原方程组的解为yx==5-. 7,
1.3二阶方阵的乘法

1
x
O
i
1
x
不难得到:σ • I = σ • ρ. ∴ B E2 = BA 但 E2 ≠A.
矩阵的乘法不满足消去律.
课堂小结
矩阵的乘法满足结合律
(AB)C=A(BC)
矩阵的乘法不满足交换律
一般地,AB≠BA
矩阵的乘法不满足消去律
AB=AC
B=C
BA=CA
B=C
课堂练习
1.从你学过的线性变换中,再举一个例 子,说明矩阵的乘法不满足交换律. 解:A= 2 0 确定的是伸缩变换 01 B= 1 0 确定的是切变变换 21
知识回顾
实数的乘法运算满足那些运算律? 结合律 (ab)c=a(bc) 交换律 ab=ba 消去律 设a≠0,若ab=ac,则b=c;若 ba=ca,则b=c.
思考
类比实数乘法的运算律,二阶 矩阵的乘法满足这些运算律吗?
教学目标
知识与能力
掌握矩阵乘法的性质 会灵活运用矩阵乘法的性质进 行矩阵乘法的运算
=
64
21
-1 3 21
-4 5 = 2 22
A(BC ) = 1 -2 2 1 -1 3 3 1 01 2 1
= 1 -2 0 7 3 1 21
= -4 5 2 22
即:当A = a1 b1 c1 d1 a2 b2
B = c2 d2
a3 b3 C=
c3 d3
性质(结合律)
设A,B,C是任意的三个二阶矩阵,则 A(BC)=(AB)C.
定义
设A是二阶矩阵,n是任意自然数,规定: A0=E2, A1=A, A2=AA1, A3=AA2, …… An=AAn-1,
称An为A的n次方幂.
性质
第二章 矩阵及其运算

或 Ax = 0
否则, 称方程组为非齐次线性方程组. 非齐次线性方程组 否则, 称方程组为非齐次线性方程组. non-homogeneous
转置运算的性质: 转置运算的性质: (1) (AT )T = A;
(3) (λ A)T = λ AT ;
6 May 2012
(2) (A + B T = AT + B T ; )
(4) (AB T = B T AT . )
河北科大理学院
第二章 矩阵及其运算
17
定义7 则称A为对称阵. 定义 若 AT = A, 则称 为对称阵. symmetric matrix 则称A为反对称矩阵. 若 AT = − A, 则称 为反对称矩阵. skew symmetric matrix
第二章 矩阵及其运算 本章内容
矩阵的概念 矩阵的线性运算、乘法、 矩阵的线性运算、乘法、转置及幂运算 逆矩阵, 逆矩阵,矩阵可逆的条件及逆矩阵的求法 矩阵分块法
第二章 矩阵及其运算
2
第4讲 矩阵的概念 讲
一 概念的引入 线性方程组与矩阵
a11 x1 + a12 x2 + L + a1n xn = b1 , a21 x1 + a22 x2 + L + a2 n xn = b2 , LLLLLLLLLLLL a x + a x + L +a x = b mn n m m1 1 m 2 2
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第1课时 线性变换、二阶矩阵及其乘法

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法1. (选修42P 34习题第1题改编)求点A(2,0)在矩阵⎣⎢⎡⎦⎥⎤1 00-2对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤1 00-2表示横坐标保持不变,纵坐标沿y 轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0)2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4. 解得⎩⎪⎨⎪⎧m =2,k =-4.3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2, ∴ T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011 对应的变换作用下得到的图形.解:设点(x ,y)是直线x +y =5上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0011的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0011⎣⎢⎡⎦⎥⎤x y=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=0y′=x +y .因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得到的图形是点(0,5).1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的一个平面点(向量)(x′,y ′),则称T 为一个变换,简记为T :(x ,y )→(x′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′. 一般地,对于平面向量的变换T ,如果变换规则为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规则,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y (a 、b 、c 、d∈R )的矩阵形式,反之亦然.2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k(k>0)确定的变换T M 称为(垂直)伸压变换. (3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律. [备课札记]题型1 求变换前后的曲线方程例1 设椭圆F :x 22+y24=1在(x ,y )→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.解:变换矩阵为⎣⎢⎡⎦⎥⎤1201,任取椭圆上一点(x 0,y 0),则⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0+2y 0y 0,令⎩⎪⎨⎪⎧x′=x 0+2y 0,y ′=y 0, 则⎩⎪⎨⎪⎧x 0=x′-2y′,y 0=y′. 又点(x 0,y 0)在椭圆F 上,故(x′-2y′)22+y′24=1,所以2x′2-8x′y′+9y′2-4=0,即F′的解析式为2x 2-8xy +9y 2-4=0. 变式训练设M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12001,试求曲线y =sinx 在矩阵MN 变换下的曲线方程. 解:MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设(x ,y)是曲线y =sinx 上的任意一点,在矩阵MN 变换下对应的点为(x′,y ′). 则⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x′=12x ,y ′=2y ,即⎩⎪⎨⎪⎧x =2x′,y =12y′,代入y =sinx 得12y ′=sin2x ′,即y′=2sin2x ′.即曲线y =sinx 在矩阵MN 变换下的曲线方程为y =2sin2x. 备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6). (1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6,所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1a b 4对应的变换作用下得到直线m :x -y -4=0,求实数a 、b 的值.解:(解法1)在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A 、B 在矩阵M 对应的变换作用下分别对应于点A′、B′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤-2-2b ,所以A′的坐标为(-2,-2b); ⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以B′的坐标为(-2a ,-8).由题意A′、B′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧(-2)-(-2b )-4=0,(-2a )-(-8)-4=0,解得a =2,b =3.(解法2)设直线l :x +y +2=0上任意一点(x ,y)在矩阵M 对应的变换作用下对应于点(x′,y ′).因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以x′=x +ay ,y ′=bx +4y.因为(x′,y ′)在直线m 上,所以(x +ay)-(bx +4y)-4=0,即(1-b)x +(a -4)y -4=0.又点(x ,y)在直线x +y +2=0上,所以1-b 1=a -41=-42,解得a =2,b =3.题型3 平面变换的综合应用例3 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34. (1) 验证:(MN )α=M (N α);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012,所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为N α=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (N α)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (N α).(2) 因为MN =⎣⎢⎢⎡⎦⎥⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012, 所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤100-1,N =⎣⎢⎢⎡⎦⎥⎥⎤12222. 解:由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤1220-22,∴ ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F 的方程为2x +y +1=0.3. (2013·福建)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1201对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解:(1) 设直线l :ax +y =1上任意一点M(x ,y)在矩阵A 对应的变换作用下的象是M′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y , 得⎩⎪⎨⎪⎧x′=x +2y ,y ′=y. 又点M′(x′,y ′)在l′上, 所以x′+by′=1,即x +(b +2)y =1.依题意⎩⎪⎨⎪⎧a =1.b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1. (2) 由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0.又点P(x 0,y 0)在直线l 上,所以x 0=1,故点P 的坐标为(1,0). 4. 在线性变换⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x′=x +y ,y ′=2x +2y ,而x +y =k ,所以⎩⎪⎨⎪⎧x′=k ,y ′=2k (k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k ,2k).1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→MC ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤-1-2-34,向量α=⎣⎢⎡⎦⎥⎤57,β=⎣⎢⎡⎦⎥⎤68.(1) 求向量3α+12β在T M 作用下的象;(2) 求向量4M α-5M β.解:(1) 因为3α+12β=3⎣⎢⎡⎦⎥⎤57+12⎣⎢⎡⎦⎥⎤68=⎣⎢⎡⎦⎥⎤1521+⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1825,所以M ⎝ ⎛⎭⎪⎫3α+12β=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤1825=⎣⎢⎡⎦⎥⎤-6846.(2) 4M α-5M β=M (4α-5β)=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤-10-12=⎣⎢⎡⎦⎥⎤34-18. 3. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,∴ ⎩⎪⎨⎪⎧a -b =-1c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2,解得⎩⎪⎨⎪⎧a =1b =2和⎩⎪⎨⎪⎧c =3d =4 ,∴ M =⎣⎢⎡⎦⎥⎤1234, ∵ ⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,且m :2x′-y′=4, ∴ 2(x +2y)-(3x +4y)=4,即x +4 =0,∴ 直线l 的方程为x +4 =0.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换:反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x,-y),变换前后关于x 轴对称;M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-1 0 0-1:点的变换为(x ,y )→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y )→(y,y);M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝⎛⎭⎪⎫x +y 2,x +y 2.请使用课时训练(A )第1课时(见活页).。
矩阵的变换与运算矩阵的乘法与逆矩阵

矩阵的变换与运算矩阵的乘法与逆矩阵矩阵的变换与运算:矩阵的乘法与逆矩阵矩阵在数学中扮演着重要的角色,它可以用于描述线性变换或者表示线性系统的方程组。
本文将讨论矩阵的变换与运算,重点介绍矩阵的乘法与逆矩阵两个关键概念。
一、矩阵的乘法(Matrix Multiplication)矩阵的乘法是矩阵运算中的一种基本运算,表示为A * B,其中A 和B分别为两个矩阵。
在进行矩阵乘法时,需要满足乘法的条件:A 矩阵的列数等于B矩阵的行数。
矩阵乘法的计算方法是将A矩阵的每一行与B矩阵的每一列进行内积运算,并将结果填入一个新的矩阵C中。
具体计算过程如下:C[i][j] = A[i][1]*B[1][j] + A[i][2]*B[2][j] + ... + A[i][n]*B[n][j]其中,C[i][j]表示矩阵C中第i行第j列的元素,A[i][k]表示矩阵A 中第i行第k列的元素,B[k][j]表示矩阵B中第k行第j列的元素。
矩阵乘法的重要性在于可以描述线性变换的复合效果,同时也有利于解决线性方程组。
在实际应用中,矩阵乘法广泛运用于计算机图形学、信号处理、最优化等领域。
二、逆矩阵(Inverse Matrix)逆矩阵是指对于一个可逆矩阵A,存在一个矩阵B,使得A * B = B * A = I,其中I为单位矩阵。
逆矩阵的存在与否与矩阵的行列式密切相关。
判断矩阵A是否可逆的条件是行列式不等于零,即|A| ≠ 0。
若矩阵A可逆,则可以通过一系列行变换将其转化为单位矩阵,对应的变换矩阵为逆矩阵。
逆矩阵的计算可以使用伴随矩阵法或者初等行变换法。
例如,对于一个2x2的矩阵A:A = [a b][c d]若|A| ≠ 0,即ad - bc ≠ 0,则A的逆矩阵存在,并可表示为:A^-1 = 1/(ad - bc) * [d -b][-c a]逆矩阵的应用广泛,例如求解线性方程组、计算矩阵的行列式与秩、求解微分方程等。
三、矩阵的变换(Matrix Transformation)矩阵的变换是指通过矩阵的乘法,对向量进行线性变换。
高中数学第1课时二阶矩阵二阶矩阵与平面向量的乘法二阶矩阵与线性变换教案新人教A版选修4 (9)

2.2 二项分布一、教学目标:1、知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
2、过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
二、教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
三、教学方法:讨论交流,探析归纳四、教学过程(二)、探析新课:1 独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项 3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下:由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n , p ).例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率; (2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)例2.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率例3.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)例4.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?例5.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).(四)、课堂练习:1..十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?2.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.精美句子1、善思则能“从无字句处读书”。
线性变换与二阶矩阵PPT课件

二阶矩阵的逆
总结词
二阶矩阵的逆是一个特殊的矩阵,它与原矩阵相乘等于单位矩阵。
详细描述
二阶矩阵的逆是一个重要的概念,它是一个与原矩阵互为逆元的特殊矩阵。如果一个二阶矩阵与其逆矩阵相乘等 于单位矩阵,则这个逆矩阵是存在的。求逆矩阵的方法有多种,如高斯消元法、伴随矩阵法等。在某些情况下, 如行列式值为零时,矩阵可能没有逆矩阵。
平移矩阵与平移操作
• 平移矩阵:平移矩阵也是二阶矩阵的一种,用于 表示平移操作。其一般形式为
平移矩阵与平移操作
```
| 0 1 ty |
| 1 0 tx |
平移矩阵与平移操作
```
其中,tx和ty分别表示在x轴和y轴方
平移操作:平移操作是指通过平移矩阵
向上的平移距离。
对向量进行变换,使向量在指定的方向
03
线性变换与二阶矩阵的关系
线性变换的矩阵表示
线性变换是数学中的一种重要概念,它描述了一个向量空间 中的向量通过一个线性映射变为另一个向量空间的过程。在 矩阵表示中,线性变换可以用一个矩阵来表示,该矩阵的行 和列分别对应于输入和输出空间的基向量。
线性变换的矩阵表示具有一些重要的性质,例如矩阵乘法对 应于线性变换的复合,矩阵的转置对应于线性变换的共轭, 以及矩阵的逆对应于线性变换的逆。
二阶矩阵与线性变换的转换
二阶矩阵是数学中一种常见的矩阵类型,它由四个数字组成,可以用来表示一个 线性变换。通过选择适当的基向量,可以将一个线性变换转换为二阶矩阵,反之 亦然。
二阶矩阵与线性变换的转换关系是线性的,即对于任意两个线性变换A和B,以及任 意标量k,有kA=AkB=BkA。
二阶矩阵在几何变换中的应用
通过矩阵变换,可以改变向量的长度、方向和位置,从而实现二维空间中的几何变 换。
二阶矩阵乘法

二阶矩阵乘法矩阵(Matrix)又称数字矩形,是一种以数字字符构成的二维表格,是数学中重要的概念。
每一个矩阵都可以表示为一个m*n矩阵,m行n列。
二阶矩阵乘法是计算矩阵乘积的通用方法,它可以直接应用于计算两个矩阵乘积,也可以用于计算更高阶乘积。
一阶矩阵乘法是在二维空间中比较简单的乘法运算,而二阶矩阵乘法则需要处理三维或更高维的数据。
首先,它涉及的操作是将两个二维矩阵的每一个元素相乘,再加总,这样就可以得到一个二维新矩阵。
如果将矩阵A和矩阵B分别表示为$A = begin{bmatrix}a_{11} & a_{12}a_{21} & a_{22}end{bmatrix},B = begin{bmatrix}b_{11} & b_{12}b_{21} & b_{22}end{bmatrix}$,则二阶矩阵乘法的结果为:$C = begin{bmatrix} a_{11} * b_{11} + a_{12} * b_{21} & a_{11} * b_{12} + a_{12} * b_{22}a_{21} * b_{11} + a_{22} * b_{21} & a_{21} * b_{12} + a_{22} * b_{22}end{bmatrix}$有,$C=AB$二阶矩阵乘法的计算其实是一个典型的线性变换的过程,因为结果矩阵的每一个元素都符合线性变换的性质,即每一个元素都是由原矩阵乘以一个常数得到的。
因此,在做二阶矩阵乘法之前,需要了解一些线性变换的概念,例如缩放、位移、旋转等。
在实际应用中,二阶矩阵乘法可以用来计算两个矩阵之间的乘积,也可以用来计算矩阵与向量之间的乘积,甚至可以用来计算更高阶的矩阵乘积。
在工程性计算中,二阶矩阵乘法的应用非常多,例如矩阵运算、图像处理、数据挖掘、推荐系统、机器学习等。
总之,二阶矩阵乘法是一种非常有用的运算方法,它可以用来计算矩阵的乘积,从而帮助我们更好的理解线性变换的原理,也可以用于计算机视觉与机器学习等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法也是
4.利用矩阵A的特征值、特征向量给出Anα简单的表 常考知
示,并能用来解决问题.
识点.
一、二阶矩阵的定义
1.由4个数a,b,c,d排成的正方形数表_______ 称为
二阶矩阵.
2.元素全为0的二阶矩阵_______称为零矩阵,简记为
_ .矩阵
称为二阶单位矩阵,记为 .
二、几种特殊线性变换
知识点
考纲下载
考情上 线
1.了解二阶矩阵的概念.
2.二阶矩阵与平面向量的乘法、平面图形
选考内
的变换.
容在高
(1)了解矩阵与向量的乘法的意义,会用映射与 考中将
变换的观点看待二阶矩阵与平面向量的乘法. 以解答
线性变 (2)理解矩阵变换把平面上的直线变成直线(或点), 题的形
换、二 即A(λ1α+λ2β)=λ1Aα+λ2Aβ.
4.投影变换 设l是平面内一条给定的直线,对平面内的任意一点P 作直线l的垂线,垂足为点P′,则称点P′为点P在直 线l上的投影,将平面上每一点P对应到它在直线l上的 投影P′,这个变换称为关于直线l的投影变换.
5.切变变换 平行于x轴的切变变换对应的二阶矩阵为________,
平行于y轴的切变变换对应的二阶矩阵为_______ .
=M(NP)=(MP)N.
已知M= 矩阵X,使MX=N.
,求二阶
求二阶矩阵可先设出二阶矩阵X,根据矩阵乘法法 则,应用待定系数法求解.
解:设X=
,按题意有
根据矩阵乘法法则有
解之得
1.若
,试求x的值.
解:
3x 1, x 1 . 3
伸缩、反射、切变变换这三种几何变换称为初等变 换,对应的变换矩阵为初等变换矩阵,由矩阵的乘法可以 看出,矩阵的乘法对应于变换的复合,一一对应的平面变 换都可以看作这三种初等变换的一次或多次的复合.
解:(MN)α= M(Nα)= 所以(MN)α=M(Nα). 又因为MN=
NM=
,所以MN≠NM.
2.求圆C:x2+y2=4在矩阵A= 曲线方程,并判断曲线的类型.
对应变换作用下的
解:设P(x,y)是圆C:x2+y2=4上的任一点,P1(x′,y′)是P(x,
y)在矩阵A=
对应变换作用下新曲线上的对应点,则
将
代入x2+y2=4,得 +y′2=4,∴方程
1表示的曲线是焦点为(±2 ,0),长轴长为8的椭圆.
3.设a,b∈R,若M=
所定义的线性变换把直线l:
2x+y-7=0变换成另一直线l′:x+y-7=0,求a,b
的值.
解:取直线l:2x+y-7=0上任一点(x0,7-2x0),则它在对 应的变换作用下有 而点(ax0,-x0+7b-2bx0)在直线l′: x+y-7=0上, 即ax0-x0+7b-2bx0=7.由x0的任意性得
积为向量________,记为 Aa 或
,即
这是矩阵
与向量 的乘法.
五、线性变换的基本性质 性质1.设A是一个二阶矩阵,α,β是平面上的任意两个 向量,λ是一个任意实数,则
(1)A(λα)= λAα ; (2)A(α+β)= Aα+Aβ.
性质2.二阶矩阵对应的变换(线性变换)把平面上的直线 变成_直__线__(__或__一__点__)_. 定理:设A是一个二阶矩阵,α,β是平面上的任意两个 向量,λ1,λ2是任意两个实数,则 A(λ1α+λ2β)=λ1Aα+λ2Aβ.
六、二阶矩阵的乘法
1.设A=
则
AB=
2.对直角坐标系xOy内的任意向量α,有A(Bα)= (AB).a 3.二阶矩阵的乘法满足结合律,即(AB)C=(AB)C . 4.AkAl=_A_k_+l,(Ak)l=Akl.
1.已知矩阵M=
向量α=
断 (MN)α与M(Nα)的关系,MN与NM的关系.
,试判
式出现,
阶矩阵 (3)了解几种常见的平面变换:恒等变换、伸缩变 难度不
及其乘 换、反射变换、旋转变换、投影变换、切变变 大,二
法
换.
阶矩阵
3.变换的复合——二阶矩阵的乘法
及其乘
(1)了解矩阵与矩阵的乘法的意义.
法是高
(2)理解矩阵乘法不满足交换律.
考的热
(3)会验证二阶矩阵乘法满足结合律.
点.
(4)理解矩阵 乘法不满足消去律.
三、变换、矩阵的相等 1.设σ,ρ是同一直角坐标平面内的两个线性变换,如果
对平面内的任意一点P,都有 σ(P)=ρ(P) ,则称这 两个线性变换相等. 2.对于两个二阶矩阵A与B,如果它们的_对__应__元__素__都分 别相等,则称矩阵A与矩阵B相等,记作A=B.
四、矩阵与向量的乘法 设A=
规定二阶矩阵A与向量α的乘
在直角坐标系中,已知△ABC的顶点坐标为A(0,0)、 B(1,1)、C(0,2),求△ABC在矩阵MN作用下变换所得到的图 形的面积.这里M=
1.旋转变换
直线坐标系xOy内的每个点绕原点O按逆时针方向旋
转α角的旋转变换的坐标变换公式是
对应的二阶矩阵为
.
2.反射变换 平面上任意一点P对应到它关于直线l的对称点P′的线 性变换叫做关于直线l的反射.
3.伸缩变换 在直角坐标系xOy内将每个点的横坐标变为原来的k1 倍,纵坐标变为原来的k2倍,其中k1,k2为非零常数, 这样的几何变换为伸缩变换.
知识点
考纲下载
考情上 线
1.逆矩阵与二阶行列式
本部分
(1)理解逆矩阵的意义,懂得逆矩阵可能不存在. 内容将
(2)理解逆矩阵的唯一性和(AB)-1=B-1A-1等简单 以考查
性质,了解其在变换中的意义.
矩阵的
(3)了解二阶行列式的定义,会用二阶行列式求逆 运算及
逆变换 与逆矩 阵、矩 阵的特 征向量
矩阵. 2.二阶矩阵与二元一次方程组 (1)能用变换与映射的观点认识解线性方程组的意
义.
(2)会用系数矩阵的逆矩阵解线性方程组. (3)理解线性方程组解的存在性、唯一性.
解线性 方程组, 如求逆 矩阵, 另外特 征值与
3.变换的不变量
特征向
(1)掌握矩阵特征值与特征向量的定义,理解特征向 量的求
量的意义.
4.运用旋转矩阵,求直线2x+y-1=0绕原点逆时针旋转 45°后所得的直线方程.
解:旋转矩阵 直线2x+y-1=0上任意一点(x0,y0)旋转变换后为(x0′,y0′),
直线2x+y-1=0绕原点逆时针旋转45°后所得的直线
方程是 2x 2 y 2 x 2 y 1 0, 22
即
1.二阶方阵的运算关键是记熟运算法则. 2.注意运算时运算律的应用,它满足结合律即(MN)P