激光原理课件chapter3
激光原理第三章ppt课件

篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
三、菲涅耳-基尔霍夫衍射积分
u x,y4 ik su x,ye ik 1 c od s
假设: S΄尺寸远大于λ, ρ足够远, 使来自S的光都可以作用于P点
将以上积分用于开腔的两个镜面上的场: 一次渡越后, 镜Ⅱ:u2(x,y)4 ikS1u 1x,ye ik1co dS s q次渡越后, 生成的场uq+1与产生它的场uq之 间满足类似的关系:
2 q 2 q
k L
22q k2ν c
νm nq2q Lc2cL m n2q Lc( -316 )
图(3-4) 腔中允许的纵模数
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
六、分离变量法
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
二、孔阑传输线
⑤ 均匀平面波入射→自再现模。 ⑥ 空间相干性:开始自发辐射—空间非相干。 ⑦ 无源开腔中,自再现模的实现伴随着能量的衰减; 有源开腔中,自再现模可以形成自激振荡,得到光放大,形
uq 1(x,y)4 ik S 1u qx,ye ik1c odS s
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
四、自再现模积分方程
由“自再现”的概念,当q足够大时,除了一个振幅衰减和相
移的常数因子外, uq+1应能再现uq, 即:
2024版《激光原理》课件

工作原理
气体激光器的工作原理基于气体放电产生的粒子数反转。当放电管中的工作气体受到电场激励时,气体分子或原 子被激发到高能级,然后通过自发辐射或受激辐射跃迁到低能级,释放出光子。这些光子在谐振腔中来回反射, 不断激发更多的粒子数反转,从而实现光放大和激光输出。
2024/1/28
12
气体激光器性能特点及应用领域
3
激光产生机制
01
02
03
受激辐射
原子或分子在外部能量作 用下,从高能级向低能级 跃迁,同时发射出与激发 光相同性质的光子。
2024/1/28
粒子数反转
通过泵浦等方式,使得高 能级上的粒子数多于低能 级,形成粒子数反转分布。
光学谐振腔
提供正反馈机制,使得受 激辐射的光在腔内多次反 射、放大,最终形成强光 束输出。
19
液体与光纤激光器性能特点及应用领域
液体激光器
主要应用于科研、光谱分析、生物医学等 领域。
VS
光纤激光器
主要应用于工业加工、通信、医疗等领域。
2024/1/28
20
05
半导体激光器与量子级联 激光器
2024/1/28
21
半导体激光器结构及工作原理
2024/1/28
结构
半导体激光器主要由P型半导体、N型半导体以及它们之间的有源层构成。P型和N型半 导体之间形成PN结,是激光器的核心部分。
2024/1/28
准分子激光器
准分子激光器以稀有气体卤化物为工作物质,其输出波长在紫外波段。准分子激光器具有脉 冲能量大、重复频率高等优点,被广泛应用于科研和医疗等领域。
14
04
液体激光器与光纤激光器
2024/1/28
激光原理及应用ppt课件

激光调制前
激光调制后
4.机械运动系统
• 基片送入后,高精度伺服电机在微机的控制下转动振镜的角度;
• 激光束通过扫描镜的反射,由f-θ场镜聚焦到基片的边缘位置上;
• 在微机上通过专用的控制软件输入总的清边面积、激光束的行走速度 和需要重复的次数;
E2
E2
E1
E1
自发辐射跃迁
自发辐射光子
c. 受激辐射(激光): 当频率为=ν(E2-E1)/h的光子入射时,会引发粒子以一定的概率,迅 速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都 相同的光子。
E2
E2
入射光子
E1
E1
受激辐射光子 入射光子
受激辐射跃迁 3-2 粒子数反转
(Top flat)
高斯
多元高斯
• 减少脉冲时间,高的峰值能量,更多的能量密度
Less pulse time, high peak power more energy density
能量密度=功率/频率/光斑面积
pulse
1.1uW/um=220W/20KHz/900um2
Hz
4.重叠率计算——Overlap
全反光镜
反光镜: (越75%
)
Shutter
激光器外形 接光纤
Q-Switch
晶体腔
功率计
激光器内部分解图(P4)
Q-Switch 半反镜
晶体腔 光纤耦合器
镜头聚焦原理——凸透镜
激光刻划原理——以P1为例
光斑
1.Beam Shaping (激光束形状)
• 一般的激光都为高斯分布的波形,即高斯光束,为实现特殊的制程需求,需要转变 成为扁平式波形的平顶光束,即Top Hat,通过透镜组改变光束质量和形状产生。
《激光原理与技术》课件 (3)

现在求P—P+dP中的光子态数 P h , dP h d
Px
c
c
dVP 4πP2dP
P
Nl
4πP 2dP
δV p
4π (h
/ c)2 (hd
h3 /V
/ c)
4π 2
c3
V
d
M
4π
c3
2
V
d
2
8π
c3
2
V
d
n
V
d
o Py
dP Pz
nv
8π 2
c3
单位体积单位频率间隔的光子态数—光子谱密度
结论: 光波模 等价 光子态
即:属于一个模式的光子处于相同的量子状态
一个光波模对应一个光子态
1.1 相干性的光子描述(光波模式与光子态)
3. 光子简并度 n
n
光子总数 光子态数
一个光子态中平均光子数
=同态光子数
=同模光子数
=同相格光子数
在给定的体积内,一般存在大量光波模式。因而每个模式的光波能 量很小,或者说同态的光子数很很少,或者说光子简并度很小。
y,
z)和动量(
P
—Px,
Py,
Pz)
以(x, y, z, Px, Py, Pz)构成描述粒子运动状态的相宇空间。
经典(牛顿)粒子的状态 与相宇中的一个点对应
而光子的状态遵从测不准关系,即
x
x
•
Px Px
ΔxΔPx h
ΔyΔPy h ΔxΔyΔzΔPxΔPyΔPz h3
ΔzΔPz
h
x
x
h3
对于单电子原子,组态与状态是一致的;而对于多电 子原子则完全不同, 状态的推求可以采用角动量耦合。
《激光原理》PPT课件

2024/1/28
28
前沿动态及发展趋势预测
超快激光技术
实现飞秒、皮秒级超短脉冲输出,用 于精密加工、生物医学等领域。
高功率激光技术
发展高能量、高效率的激光器,应用 于国防、能源等领域。
2024/1/28
激光显示技术
利用激光作为光源的显示技术,具有 色域广、亮度高等优点,是未来显示 技术的重要发展方向。
概述光纤激光器的工作原理、 优势及在通信、传感等领域的 应用前景。
其他典型固体激光器
简要介绍其他类型的固体激光 器,如半导体激光器、拉曼激
光器等。
10
03
气体激光器原理与技术
2024/1/28
11
气体放电过程及发光机制
01
02
03
气体放电基本概念
电子与气体原子或分子碰 撞,引发电离和激发过程 ,产生带电粒子和光子。
液体染料激光器技术特点பைடு நூலகம்
具有宽调谐范围、高转换效率、短脉冲输出等优点。同时 ,液体染料激光器也存在染料稳定性差、需要定期更换等 缺点。
液体染料激光器应用领域
广泛应用于光谱学、生物医学、光化学等领域。例如,可 用于荧光光谱分析、激光医疗、光动力疗法等。
16
半导体材料发光机制及器件结构
2024/1/28
利用半导体材料的特性实现受激辐射,具有 体积小、效率高、寿命长等优点,广泛应用 于通信、显示等领域。
2024/1/28
6
02
固体激光器原理与技术
2024/1/28
7
固体激光材料及其发光机制
2024/1/28
固体激光材料种类与特性
01
包括晶体、玻璃、陶瓷等,具有不同的发光特性和应用场景。
激光原理课件第三章

'
ne2
m00
2(0 ) 1
1
4(0 2
)2
''
ne2
m00
1
1
4(0 )2 2
激光原理与技术
' (1 ) (1 ' i '')
' 1 1 i
2
1 ' , ''
2
2
E(z,
t)
i
E0e c
ez
i(t c /
z)
激光原理与技术
就是物质的折射率。增益系数g
碰撞的发生完全是随机的,只能了解它们 的统计平均性质。设任一原子与其他原子发
生碰撞的平均时间间隔为L,可以证明,波
列可以等效为振幅呈指数变化的波列,其衰
减常数为L,碰撞过程应和自发辐射过程同
样地引起谱线加宽,它的线型函效和自然加 宽一样
激光原理与技术
L
gL (v, v0 )
( L
2
2
)2 (v
n20hvA21et /s
P0et /s
1
s
, vN
1
2 s
N
gN
(v, v0 )
( N
2
2
)2 (v
v0 )2
激光原理与技术
2.碰撞加宽:
大量原子(分子)之间的无规“碰撞”是引起 谱线加宽的另一重要原因。当两个原子相遇 而处于足够接近的位置时(或原子与器壁相 碰时),原子间的相互作用足以改变原子原 来的运动状态。在晶体中,虽然原子基本上 是不动的,但每个原子也受到相邻原子的偶 极相互作用(即原子—原子耦合相互作用)。 因而一个原子也可能在无规的时刻由于这种 相互作用而改变自己的运动状态。
2024版激光原理与技术PPT(很全面)
•激光基本原理•激光器类型及技术•激光束特性及控制技术目录•激光与物质相互作用•激光测量与检测技术•激光通信与信息处理技术•激光安全与防护技术光的自发辐射与受激辐射自发辐射原子或分子在没有外界作用下,由于自身能级的不稳定性而自发地从高能级向低能级跃迁,同时发射出一个光子的过程。
受激辐射原子或分子在外界光子的作用下,从高能级向低能级跃迁,同时发射出一个与入射光子完全相同的光子的过程。
区别与联系自发辐射是随机的,而受激辐射是确定的;自发辐射产生的光是非相干的,而受激辐射产生的光是相干的。
光放大当外来光信号通过激光工作物质时,受激辐射产生的光子与入射光子具有相同的频率、相位、传播方向和偏振状态,从而实现光信号的放大。
粒子数反转在激光工作物质中,高能级上的粒子数多于低能级上的粒子数,形成粒子数反转分布。
实现方法通过泵浦源提供能量,使激光工作物质中的粒子被激发到高能级,形成粒子数反转分布。
粒子数反转与光放大产生条件特性应用领域030201激光的产生与特性晶体激光器玻璃激光器光纤激光器He-Ne 激光器CO2激光器以氦气和氖气作为工作气体,产生红色可见光激光,常用于精密测量和准直。
Ar+激光器染料激光器液体激光核聚变半导体激光器边发射半导体激光器面发射半导体激光器采用垂直腔面发射结构,具有低阈值电流、圆形光束和易于集成等特点,适用于光通信和光互连等领域。
激光束的传输与聚焦激光束的传输特性01激光束的聚焦原理02激光束的聚焦技术03介绍评价激光束质量的常用参数,如光束直径、发散角、光强分布等。
激光束质量评价参数阐述实验测量和数值模拟等方法在激光束质量评价中的应用。
激光束质量评价方法分析激光束质量对激光加工、光通信、激光雷达等应用的影响。
激光束质量对应用的影响激光束的质量评价激光束的控制与整形激光束控制技术激光束整形技术激光束控制与整形的应用激光与物质相互作用的基本过程激光束在物质中的传播激光与物质相互作用的机理激光与物质相互作用的特点1 2 3激光加工的基本原理激光加工的应用领域激光加工的优势激光加工原理及应用利用激光的高能量密度和生物效应,对生物组织进行照射,以达到治疗疾病的目的。
激光原理与技术ppt课件2024新版
激光束的传输与变换
激光束的传输特性
探讨激光束在自由空间和光学系统中 的传输特性,包括光束的发散、聚焦 和像差等。
激光束的质量控制
阐述激光束质量评价的标准和方法, 以及提高激光束质量的措施和技术。
激光束的变换方法
介绍常见的激光束变换方法,如透镜 变换、反射镜变换和光纤传输等,并 分析它们的应用场景和优缺点。
激光原理与技术 ppt课件
目录
• 激光原理概述 • 激光技术基础 • 固体激光器 • 气体激光器 • 液体激光器与光纤激光器 • 激光技术的应用与发展趋势
01
激光原理概述
激光的产生与发展
01
1917年,爱因斯坦提出 “受激辐射”理论
02
03
1954年,美国物理学家 汤斯和肖洛提出激光原 理
1960年,梅曼制成世界 上第一台红宝石激光器
03
固体激光器
固体激光器的结构与工作原理
固体激光器的组成
工作物质、泵浦源、光学谐振腔
工作原理
通过泵浦源提供能量,使工作物 质中的粒子实现粒子数反转,然 后在光学谐振腔的作用下产生激
光振荡,输出激光。
光学谐振腔的作用
提供正反馈,使受激辐射光不断 放大,同时控制激光输出的方向
和质量。
固体激光器的性能特点
液体激光器与光纤激光器的性能特点及应用
液体激光器
主要应用于可调谐激光光谱学、生物 医学成像等领域。
光纤激光器
广泛应用于工业加工、通信、医疗等 领域,如激光切割、焊接、打标等。
06
激光技术的应用与发 展趋势
激光加工技术的应用与发展
激光切割
高精度、高效率的切割方法,广泛应用于金 属、非金属材料的加工。
最新激光原理及其应用(课件 laser and its applications教学讲义ppt
Laser and its applications
Contents
page
Chapter (1): Theory of Lasing
(2)
Chapter (2): Characteristics of laser beam ( )
(iii) Stimulated emission
Quite by contrast “stimulated emission” (Fig. 1-iii) requires the presence of external radiation when an incident photon of energy h =E2-E1 passes by an atom in an excited state E2, it stimulates the atom to drop or decay to the lower state E1. In this process, the atom releases a photon of the same energy, direction, phase and polarization as that of the photon passing by, the net effect is two identical photons (2h) in the place of one, or an increase in the intensity of the incident beam. It is precisely this processes of stimulated emission that makes possible the amplification of light in lasers.
激光原理与技术完整ppt课件
1.1.1所示)。每一模式在三个坐标铀方向与相邻模的间隔为
Δkx=л/Δx,Δky=л/Δy,Δkz=л/Δy 因此,每个模式在波矢空间占有一个体积元
(1.1.6)
ΔkxΔkyΔkz =л3 /(ΔxΔyΔz)=л3 /V
(1.1. 7)
精选课件PPT
10
在k空间内,波矢绝对值处于|k|~|k|+d|k|区间的体积为(1/8)4л|k|2 d|k|,
可见,一个光波模在相空间也占有一个相格.因此,一个光波模等效于一个光子态。
一个光波模或一个光子态在坐标空间都占有由式(1.1.11)表示的空间体积。
精选课件PPT
12
三、光子的相干性
为了把光子态和光子的相干性两个概念联系起来,下面对光源的相干性进行讨论。
在一般情况下,光的相干性理解为:在不同的空间点上、在不同的时刻的光波场的某
4.4 典型激光器的速率方程
3.5 空心介质波导光谐振腔的反馈耦合损耗 4.5 均匀加宽工作物质的增益系数
4.6 非均匀加宽工作物质的增益系数
4.7 综合均匀加宽工作物质的增益系数
精选课件PPT
3
第五章 激光振荡特性
5.1 激光器的振荡阈值 5.2 激光器的振荡模式 5.3 输出功率和能量 5.4 弛豫振荡 5.5 单模激光器的线宽极限 5.6 激光器的频率牵引
ε=hv
(1.1.1)
式中 h=6.626×10-34J.s,称为普朗克常数。
(2)光子具有运动质量m,并可表示为
(1.1.2)
光子的静止质量为零。
精选课件PPT
7
(3)光子的动量P与单色平面光波的波矢k对应
(1
式中
n。为光子运动方向(平面光波传播方向)上的单位矢量。 4.光于具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。 5.光于具有自旋,并且自旋量子数为整数。因此大量光于的集合, 服从玻色—爱因斯坦统计规律。处于同一状态的光子数目是没有限制的, 这是光子与其它服从费米统计分布的 粒子(电子、质子、中子等)的重要区别。 上述基本关系式(1.1.1)相(1.1.3)后来为康普顿(Arthur Compton)散射实验所证实 (1923年),并在现代量子电动力学中得到理论解释。量子电动力学从理论上把光的电磁 (波动)理论和光子(微粒)理论在电磁场的量子化描述的基础上统一起来,从而在理论上 阐明了光的波粒二象性。在这种描述中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(3.1.11)
This means the transition must occur vertically: A→A’; B→B’
9
Principles and Technologies of lasers
Chapter 3 Energy Levels, Radiative, and Nonradiative Transitions in Molecules and Semiconductors
(2J+1)-fold degenerate rotational level
P( J ) (2 J 1) exp BJ ( J 1) / kT
(3.1.9)
6
Principles and Technologies of lasers
Chapter 3 Energy Levels, Radiative, and Nonradiative Transitions in Molecules and Semiconductors
V”=0
1/ 2
(For polyatomics, there is a Q-branch, where DJ=0).
5
Principles and Technologies of lasers
Chapter 3 Energy Levels, Radiative, and Nonradiative Transitions in Molecules and Semiconductors
Dp 2 2 DEe ~ ~ 2m m a2
(3.1.1)
1
Principles and Technologies of lasers
Chapter 3 Energy Levels, Radiative, and Nonradiative Transitions in Molecules and Semiconductors
8
Principles and Technologies of lasers
Chapter 3 Energy Levels, Radiative, and Nonradiative Transitions in Molecules and Semiconductors
(1) vibronic transitions Nuclear separations do not change during a radiative transition (Franck-Condon principle). Transition probability between v” and v’ (different electronic states) is
Principles and Technologies of lasers
Chapter 3 Energy Levels, Radiative, and Nonradiative Transitions in Molecules and Semiconductors
3.1.2. Level Occupation at Thermal Equilibrium The probability of occupation of a given rotational level of the lowest vibrational state can be written as
DEr 2 m m 2 DEe DEv Ma2 M M
2 1/ 2
(3.1.6)
where m is the mass of the electron and M is the mass of the atom. And
m ~ 10 4 M
(so DEr is one-hundredth of DEv)
4
J: rotational quantum number
3 2 1 J’=0
v: vibrational quantum number
V’=1
DJ=+1, P-branch
DJ=-1, R-branch
Er 2 J ( J 1) / Ma2
4
3 2 1 J”=0
2 2 m DEr 2 DEe Ma 2 M m DEv M
7
Principles and Technologies of lasers
Chapter 3 Energy Levels, Radiative, and Nonradiative Transitions in Molecules and Semiconductors
3.1.3. Stimulated Transitions
Principles and Technologies of lasers
Chapter 3 Energy Levels, Radiative, and Nonradiative Transitions in Molecules and Semiconductors
3.1. MOLECULES
Qualitatively describing the features of molecule for gas and organic dye lasers. 3.1.1. Energy Levels Molecular energies: 1. Electronic energy Ee Since Dx~a, from the uncertainty principle, Dx Dp ~ we have Dp ~ / a (the uncertainty in momentum). Kinetic energy
We find the most heavily populated level is not the ground level (J=0), but the J which satisfies the relation
(2J 1)m 2kT / B
1/ 2
(3.1.10)
For simple molecules at room temperature, the molecular population is distributed among several rotational levels of the ground vibrational state.
Three types transitions among energy levels of a molecule: (1) Transitions between two rotational-vibrational levels of different electronic states (vibronic transitions, near-uv spectral region) (2) Transitions between two rotational-vibrational levels of the same electronic state (rotational-vibrational transitions, nearto middle-infrared spectral region) (3) Transitions between two rotational levels of the same vibrational state, e.g., v” = 0, of the ground electronic state (pure rotational transitions, far-infrared spectral region)
(2) rotational-vibrational transitions A transition between two vibrational levels of the same electronic state. For such a transition the quantum mt Dv = ± 1. We did not consider the rotational transition on the above cases. If we include rotational transitions in consideration, according to election rule of DJ=J”-J’=±1, there are two sets of lines: P-branch (DJ=+1) and Q-branch (DJ=-1).
lines are evenly separated in frequency by the amount of 2B/h. The amplitude are different because of the different populations in rotational levels of the ground state. Each line is broadened 10 by same line broadening mechanism.
3. Rotational energy Er
According to quantum mechanics, for a homonuclear diatomic molecule,
Er 2 J ( J 1) / Ma2
where J is the rotational quantum number. The energy difference between two consecutive quantum number is
2. Vibrational energy Ev
Ev 0 ,
x" k0 x,
2
for harmonic oscillators, k x" 0 x 0
x" x 0, where