一元二次方程根与系数的关系专题

合集下载

专题2.5 一元二次方程的根与系数关系(能力提升)(原卷版)

专题2.5 一元二次方程的根与系数关系(能力提升)(原卷版)

专题2.5 一元二次方程的根与系数关系(能力提升)(原卷版)一、选择题。

1.(2022•盘龙区一模)关于x的一元二次方程x2+mx﹣1=0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定2.(2022春•定远县校级月考)以和为根的一元二次方程是( )A.x2﹣10x﹣1=0B.x2+10x﹣1=0C.x2+10x+1=0D.x2﹣10x+1=0 3.(2022•宁波模拟)已知实数a≠b,且满足(a+1)2=3﹣3(a+1),3(b+1)=3﹣(b+1)2,则的值为( )A.23B.﹣23C.﹣2D.﹣13 4.(2021秋•姜堰区期末)方程x2﹣4x+3=0的两根为x1、x2,则x1+x2等于( )A.4B.﹣4C.3D.﹣3 5.(2022•运城二模)已知关于x的一元二次方程ax2﹣4x﹣2=0有实数根,则a的取值范围是( )A.a≥﹣2B.a>﹣2C.a≥﹣2且a≠0D.a>﹣2且a≠0 6.(2021秋•汉阳区期中)设x1,x2是一元二次方程x2+x﹣3=0的两根,则x13﹣4x22+20等于( )A.1B.5C.11D.137.(2021春•岳西县期末)已知关于x的方程x2﹣3x+m=0的一个根是2.则此方程的另一个根为( )A.0B.1C.2D.3 8.(2021•泰安)已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是( )A.k>﹣B.k<C.k>﹣且k≠0D.k<且k≠0 9.(2021秋•新城区期中)关于x的一元二次方程ax2+bx+c=0的两根分别为,,下列判断一定正确的是( )A.a=﹣1B.c=1C.ac=﹣1D.10.(2021•商河县校级模拟)已知y=kx+k﹣1的图象如图所示,则关于x的一元二次方程x2﹣x﹣k2﹣k=0的根的情况是( )A.无实数根B.有两个相等或不相等的实数根C.有两个不相等的实数根D.有两个相等的实数根二、填空题。

专题02 一元二次方程根与系数的关系重难点题型专训(解析版)

专题02 一元二次方程根与系数的关系重难点题型专训(解析版)

专题02一元二次方程根与系数的关系重难点题型专训【题型目录】题型一利用根与系数的关系直接求代数式的值题型二利用根与系数的关系间接求代数式的值题型三利用根与系数的关系降次求代数式的值题型四构造一元二次方程求代数式的值题型五由两根关系求方程字母系数题型六根与系数关系的新定义问题题型七一元二次方程根与系数的关系综合【知识梳理】如果一元二次方程20ax bx c (0a )的两根为12x x ,,那么,就有212ax bx c a x x x x 比较等式两边对应项的系数,得1212b x x a c x x a①,②①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程20ax bx c 就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x ,必是一个一元二次方程20ax bx c 的根.利用这一基本知识常可以简捷地处理问题.利用根与系数的关系,我们可以不求方程20ax bx c 的根,而知其根的正、负性.在24b ac ≥0的条件下,我们有如下结论:当0c a 时,方程的两根必一正一负.若0b a ≥,则此方程的正根不小于负根的绝对值;若0b a ,则此方程的正根小于负根的绝对值.当0c a 时,方程的两根同正或同负.若0b a ,则此方程的两根均为正根;若0b a ,则此方程的两根均为负根.⑴韦达定理(根与系数的关系):如果20(0)ax bx c a 的两根是1x ,2x ,则12b x x a ,12c x x a.(隐含的条件:0 )⑵若1x ,2x 是20(0)ax bx c a 的两根(其中12x x ),且m 为实数,当0 时,一般地:①121()()0x m x m x m ,2x m②12()()0x m x m 且12()()0x m x m 1x m ,2x m③12()()0x m x m 且12()()0x m x m 1x m ,2x m特殊地:当0m 时,上述就转化为20(0)ax bx c a 有两异根、两正根、两负根的条件.⑶以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x .⑷其他:1若有理系数一元二次方程有一根a b a b a ,b 为有理数).2若0ac ,则方程20(0)ax bx c a 必有实数根.3若0ac ,方程20(0)ax bx c a 不一定有实数根.4若0a b c ,则20(0)ax bx c a 必有一根1x .5若0a b c ,则20(0)ax bx c a 必有一根1x .⑸韦达定理(根与系数的关系)主要应用于以下几个方面:1已知方程的一个根,求另一个根以及确定方程参数的值;2已知方程,求关于方程的两根的代数式的值;3已知方程的两根,求作方程;4结合根的判别式,讨论根的符号特征;5逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的 .一些考试中,往往利用这一点设置陷阱.【经典例题一利用根与系数的关系直接求代数式的值】【例1】(2023·天津河北·统考二模)已知一元二次方程2310x x 有两个实数根12x x 、,则1212x x x x 的值为()A .6B .2C .4D .3【答案】B【分析】先根据根与系数的关系得121231x x x x ,,然后利用整体代入的方法计算.【详解】解:根据根与系数的关系得121231x x x x ,,所以1212312x x x x .故选:B .【点睛】本题考查了根与系数的关系:若12x x 、是一元二次方程 200ax bx c a 的两根时,1212b c a x x x x a,.【变式训练】1.(2023·湖北武汉·统考二模)已知a ,b 是一元二次方程2320x x 的两根,则2a b a a b a的值是()A .3B .3C .2D .2 【答案】A 【分析】先将2a b a a b a化简,再根据一元二次方程根与系数的关系即可得到a b 的值,从而得到答案.【详解】解:根据题意可得:222a b a b a b a a b a a a b a b a a b a a b a,∵a ,b 是一元二次方程2320x x 的两根,331a b ,23a b a a b a,故选:A .【点睛】本题考查了分式的化简求值,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系,是解题的关键.2.(2023·江西景德镇·统考二模)已知1x ,2x 是方程222x x 的两个根,则1211 x x 的值为______.【答案】1【分析】先把方程转化为一般式,再根据根与系数的关系得到122x x ,122x x ,再把1211x x 进行通分得到1212x x x x ,再利用整体代入进行计算即可.【详解】解:222x x 转化为一般式为:2220x x ,根据题意可得:122x x ,122x x ,∴121212112===12x x x x x x ,故答案为:1 .【点睛】本题考查一元二次方程的根与系数的关系、整体代入求值,熟练掌握一元二次方程的根与系数的关系得到122x x ,122x x 是解题的关键.3.(2022春·八年级单元测试)已知1x ,2x 是方程2630x x 的两实数根,求:(1)2112x x x x ,(2)2212x x 的值.【答案】(1)10(2)30【分析】(1)由1x ,2x 是方程2630x x 的两实数根,得出12+6x x =,123x x ,由222221212112121212++x x x x x x x x x x x x x x ==,代入相关数据即可得;(2) 222121212++2x x x x x x =代入即可.【详解】(1)解:∵1x ,2x 是方程2630x x 的两实数根,∴126+61b x x a ===,12331c x x a ==,∴ 2222121212++262330x x x x x x ===,∴222221************+30+103x x x x x x x x x x x x x x ====;(2)解:∵1x ,2x 是方程2630x x 的两实数根,∴126+61b x x a ===,12331c x x a ==,∴ 2222121212++262330x x x x x x ===;【点睛】本题考查了根与系数的关系,熟记12+b x x a,12c x x a 解题关键.【经典例题二利用根与系数的关系间接求代数式的值】【例2】(2023·湖北武汉·统考模拟预测)已知a ,b 是一元二次方程2210x x 的两根,则2222a b ab a b a b的值是()A .12B .2C .12D .2【答案】A 【分析】先根据一元二次方程根与系数关系得到2a b ,1ab ,再化简分式代值求解即可.【详解】解:∵a ,b 是一元二次方程2210x x 的两根,∴2a b ,1ab ,∴2222a b ab a b a b22ab a b a b a b b b b a a a22a b a b a b aba b a b ab a bab a b12,故选:A .【点睛】本题考查一元二次方程根与系数关系、分式的化简求值,解答的关键是正确化简分式,熟知一元二次方程根与系数的关系:设一元二次方程20ax bx c 的两个根为1x 、2x ,则12b x x a,12c x x a .【变式训练】1.(2023·内蒙古包头·二模)已知m ,n 是一元二次方程260x x 的两个实数根,则代数式22m m n 的值等于()A .4B .5C .6D .7【答案】B【分析】由一元二次方程根与系数的关系,可得1m n ,根据一元二次方程根的定义得26m m ,由 222m m n m m m n ,整体代入求解即可.【详解】解:m ∵,n 是一元二次方程260x x 的两个实数根,1m n ,26m m ,222615m m n m m m n ,故选:B .【点睛】本题考查了一元二次方程的解,根与系数的关系,代数式求值等知识.解题的关键在于熟练掌握一元二次方程根与系数的关系.2.(2022·江西萍乡·校考模拟预测)设a ,b 是方程220220x x 的两个不相等的实数根,则22a a b ab ___________.【答案】1【分析】根据一元二次方程的解的定义,以及根与系数的关系,进行求值即可.【详解】解:∵a ,b 是方程220220x x 的两个不相等的实数根,∴220220,1,2022a a a b ab ,∴22022,a a ∴222a ab ab a a a b ab2a a a b ab 2022120021 ;故答案为:1 .【点睛】本题考查一元二次方程的解,根与系数的关系.熟练掌握相关知识点,利用整体思想求代数式的值,是解题的关键.3.(2023·湖北襄阳·统考一模)已知关于x 的一元二次方程 22210x m x m .(1)若方程有实数根,求m 的取值范围;(2)若方程的两实数根分别为12,x x ,且满足221214x x .求212410x x 的值.【答案】(1)12m (2)2124105x x 【分析】(1)根据方程有实数根,得到0 ,进行求解即可;(2)根据根与系数的关系,利用整体思想代入求值即可.【详解】(1)由题意得, 222140m m .解得:12m ;(2)解:由一元二次方程根与系数关系可得 21212,21x x m x x m .∵ 222121212214x x x x x x ,∴ 2221214m m .解得:125,1m m .∵12m ,∴1m .∴212114,410x x x x .∴21141x x .∴ 21212124104141041144115x x x x x x .【点睛】本题考查一元二次方程根的判别式及根与系数关系,解决问题的关键是掌握一元二次方程判别式与方程根的情况的对应以及一元二次方程根与系数关系.【经典例题三利用根与系数的关系降次求代数式的值】【例3】(2022秋·浙江温州·八年级校考阶段练习)已知 、是方程210x x 的两根,则435 的值是()A .7B .8C .9D .10【答案】C 【分析】根据一元二次方程解的定义和根与系数的关系得出1 ,1 ,21 ,21 ,再对所求式子变形整理,求出答案即可.【详解】解:∵ 、是方程210x x 的两根,∴1 ,1 ,21 ,21 ,∴4353315115225115272179 ,故选:C .【点睛】本题考查了一元二次方程解的定义和根与系数的关系,若一元二次方程20ax bx c (a 、b 、c 为常数,0a )的两根为1x ,2x ,则12b x x a,12c x x a .【变式训练】1.(2022秋·四川达州·九年级校联考期末)设1x ,2x 是一元二次方程230x x 的两根,则3212420x x 等于()A .1B .5C .11D .13【答案】A【分析】根据根与系数的关系得到:12121,3x x x x ,以及方程的根的定义得到:22112230,30x x x x ,将3212420x x 进行转化计算即可.【详解】解:∵1x ,2x 是一元二次方程230x x 的两根,∴22112230,30x x x x ,12121,3x x x x ,∴2211223,3x x x x ,∴ 322121124204320x x x x x 112341220x x x 2112348x x x1123348x x x 1245x x 451 ;故选A .【点睛】本题考查一元二次方程的解的定义以及根与系数的关系.熟练掌握方程的根是使方程成立的未知数的值,利用整体思想进行化简,是解题的关键.2.(2023·江苏苏州·校考二模)如果一元二次方程2320x x 的两个根为1x ,2x ,则32111223+2=x x x x x _____.【答案】4【分析】将1x 代入方程可得21132x x ,利用一元二次方程根与系数的关系求得 12x x 和12x x 的值;再将所求代数式提取公因式后代入求值即可;【详解】解:∵1x 是方程2320x x 的根,∴211320x x ,∴21132x x ,由一元二次方程根与系数的关系可得:123x x ,122x x ,∵ 322111221111223232x x x x x x x x x x x ,∴ 32111221122121232222=2×32=4x x x x x x x x x x x x x ,故答案为:4 .【点睛】本题考查了方程的根的意义,因式分解;掌握一元二次方程 200ax bx c a 的两根1x ,2x 满足12bx x a ,12c x x a是解题关键.3.(2022秋·福建泉州·九年级晋江市第一中学校考期中)已知a ,b 是方程2320x x 的两个不相等的实根,求下列各式的值:(1)22a b ;(2)22()(1)1a b ;(3)3232a a b【答案】(1)13;(2)18;(3)6 .【分析】(1)由根与系数的关系得出32a b ab ,,整体代入222()2a b a b ab 计算可得;(2)将原式展开整理成222)1()(a b ab ,再将22a b 、ab 的值整体代入计算可得;(3)由a 是方程的一个根得到232a a ,将原式整理成2(3)2a a a b ,再将232a a 、3a b 的值整体代入计算可得.【详解】(1)解:∵a 、b 是方程2320x x 的两个不相等的实根,∴32a b ab ,,则222()29413a b a b ab ;(2)解:由(1)得2213a b ,2ab ,∴22()(1)1a b 22221a b a b 222)1(()a b ab 21213)( 18 ;(3)解:由(1)得3a b ,∵a 是方程2320x x 的根,∴2320a a ,即232a a ,∴3232a a b2(3)2a a a b22a b2()a b 6 .【点睛】本题主要考查根与系数的关系,解题的关键是掌握12x x ,是一元二次方程20(0)ax bx c a 的两根时,12b x x a,12c x x a .【经典例题四构造一元二次方程求代数式的值】【例4】(2022秋·四川眉山·九年级校考期中)已知实数a 、b 满足2222,22a a b b ,且a b ¹,则b a a b 的值()A .0B .4C .4D .2 【答案】B 【分析】根据题意可知a 、b 是一元二次方程2220x x 的两个不相等实数根,再由根与系数的关系可得22a b ab ,,再将b a a b进行变形,然后代入计算即可.【详解】解:∵2222,22a a b b ,a b ¹,∴22220220a a b b ,,∵a b ¹,∴a 、b 是一元二次方程2220x x 的两个不相等实数根,∴22a b ab ,,∴2222()2(2)2(2)42b a a b a b ab a b ab ab 故选:B【点睛】此题主要考查了一元二次方程根的解、根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.【变式训练】1.(2023春·浙江·八年级期中)若关于x 的一元二次方程220ax ax c (0)a 的一个根为m ,则方程21210a x a x c ()()的两根分别是().A .1m ,1m B .1m ,1m C .1m ,2m D .1m ,1m 【答案】A 【分析】根据一元二次方程的根与系数的关系求出方程220ax ax c 的另一个根,设1x t ,根据方程220ax ax c 的根代入求值即可得到答案;【详解】解:∵一元二次方程220ax ax c (0)a 的一个根为m ,设方程另一根为n ,∴22a n m a,解得:2n m ,设1x t ,方程21210a x a x c ()()变形为220at at c ,由一元二次方程220ax ax c (0)a 的根可得,1t m ,22t m ,∴12x m ,1x m ,∴11x m ,21x m ,故答案为:A .【点睛】本题考查一元二次方程的根与系数的关系及换元法解一元二次方程,解题的关键是用换元法变形方程代入求解.2.(2023春·山东枣庄·九年级校联考阶段练习)已知实数a 、b 满足2310a a ,2310b b ,则b aa b_______.【答案】2或11【分析】实数a 、b 满足等式2310a a ,2310b b ,①当a b 时,a ,b 可能是方程2310x x 的同一个根,两数相等;②当a ≠b 时,由根与系数的关系,得3a b ,1ab ,把代数式变形成与两根之和和两根之积有关的式子,代入两根之和与两根之积,即可求得代数式的值.【详解】解:①当a b 时,原式b aa b112 .②当a b 时,可以把a ,b 看作是方程2310x x 的两个根.由根与系数的关系,得3a b ,1ab .∴b a a b 2292111a b ab ab .故本题答案为:2或11 .【点睛】本题考查一元二次方程根与系数的应用以及分类讨论思想的运用.此题综合性较强,特别注意不要漏掉“a b ”的情况.3.(2023·湖北襄阳·统考一模)阅读材料,解答问题:已知实数m ,n 满足210m m ,210n n ,且m n ,则m ,n 是方程210x x 的两个不相等的实数根,由韦达定理可知1m n ,1mn .根据上述材料,解决以下问题:(1)直接应用:已知实数a ,b 满足:2710a a ,2710b b ,且a b ¹,则a b _____,ab ______;(2)间接应用:在(1)条件下,求11a b的值;(3)拓展应用:已知实数m ,n 满足:2117m m ,27n n 且10mn ,则1n m______.【答案】(1)7;1(2)7(3)1【分析】(1)利用韦达定理直接求解;(2)对11a b进行通分,然后利用韦达定理求解;(3)令1t m,则由题得270t t ,270n n ,且n t ,利用韦达定理可求n t 的值,进而求解1n m.【详解】(1)解:∵2710a a ,2710b b ,且a b ¹,a ,b 是方程2710x x 的两个不相等的实数根, 7a b ,1ab .故答案为:7,1;(2)解:∵7a b ,1ab ,11771a b a b ab .(3)解:由27n n ,得270n n .令1t m,则由2117m m ,得270t t .由10mn ,得1n m,即n t .∵270n n ,270t t ,且n t ,n ,t 是方程270x x 的两个不相等的实数根, 1n t ,即11n m,11n m.故答案为:1 .【点睛】本题考查了一元二次方程的解,韦达定理的应用,熟练掌握韦达定理的原理是解题的关键.【经典例题五由两根关系求方程字母系数】【例5】(2022秋·重庆万州·九年级重庆市万州第二高级中学校考期中)等腰三角形的三边长分别为a ,b ,1,且关于x 的一元二次方程2420x x n 的两个根是a 和b ,则n 的值为()A .1B .1或2C .2D .1且2【答案】C【分析】分1为底边长或腰长两种情况考虑:当1为底时,由a b 及4a b 即可求出a 、b 的值,利用三角形的三边关系确定此种情况存在,再利用根与系数的关系找出222n 即可;当1为腰时,则a 、b 中有一个为1,则另一个为3,由1、1、3不能围成三角形可排除此种情况.综上即可得出结论.【详解】解:当1为底边长时,则a b ,4a b ,1∵,2,2能围成三角形,222n ,解得:2n ;当1为腰长时,a 、b 中有一个为1,则另一个为3,1∵,1,3不能围成三角形,此种情况不存在.故选:C .【点睛】本题考查了根与系数的关系、三角形的三边关系以及等腰三角形的性质,分1为底边长或腰长两种情况考虑是解题的关键.【变式训练】1.(2023·山东日照·统考二模)关于x 的方程22210x x m 有实数根,方程的两根分别是1x 、2x ,且211212x x x x x x ,则m 值是()A .52B .52C .52D .32【答案】B【分析】根据韦达定理可知122x x ,1221x x m ,利用完全平方公式可得22212122112122x x x x x x x x x x,整体代入解方程即可.【详解】解:∵关于x 的方程22210x x m 有实数根,方程的两根分别是1x 、2x ,122x x ,1221x x m ,∵ 22421810m m ,1m ,∵211212x x x x x x , 22212122121121212122x x x x x x x x x x x x x x x x 2422121m m ,整理得:245m ,解得52m,52m,故选:B .【点睛】本题考查了根与系数的关系、解一元二次方程,掌握根与系数的关系并利用完全平方公式变形是解题关键.2.(2023春·广东广州·九年级铁一中学校考阶段练习)已知关于x 的方程 24400x k x k k 的两实数根为1x 、2x ,若 121223x x x x ,则k _____.【答案】45/0.8【分析】根据一元二次方程根与系数的关系得到12124,4x x k x x k ,代入121223x x x x 得到 2434k k ,解这个一元一次方程即可得到答案.【详解】解:∵关于x 的方程 24400x k x k k 的两实数根为1x 、2x ,∴12124,4x x k x x k ,∵121223x x x x ,∴ 2434k k ,解得45k ,故答案为:45.【点睛】本题考查一元二次方程根与系数的关系,熟记一元二次方程根与系数的关系1212,b cx x x x a a是解决问题的关键.3.(2023·北京石景山·统考二模)已知关于x 的一元二次方程22210x mx m .(1)求证:该方程总有两个不相等的实数根;(2)若1m ,且该方程的一个根是另一个根的2倍,求m 的值.【答案】(1)证明见解析(2)3【分析】(1)利用根的判别式进行证明即可;(2)设方程的两个根分别为2s s 、,利用根与系数的关系得到22221s s ms s m,由此建立关于m 的方程求解即可.【详解】(1)证明:由题意得,22Δ2411m m22444m m 40 ,∴关于x 的一元二次方程22210x mx m 总有两个不相等的实数根;(2)解:设方程的两个根分别为2s s 、,∴22221s s ms s m,∴23s m,∴222213m m,∴22819m m ,解得3m ,又∵1m ,∴3m .【点睛】本题主要考查了根的判别式、根与系数的关系,熟知相关知识是解题的关键.【经典例题六根与系数关系的新定义问题】【例6】(2022秋·湖北鄂州·九年级统考期末)定义新运算“※”:对于实数m 、n 、p 、q ,有[,][,]m p q n mn pq ※,其中等式右边是通常的加法和乘法运算,例如:[2,3][4,5]253422 ※.若关于x 的方程 21,52,0x x k k ※有两个实数根,则k的取值范围是()A .54kB .54kC .54k且0k D .54k且0k 【答案】C【分析】按新定义规定的运算法则,将其化为关于x 的一元二次方程,从二次项系数和判别式两个方面入手,即可解决.【详解】解:∵[x 2+1,x ]※[5−2k ,k ]=0,∴ 21520k x k x .整理得, 2520kx k x k .∵方程有两个实数根,∴判别式0 且0k .由0 得, 225240k k ,解得,54k.∴k 的取值范围是54k 且0k .故选:C【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点,正确理解新定义的运算法则是解题的基础,熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制,要引起高度重视.【变式训练】1.(2023·河北·模拟预测)对于任意实数a ,b ,我们定义新运算“*”:22*2a b a ab b ,例如:223*53235514 .若m ,n 是方程 2*30x 的两个实数根,则11m n的值为()A .107B .-3C .17D .107【答案】D【分析】先根据新定义得到原方程即为21070x x ,再根据根与系数的关系得到107m n mn ,,最后代值计算即可.【详解】解:∵ 2*30x ,∴ 226290x x ,∴21070x x ,∵m ,n 是方程 2*30x 的两个实数根,∴107m n mn ,,∴11107m n m n mn ,故选D .【点睛】本题主要考查了新定义下的实数运算,一元二次方程根与系数的关系,分式的求值,正确根据题意得到107m n mn ,是解题的关键.2.(2022秋·湖南衡阳·九年级校联考期末)已知对于两个不相等的实数a 、b ,定义一种新的运算:@ab a b a b,如615310106@15615217,已知m ,n 是一元二次程22170x x 的两个不相等的实数根,则[()@]@3m n mn _______.【答案】25【分析】首先根据韦达定理求解两根之和与两根之积,然后代入原式根据定义进行求解.【详解】由m ,n 是22170x x 的两个不相等的实数根可得:21m n ,7mn 故[()@]@3(21@7)@3m n mn 217@3217 147@328 73@328 3@343343343425325【点睛】本题考查了一元二次方程的根与系数关系(也叫韦达定理),实数的定义新运算,此类题型一定要严格按照题目中的定义来求解,注意过程的正确性.3.(2023春·福建南平·九年级专题练习)阅读材料:有些数学问题虽然表面与一元二次方程无关,但是我们能够通过构造一元二次方程、并利用一元二次方程的有关知识将其解决.下面介绍两种基本构造闭法:方法1:利用根的定义构造.例如,如果实数m 、n 满足210m m 、210n n ,且m n ,则可将m 、n 看作是方程210x x 的两个不相等的实数根.方法2:利用韦达定理逆向构造.例如,如果实数a 、b 满足3a b 、2ab ,则可以将a 、b 看作是方程2320x x 的两实数根.根据上述材料解决下面问题:(1)已知一元二次方程2510x x 的两根1x ,2x ,则12x x ______,12x x ______;(2)已知实数m n 、满足2320m m ,2320n n ,求n mm n的值.(3)已知实数a b c 、、满足5a b c 、165ab c,且5c ,求c 的最大值.【答案】(1)5 ;1(2)136或2(3)1【分析】(1)根据根与系数关系12b x x a、12cx x a ,结合一元二次方程2510x x 直接求解即可得到答案;(2)当m n 时,m 、n 是方程2320x x 的两根,利用根与系数的关系可求得m n 和mn的值,然后利用整体代入的方法计算原式的值;当m n 时,易得原式2 ;(3)将a 、b 看作是方程216(5)05x c x c的两实数根;利用判别式的意义得到△216(5)405c c,所以3(5)64c ,解得1c ,从而得到c 的最大值.【详解】(1)解:∵一元二次方程2510x x 的两根1x ,2x ,12551b x x a,12111c x x a ;(2)解:当m n 时,∵实数m 、n 满足2320m m ,2320n n ,m 、n 可看作方程2320x x 的两根,13m n,23mn ,原式222122()()21393263n m m n mn mn mn,当m n ,则原式112 ;综上所述,原式的值为136或2;(3)解:5a b c ∵,165ab c, 将a 、b 看作是方程216(5)05x c x c的两实数根,∵△216(5)405c c,5c ,即50c ,3(5)64c ,54c ,即1c ,c 的最大值为1.【点睛】本题考查了一元二次方程根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a 的两根时,12b x x a,12c x x a ,也考查了一元二次方程根的判别式,灵活应用根与系数的关系是解决关键.【经典例题七一元二次方程根与系数关系的综合】【例7】(2022·四川宜宾·九年级专题练习)关于x 的方程ax 2+(a +2)x +9a =0有两个不等的实数根x 1,x 2,且x 1<1<x 2,那么a 的取值范围是()A .﹣27<a <25B .a >25C .a <﹣27D .﹣211<a <0【答案】D【分析】根据一元二次方程的根的判别式,建立关于a 的不等式,求出a 的取值范围.又存在x 1<1<x 2,即(x 1-1)(x 2-1)<0,x 1x 2-(x 1+x 2)+1<0,利用根与系数的关系,从而最后确定a 的取值范围.【详解】解:∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2-4a×9a=-35a 2+4a+4>0,解得2275a,又∵x 1<1<x 2,∴x 1-1<0,x 2-1>0,那么(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,122a x x a∵,x 1x 2=9,即2910a a,解得2011a,综上所述,a 的取值范围为:2011a .故选D .【点睛】本题考查了一元二次方程根的判别式及根与系数的关系.掌握相关知识是关键:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.根与系数的关系为:1212,b c x x x x a a.【变式训练】1.(2023春·浙江·八年级期末)若方程22320x px p 的两个不相等的实数根12x x 、满足232311224x x x x ,则实数p 的所有值之和为()A .0B .34C .1D .54【答案】B【分析】先根据一元二次方程解的定义和根与系数的关系得到2112320x px p ,122x x p ,进而推出113211322x px x px ,则3212211111322x px x px x x ,3222222222322x px x px x x ,即可推出 22121232124p x x p x x ,然后代入122x x p , 22212124x x x x p 得到 24310p p p ,再根据判别式求出符号题意的值即可得到答案.【详解】解:∵12x x 、是方程22320x px p 的两个相等的实数根,∴2112320x px p ,1212232x x p x x p ,,∴211232x px p ,∴211131232x px px x ,∴113211322x px x px ,∴3222111111322x x px x px x ,同理得3222222222322x px x px x x ,∵232311224x x x x +,∴232311224x x x x ,∴2222111122223223224px x px x px x px x ,∴22121232124p x x p x x ,∴ 23221222324p p p p p,∴2264124644p p p p p ,∴2226446424644p p p p p p p ,∴222224640p p p p p ,∴ 2246410p p p p ,∴224730p p p ,∴ 24310p p p ,解得1233014p p p ,,,∵ 2Δ24320p p ,∴2320p p ,∴ 130p p ,∴1p 不符合题意,∴1334p p∴符合题意,故选B .【点睛】本题主要考查了一元二次方程根与系数的关系,根的判别式,一元二次方程解的定义,熟知一元二次方程的解是使方程左右两边相等的未知数的值是解题的关键.2.14.(2023春·浙江杭州·八年级校考阶段练习)如果关于x 的一元二次方程20ax bx c 有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法,正确的有_____(填序号).①方程220x x 是“倍根方程”;②若(2)()0x mx n 是“倍根方程”,则22450m mn n ;③若,p q 满足2pq ,则关于x 的方程230px x q 是“倍根方程”;④若方程20ax bx c 是“倍根方程”,则必有229b ac .【答案】②③④【分析】①求出方程的根,再判断是否为“倍根方程”;②根据“倍根方程”和其中一个根,可求出另一个根,进而得到m ,n 之间的关系;③当,p q 满足2pq 时,有23px x q (1)()0px x q ,求出两个根,再根据2pq 代入可得两个根之间的关系,讲而判断是否为“倍根方程”;④用求根公式求出两个根,当122x x 或122x x 时,进一步化简,得出关系式,进行判断即可.【详解】①解方程220x x ,得1221x x ,,122x x ∵,方程220x x 不是“倍根方程”.故①不正确;②(2)()0x mx n ∵是“倍根方程”,且12x ,因此21x 或24x .当21x 时,0m n ,当24x 时,40m n ,2245()(4)m mn n m n m n 0 ,故②正确;③2pq ∵,23(1)()0px x q px x q ,121x x q p ,,2122x q x p,因此230px x q 是“倍根方程”,故③正确;④方程20ax bx c 的根为2212b b 4ac b b 4ac x ,x 2a 2a,若122x x ,则224422b b ac b b ac a a 2,即22442022b b ac b b ac a a,23402b b aca ,2340b b ac ,234b ac b ,2294b ac b ,229b ac ,若122x x ,则2422b b ac a242b b ac a ,23402b b aca ,2340b b ac ,234b b ac ,2294b b ac ,229b ac .故④正确,故答案为:②③④.【点睛】本题考查了解一元二次方程以及一元二次方程的求根公式,新定义的倍根方程的意义,理解倍根方程的意义和正确求出方程的解是解决问题的关键.3.(2023春·湖北十堰·九年级专题练习)定义:已知12x x ,是关于x 的一元二次方程 200ax bx c a 的两个实数根,若120x x ,且1234x x,则称这个方程为“限根方程”.如:一元二次方程213300x x 的两根为12103x x ,,因1030 ,10343,所以一元二次方程213300x x 为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程29140x x 是否为“限根方程”,并说明理由;(2)若关于x 的一元二次方程 222730x k x k 是“限根方程”,且两根12x x 、满足12121x x x x ,求k 的值;(3)若关于x 的一元二次方程 210x m x m 是“限根方程”,求m 的取值范围.【答案】(1)此方程为“限根方程”,理由见解析(2)k 的值为2(3)m 的取值范围为1134m 或43m 【分析】(1)解该一元二次方程,得出1272x x ,,再根据“限根方程”的定义判断即可;(2)由一元二次方程根与系数的关系可得出1272x x k ,21223k x x ,代入12121x x x x ,即可求出12k ,21k .再结合“限根方程”的定义分类讨论舍去不合题意的值即可;(3)解该一元二次方程,得出121x x m ,或121x m x ,.再根据此方程为“限根方程”,即得出此方程有两个不相等的实数根,结合一元二次方程根的判别式即可得出0 ,0m 且1m ,可求出m 的取值范围.最后分类讨论即可求解.【详解】(1)解:29140x x ,270x x ,∴20x 或70x ,∴1272x x ,.∵72 ,773422,∴此方程为“限根方程”;(2)∵方程 222730x k x k 的两个根分比为12x x 、,∴1272x x k ,21223k x x .∵12121x x x x ,∴231722k k ,解得:12k ,21k .分类讨论:①当2k 时,原方程为22970x x ,∴172x =-,21x ,∴120x x ,124732x x,∴此时方程 222730x k x k 是“限根方程”,∴2k 符合题意;②当1k 时,原方程为22640x x ,∴12x ,21x ,∴120x x ,1232x x ,∴此时方程 222730x k x k 不是“限根方程”,∴1k 不符合题意.综上可知k 的值为2;(3) 210x m x m ,(1)()0x x m ,∴10x 或0x m ,∴121x x m ,或121x m x ,.∵此方程为“限根方程”,∴此方程有两个不相等的实数根,∴0 ,0m 且1m ,∴ 2140m m ,即 21+0m ,∴0m 且1m .分类讨论:①当10m 时,∴121x x m ,,∵1234x x,∴134m,解得:1134m ;②当1m 时,∴121x m x ,,∵1234x x ,∴341m,解得:43m .综上所述,m 的取值范围为1134m 或43m .【点睛】本题考查解一元二次方程,一元二次方程根与系数的关系,一元二次方程根的判别式.读懂题意,理解“限根方程”的定义是解题关键.【重难点训练】1.(2023春·八年级课时练习)已知1x ,2x 为一元二次方程230x bx 的两个实数根,且122x x ,则()A .11x ,23xB .11x ,23xC .11x ,23xD .11x ,23x 【答案】D【分析】先利用一元二次方程根和系数的关系求得2b ,将b 代入方程得到2230x x ,利用因式分解法解方程即可得到答案.【详解】解:1x ∵,2x 为一元二次方程230x bx 的两个实数根,12bx x b a,122x x ∵,2b ,一元二次方程2230x x , 130x x ,11x ,23x ,故选D .【点睛】本题考查了一元二次方程根和系数的关系,因式分解法解一元二次方程,解题关键是掌握一元二次方程根和系数的关系:12b x x a,12cx x a .2.(2022秋·山东枣庄·九年级统考期中)已知a ,b 是方程230x x 的两个实数根,则22023a b 的值是()A .2023B .2021C .2026D .2027【答案】D【分析】将实数根a 代入方程得到23a a ,再利用根和系数关系得到1a b ,最后将代数式变形即可计算答案.【详解】解:∵a ,b 是方程230x x 的两个实数根,23a a ,1a b ,22023320232026120262027a b a b a b ,故选D .【点睛】本题考查了一元二次方程的解的含义、一元二次方程根与系数的关系及代数式求值,熟练掌握相关知识点是解题关键.3.(2022秋·河南安阳·九年级校联考期中)定义运算: *1a b a b .若a ,b 是方程 200x x m m 的两根,则**b b a a 的值为()A .0B .1C .2D .与m 有关【答案】A【分析】由根与系数的关系可找出1a b ,根据新运算找出 **11b b a a b b a a ,将其中的1替换成a b ,即可得出结论.【详解】解:∵a ,b 是方程 200x x m m 的两根,∴1a b ,∴ **110b b a a b b a a b a b b a a b a ab ab .故选A .【点睛】本题考查定义新运算,一元二次方程根与系数的关系.理解并掌握新运算的法则,掌握一元二次方程根与系数的关系,是解题的关键.4.(2022秋·湖北武汉·九年级统考期中)直线y x 与抛物线2(1)y x m x m 的两个公共点的横坐标分别是1x ,2x ,若2126x mx ,则m 的值是()A .2B .3或2C .3D .3 或2【答案】A【分析】令2(1)x m x m x ,根据根与系数的关系可知12x x m ,由根的判别式可以得到0m 或4m ,把1x 代入整理得26m m ,解方程即可.【详解】解:令2(1)x m x m x ,整理得20x mx m ,12x x m ,∵抛物线与直线y x 有两个交点,240m m ,0m 或4m ,1x ∵是方程20x mx m 的解,211x mx m ,2126x mx ∵,212126x mx mx mx m ,即26m m ,解得3m (舍)或2m ,故选:A .【点睛】本题考查根的判别式,根与系数的关系,解答的关键是利用数形结合把交点坐标转化为方程的解.5.(2022秋·福建泉州·九年级石狮市石光中学校考期中)设 , 是方程2310x x 的两根,则 2244 的值是()A .1B .5C .3D .3【答案】B【分析】根据一元二次方程根与系数的关系得出3,1 ,根据一元二次方程的解的定义得出223131 ,,代入代数式即可求解.【详解】解:∵ , 是方程2310x x 的两根,∴3,1 ,223131 ,,∴ 2244223311 1 1315 ,故选:B .【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,掌握以上知识是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数。

一元二次方程的根与系数的关系(八大题型提分练)(解析版)

一元二次方程的根与系数的关系(八大题型提分练)(解析版)

21.2.4一元二次方程的根与系数的关系(八大题型提分练)题型一、利用根与系数的关系求两根之和与两根之积1.(2024·天津红桥·三模)若一元二次方程22320x x +-=的两个根分别为1x ,2x ,则12x x +的值为()A .32-B .32C .1-D .12.(2024·天津宝坻·二模)若12x x ,是方程2320x x --=的两个根,则()A .122x x =-B .122x x =C .123x x +=-D .1223x x +=3.(2024·甘肃兰州·二模)若1x ,2x 是方程2650x x -+=两个根,则()A .126x x +=-B .126x x +=C .1256x x ⋅=-D .125x x ⋅=-【答案】B【分析】本题考查根与系数的关系,解题的关键是记住1x ,2x 是一元二次方程200ax bx c a ++=≠()的两根题型二、利用根与系数的关系求代数式的值4.(2024·山东菏泽·一模)已知m ,n 是一元二次方程²220260x x +-=的两个实数根,则代数式²3m m n ++的值等于()A .2026B .2025C .2024D .2023【答案】C【分析】本题主要考查了一元二次方程的根与系数的关系,一元二次方程解的定义,正确将原式变形为()()22mm m n +++是解题的关键.根据一元二次方程的根与系数的关系和一元二次方程解的定义得到2220262m m m n +=+=-,,再把原式变形为()()22m m m n +++,由此代值计算即可.【详解】解:∵m 、n 是一元二次方程²220260x x +-=的两个实数根,∴22202602m m m n +-=+=-,,∴222026m m +=,∴²3m m n++()()2222m m m n =+++()()22m m m n =+++()20262=+-2024=,故选C .5.(2024·山东济宁·一模)设α,β是一元二次方程23170x x +-=的两个根,则252a αβ++=.【答案】11【分析】此题主要考查了根与系数的关系,由α,β是一元二次方程23170x x +-=的两个根,得出3αβ+=-,23170αα+-=,再把252a αβ++变形为()232αααβ+++,即可求出答案.【详解】解:∵α,β是一元二次方程23170x x +-=的两个根,∴3αβ+=-,23170αα+-=,∴2317αα+=,∴()()225232172311ααβαααβ++=+++=+⨯-=,故答案为:11.6.(2024·江苏盐城·二模)已知:α,β是方程2240x x +-=有两个实数根.求出下列代数式的值(1)()1αβα++;(2)242ααβ++.【答案】(1)6-(2)0【分析】本题考查了一元二次方程根与系数的关系,代数式求值,解题的关键是掌握一元二次方程根与系数的关系.(1)根据根与系数的关系可得2αβ+=-,4αβ=-,再将所求代数式变形,最后代入求解即可;(2)根据题意可得2240αα+-=,2αβ+=-,推出224αα+=,再将所求式子变形,最后代入求解即可.【详解】(1)解: α,β是方程2240x x +-=有两个实数根,∴2αβ+=-,4αβ=-,∴(1)246αβαααββ++=++=--=-;(2) α,β是方程2240x x +-=有两个实数根,∴2240αα+-=,∴224αα+=,∴242ααβ++2(2)(22)αααβ=+++()()222αααβ=+++()422=+⨯-0=题型三、已知代数式的值求参数7.(2024·四川乐山·二模)已知一元二次方程230x x k -+=的两个实数根为12,x x ,若1212221x x x x ++=,则实数k 的值为()A .5-B .7C .1-D .18.(2024·黑龙江大庆·模拟预测)已知1x 、2x 是关于x 的方程2230x x k -+-=的两实数根,且2211221x x x x x x +=+-,则k 的值为.9.(2024·广东东莞·一模)已知一元二次方程()22210x m x m +-+=(1)若方程有两个实数根,求m 的取值范围;(2)若方程的两个实数根为12,x x ,且121210x x x x ++-=求m 的值.10.(23-24九年级上·江西南昌·阶段练习)已知一元二次方程2102x x m -+=.(1)若方程有实数根,求m 的取值范围;(2)若方程的两个实数根为12x x 、,且1233x x +=,求m 的值.∴0m =.题型四、已知方程的一根求另一根和参数的值11.(23-24九年级下·山东烟台·期中)250x x m --=的一个根,则该方程的另一根是()A .1-B .1C .2D .312.(23-24九年级下·海南省直辖县级单位·期中)已知关于x 的方程230x x n --=有一个根是1-,则另一个根为.【答案】4【分析】本题考查根与系数的关系,设另一个根为a ,由两根之和等于3,进行求解即可.【详解】解:设方程的另一个根为a ,则:()13a +-=,∴4a =;即:另一个根为4;故答案为:4.13.(23-24九年级上·河南郑州·阶段练习)已知关于x 的一元二次方程()22210x k x k k -+++=.(1)求证:方程有两个不相等的实数根;(2)已知方程一个根为2,求k 的值.【答案】(1)见解析(2)1k =,或2k =【分析】本题主要考查了一元二次方程根的判别式及根与系数的关系,解一元二次方程.熟练掌握一元二次方程根的判别式判定根的情况,一元二次方程根与系数的关系,是解题的关键.(1)根据一元二次方程写出根的判别式,根据根的判别式的值为正数即可证明方程有两个不相等的实数根;(2)设方程的另一根为α,根据根与系数的关系列方程组,消去a ,得到k 的一元二次方程,解方程即得.【详解】(1)解:∵()()2222Δ21414414410k k k k k k k ⎡⎤=-+-⨯⨯+=++--=>⎣⎦,故方程有两个不相等的实数根.(2)设方程的另一根为a ,则22212a k a k k+=+⎧⎨=+⎩,∴2320k k -+=,∴()()120k k --=,∴10k -=,或20k -=,解得,1k =,或2k =.题型五、根与系数的关系与判别式综合问题14.(2024·江苏宿迁·三模)关于x 的一元二次方程()²00ax bx c ac ++=≠,有以下命题:①若0a b c -+=,则²40b ac -≥②若方程的两根为3-和1,则30a c +=③若上述方程有两个相等的实数根,则²1ax bx c ++=-必有实数根;④若m 是该方程的一个根,则1m一定是²0cx bx a ++=的一个根.其中真命题的个数()A .4B .3C .2D .1【答案】B【分析】本题考查了一元二次方程的知识,掌握一元二次方程解的概念和计算方法,根与系数的关系是解题的关键.根据一元二次方程的解,把131x x x =-==,,代入可判定命题①②;根据根的判别式240b ac ∆=-≥可判15.(23-24九年级下·重庆·阶段练习)已知两个实数x 、y ,可按如下规则进行运算:计算(1)(1)1x y ---的结果,得到的数记为1z ,称为第一次操作.再从x 、y 、1z 中任选两个数,操作一次得到的数记为2z ;再从x 、y 、1z 、2z 中任选两个数,操作一次得到的数记为3z ,依次进行下去.以下结论正确的个数为()①若x 、y 为方程240m m +-=的两根,则1 2z =-;②对于整数x 、y ,若x y +为偶数,在操作过程中,得到的n z 一定为偶数;③若4,2x y =-=,要使得2024n z >成立,则n 至少为4.A .0B .1C .2D .3【答案】B 【分析】本题考查新定义的实数运算和一元二次方程根与系数的关系,理解题目中的算法是解题的关键.①先化简(1)(1)1x y ---,根据根与系数的关系得1x y +=-,4xy =-,即可求解;②对于整数x 、y ,若x y +为偶数,则x 、y 同为偶数或同为奇数,xy 为偶数或奇数,计算结果可能为奇数或偶数;③先计算1z ,然后从中选取绝对值较大的两个数,进行计算,即可求解.【详解】解:①x 、y 为方程240m m +-=的两根,∴1x y +=-,4xy =-,∴()()(1)(1)111413x y xy x y xy x y ---=--+-=-+=---=-故说法错误;②对于整数x 、y ,若x y +为偶数,则x 、y 同为偶数或同为奇数,∴xy 为偶数或奇数,∴(1)(1)1x y ---的结果可能为奇数或偶数,∴得到的n z 一定为偶数说法错误;③若4,2x y =-=,则1826z =-+=-,然后从中选取绝对值较大的两个数,进行计算,则()()()2464634z =-⨯----=()()3346346232z =⨯---=-,()4232342323467690z =-⨯--+=-,16.(23-24九年级上·广东广州·期中)已知关于x 的一元二次方程22560x x p -+-=.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)若方程的两实数根为12,x x ,且满足124x x =,试求出p 的值.17.(23-24九年级下·江苏泰州·阶段练习)对于代数式2ax bx c ++,若存在实数n ,当时,代数式的值也等于n ,则称n 为这个代数式的不变值.例如:对于代数式2x ,当0x =时,代数式等于0;当1x =时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值A=.与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则0 (1)代数式22x x-的不变值是________,A=_______.(2)已知代数式2x bx b-+,A=,求b的值;①若0②若12A≤≤,b为整数,求所有整数b的和.题型六、根与系数的关系与三角形问题18.(23-24九年级下·江苏苏州·阶段练习)已知关于x 的方程()2330x k x k -++=.(1)求证:无论k 取任何实数,该方程总有实数根;(2)若等腰三角形的三边长分别为a b c ,,,其中1a =,并且b c ,恰好是此方程的两个实数根,求此三角形的周长.【答案】(1)见解析(2)7【分析】此题考查了根与系数的关系,根的判别式,三角形三边关系,以及等腰三角形的性质,熟练掌握各自的性质是解本题的关键.(1)表示出方程根的判别式,判断其值大于等于0即可得证;(2)分两种情况考虑:当b c =时,求出方程的解,进而得到三角形周长;当1a c ==或1a b ==时,把1x =代入方程求出k 的值,进而求出周长即可.【详解】(1)证明:∵()()222Δ34136930k k k k k ⎡⎤=-+-⨯⨯=-+=-≥⎣⎦,∴无论k 取任何实数,方程总有实数根;(2)解:当b c =时,3k =,方程为2690x x -+=,解得:123x x ==,此时三边长为133,,,周长为1337++=;当1a b ==或1a c ==时,把1x =代入方程得:()1330k k -++=,解得:1k =,此时方程为:2430x x -+=,解得:1231x x ==,,此时三边长为113,,不能组成三角形,综上所述,ABC 的周长为7.19.(2023·四川绵阳·一模)已知关于x 的方程()()2340x x p p ---+=;(1)求证:方程总有实数根;(2)若方程的两根12,x x 为直角三角形的两边长,且25x =,求P 的值及该直角三角形的周长.20.(22-23九年级上·黑龙江七台河·期末)已知1x ,2x 是关于x 的一元二次方程222(1)50x m x m -+++=的两实数根.(1)若12(1)(1)28x x --=,求m 的值;(2)已知等腰ABC 的一边长为7,若1x ,2x 恰好是ABC 另外两边的边长,求这个三角形的周长.【详解】(1)解:根据题意得判别式()()2241450m m =+-+≥,解得2m ≥,122(1)x x m +=+,2125=+x x m ,121)18)(2(x x --= ,即1212()128x x x x -++=,252(1)128m m ∴+-++=,整理得22240m m --=,解得16m =,24m =-,而2m ≥,m ∴的值为6;(2)解:当腰长为7时,则7x =是一元二次方程222(1)50x m x m -+++=的一个解,把7x =代入方程得24914(1)50m m -+++=,整理得214400m m -+=,解得110m =,24m =,当10m =时,122(1)22x x m +=+=,解得215x =,而7715+<,故舍去;当4m =时,122(1)10x x m +=+=,解得23x =,则三角形周长为37717++=;当7为等腰三角形的底边时,则12x x =,所以2m =,方程化为2690x x -+=,解得123x x ==,则337+<,故舍去,所以这个三角形的周长为17.题型七、根与系数的关系与四边形问题21.(2023·江西新余·一模)已知平行四边形ABCD 的两邻边的长m ,n 分别是关于x 的一元二次方程21024k x kx -+-=的两个实数根.(1)求k 的取值范围;(2)当k 为何值时,四边形ABCD 是菱形;(3)当k 为何值时,四边形ABCD 的两条对角线的长相等,且都等于102,求出这时四边形ABCD 的周长和面积.题型八、新定义及材料探究题22.(2023·江西新余·一模)如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根是另一个根的3倍,那么称这样的方程为“三倍根方程”.例如:方程2430x x -+=的两个根是1和3,则这个方程就是“三倍根方程”.(1)方程2320x x -+=______(填“是”或“否”)“三倍根方程”;(2)若关于x 的方程240x x c -+=是“三倍根方程”,求c ;(3)若()20x m n x mn -++=是关于x 的“三倍根方程”,求代数式22mnm n +的值.23.(23-24九年级上·江苏泰州·阶段练习)如果关于x 的一元二次方程()200ax bx c a ++=≠有两个不相等的实数根,且其中一个根为另一个根的2倍,则称这样的方程为“2倍根方程”,(1)方程2680x x -+=“2倍根方程”(填“是”或“不是”);(2)若一元二次方程290x x c -+=是“2倍根方程”,求出c 的值.(3)若()()()300x ax b a --=≠是“2倍根方程”,求代数式32a ba b-+的值.1.(2024·安徽合肥·二模)已知关于x 的方程2230x x k -+=的两根分别为1x 和2x ,若1240x x +=,则k 的值为()A .23-B .2-C .23D .22.(2024·湖北黄石·二模)设m n ,分别为一元二次方程2220240x x +-=的两个实数根,则23m m n ++=()A .2020B .2022C .2024D .2026【答案】B【分析】本题考查了一元二次方程根的定义,一元二次方程根和系数的关系,代数式求值,由一元二次方程根的定义可得2220240m m +-=,进而得222024m m +=,由一元二次方程根和系数的关系可得2m n +=-,再把23m m n ++转化为()22m m m n +++,代入前面所得式子的值计算即可求解,掌握一元二次方程根的定义及根和系数的关系是解题的关键.【详解】解:∵m n ,分别为一元二次方程2220240x x +-=的两个实数根,∴2220240m m +-=,2m n +=-,∴222024m m +=,∴()2232202422022m m n m m m n ++=+++=-=,故选:B .3.(2024·江苏南京·二模)若关于x 的方程()200ax bx c a ++=≠的两根之和为p ,两根之积为q ,则关于y的方程()()2110a y b y c -+-+=的两根之积是()A .1p q ++B .1p q -+C .1q p -+D .1q p --【答案】A【分析】本题考查根与系数的关系,设关于x 的方程()200ax bx c a ++=≠的两个根为12,x x ,得到1212,x x p x x q +==,换元法,得到()()2110a y b y c -+-+=的两个根为121,1x x ++,再进行求解即可.【详解】解:设关于x 的方程()200ax bx c a ++=≠的两个根为12,x x ,则:1212,x x p x x q +==,∴关于y 的方程()()2110a y b y c -+-+=的两根为11221,1y x y x =+=+,∴()()()121212121111y y x x x x x x q p =++=+++=++;故选A .4.(2024·江苏南京·二模)关于x 的方程22x kx +=(k 为常数)的根的情况,下列结论中正确的是()A .两个正根B .两个负根C .一个正根,一个负根D .无实数根5.(2024·四川达州·二模)若一个菱形的两条对角线长分别是关于x 的一元二次方程2120x x m -+=的两个实数根,且其面积为20,则该菱形的边长为()A .B .C .4D .66.(2024·内蒙古乌兰察布·二模)设1x 、2x 是一元二次方程260x mx --=的两个根,且121x x =+,则12x x -=.【答案】5【分析】本题考查了一元二次方程的根与系数的关系,解一元二次方程,由一元二次方程根与系数的关系得出121x x m +==,再利用因式分解法解一元二次方程,最后代入计算即可得出答案,熟练掌握一元二次方程根与系数的关系是解此题的关键.【详解】解: 1x 、2x 是一元二次方程260x mx --=的两个根,且121x x =+,121x x m ∴+==,7.(2024·四川内江·二模)已知实数a ,b 满足251a a -=-,215b b +=,则b aa b+=.8.(2024·山东济宁·三模)若关于x 的方程2220(x x m m m +--=为正整数)的两根分别记为m α,m β,如:当1m =时,方程的两根记为1α,1β,则112220232023111111αβαβαβ++++⋯++=.9.(2024·甘肃天水·三模)已知关于x的方程2220x mx m m+++=有两个不相等的实数根1x,2x.(1)求m的取值范围;(2)若22121240x x x x m++=,求m的值.解得:0m =或1或2m =-,0m < ,2m ∴=-.10.(2024·四川南充·三模)已知关于x 的一元二次方程()221230x k x k -+--=有两个不相等的实数根.(1)求实数k 的取值范围,(2)当2k =时,设方程的两个实数根分别为12,x x ,求32221121243x x x x x -+++的值.913=++13=.11.(2024·安徽合肥·二模)类比是探索发展的重要途径,是发现新问题、新结论的重要方法.阅读材料:设20x px q ++=的两个根为1x 和2x ,那么22121212()()()x px q x x x x x x x x x x ++=--=-++比较系数,可得12x x p +=-,12x x q =.类比推广,回答问题:设320x px qx r +++=的三个根为1x ,2x ,3x ,那么323123()()()x px qx r x x x x x x x +++=---=+___________()2x +(___________)x +(___________).比较系数,可以得到一元三次方程的根与系数的关系:123x x x ++=___________,___________q =,123x x x =___________.【答案】123x x x ---,122313x x x x x x ++,r -,p -,122313x x x x x x ++,r【分析】本题主要考查根据一元二次方程中根和系数之间的关系推理一元三次方程中根与系数的关系,掌握一元二次方程中根与系数的关系,多项式乘以多项式的运算法则是解题的关键.将一元三次方程按照一元二次方程的方式因式分解为,再将其按照多项式乘以多项式的方式展开,得到()()32123122313123x x x x x x x x x x x x x x x =-+++++-,最后得到根与系数关系123x x x p ++=-,122313q x x x x x x +=+,123x x x r =即可;【详解】解:根据材料提示得,32123()()()x px qx r x x x x x x +++=---,()212123()x x x x x x x x ⎡⎤=-++-⎣⎦,()()32231212312123x x x x x x x x x x x x x x x x ⎡⎤=--++++-⎣⎦,()()32123122313123x x x x x x x x x x x x x x x ⎡⎤=-+++++-⎣⎦,()()32123122313123x x x x x x x x x x x x x x x =-+++++-,32x px qx r +++=,∴123x x x p ++=-,122313q x x x x x x +=+,123x x x r =-;故答案为:123x x x ---,122313x x x x x x ++,123x x x ,p -,122313x x x x x x ++,-r .12.(2024·四川南充·二模)已知关于x 的一元二次方程()232100x m x m --+-=.(1)求证:此一元二次方程总有实数根;(2)已知ABC 两边长a ,b 分别为该方程的两个实数根,且第三边长3c =,若ABC 的周长为偶数,求m 的值.13.(2024·四川南充·二模)关于x 的一元二次方程()222120x m x m -+++=有实数根.(1)求m 的取值范围;。

一元二次方程根与系数关系专题

一元二次方程根与系数关系专题

一元二次方程根与系数关系专题姓名:专题一.求证:不论m 取何值,关于x 的方程02)2(2=-+-x m x 总有实数根。

专题二.已知一直角三角形的三边为c b a 、、,∠B=90°,判断关于x 的方程0)1(2)1(22=++--x b cx x a 的根的情况。

专题三.等腰三角形边长分别为2、、b a ,且b a 、是关于x 的一元二次方程0162=-+-n x x 的两根,求n 的值。

专题四.已知21,x x 是方程0252=+-x x 的两个不同根,则=++2121x x x x ; =+221122x x x x ; =--)2)(2(21x x ;专题五.(1)若关于x 的方程032=++a x x 有一个根为-1,则=a ,另一个根为 ;(2)已知方程04322=++c bx x 的两个根为4和9,则=b ,=c ;专题六.已知方程012=++px x 的两根为21,x x ,其中321+=x ,求2112x x x x -的值。

专题七.已知一元二次方程0742=--x x 的两个根分别为b a 、,请构造一个以22++b a 、为根的一元二次方程。

专题八.关于x 的一元二次方程02=++c bx ax ,小明看错了a ,解得两根分别为4和8,小红得到了正确的结果,方程有两个相等的实数根,求ab c +6的值。

专题九.(1)已知实数b a 、满足,01301322=-+=-+b b a a 、,求33b a -的值; (2)已知实数b a 、满足,023*******=++=++b b a a 、,求ab 的值;专题十.已知关于x 的一元二次方程0)2(2=+++-n m x n m mx 。

(1)求证:方程有实数根1;(2)若2=+n m ,m 为正整数,且方程有两个不相等的整数根,求n m 、;专题十一.已知关于x 的一元二次方程04143)1(4122=+----+k k m k mx x 有有理根,求有理数k 的值。

一元二次方程根与系数的关系专题

一元二次方程根与系数的关系专题

1、已知关于x 的方程x 2-2(m+1)x+m 2-2m-3=0 …①的两个不相等实数根中有一个根为0。

是否存在实数k ,使关于x 的方程x 2-(k-m)x-k-m 2+5m-2=0 …②的两个实数根x 1,x 2之差的绝对值为1?若存在,求出k 的值;若不存在,请说明理由。

2、已知关于x 的一元二次方程0132=-++m x x⑴请选取一个你喜爱的m 的值,使方程有两个不相等的实数根,并说明它的正确性; ⑵设x 1,x 2是⑴中所得方程的两个根,求x 1x 2+x 1+x 2的值。

3、已知抛物线y=(1-m)x 2+4x-3开口向下,与x 轴交于A(x 1,0)和B(x 2,0)两点, 其中x l <x 2.(1)求m 的取值范围;(2)若x 12+ x 22=10,求抛物线的解析式,并在给出的直角坐标系中画出这条抛物线;(3)设这条抛物线的顶点为C ,延长CA 交y 轴于点D .在y 轴上是否存在点P ,使以P 、 0、B 为顶点的三角形与△BCD 相似?若存在,求出P 点的坐标;若不存在,请说明 理由.4、关于x 的方程04)1(2=+++k x k kx 有两个不相等的实数根。

(1)求k 的取值范围;(2)是否存在实数k ,使方程的两个实数根的倒数和等于0 ?若存在,求出k 的值;若不存在,请说明理由。

5、已知:关于x 的一元二次方程01)12(2=-+++k x k x ;其中k 为实数,(1)求证:不论k 取什么实数,方程都用两个不同的实根;(2)设方程的两根为x 1,x 2,且满足2x 1+x 2=3,求实数k 的值6、已知关于x 的方程x 2+2(2-m )x +3-6m =0(1) 求证:无论m 取什么实数,方程总有实数根;(2) 如果方程的两个实数根x 1、x 2满足x 1=3x 2,求实数m 的值.7、已知:关于x 的方程x 2-kx-2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1,x 2,如果2(x 1+x 2)>x 1x 2,求k 的取值范围。

一元二次方程根与系数的关系经典题型

一元二次方程根与系数的关系经典题型

一元二次方程根与系数的关系经典题型
经典题型之一是根据一元二次方程的系数,求解方程的根的情况。

以下是两个常见的经典题型:
1. 根的个数:
对于一元二次方程ax^2 + bx + c = 0,根的个数与方程的判别式(discriminant)相关。

判别式Δ的计算公式为Δ= b^2 - 4ac。

根据Δ的值可以得到以下结论:
当Δ> 0 时,方程有两个不同的实根。

当Δ= 0 时,方程有两个相等的实根。

当Δ< 0 时,方程没有实根,但有两个复数根。

2. 根的大小关系:
对于一元二次方程ax^2 + bx + c = 0,可以根据系数之间的关系得出根的大小关系:
当 a > 0 时,方程开口向上,且根的大小关系为x1 < x2。

当 a < 0 时,方程开口向下,且根的大小关系为x1 > x2。

这些题型在解决实际问题时很常见,比如用于计算抛物线的顶点、求解运动方程等。

使用方程的根与系数的关系,可以帮助我们理解方程的形态及其与数学和几何特征之间的关联。

一元二次方程根与系数的关系(5种题型)-2023年新九年级数学(苏科版)(解析版)

一元二次方程根与系数的关系(5种题型)1.探索一元二次方程的根与系数的关系.(重点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(难点)韦达定理:如果12x x ,是一元二次方程 20(0)ax bx c a −+=≠的两个根,由解方程中的公式法得,12x x ==. 那么可推得1212b cx x x x a a+=−⋅=,这是一元二次方程根与系数的关系.题型1:求根与系数关系例1.(2023春·江苏南京·九年级专题练习)若1x ,2x 是一元二次方程2230x x −−=的两个根,则12x x +的值是( ) A .2 B .2− C .3 D .3−【答案】A【分析】根据一元二次方程根与系数的关系可得12x x +的值.【详解】解:一元二次方程2230x x −−=的二次项系数是1a =,一次项系数2b =−,∴由根与系数的关系,得122x x +=.故选:A .【点睛】本题考查了一元二次方程根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,12b x x a +=−,12cx x a =,牢记公式是解题的关键.12x x 是【答案】D【分析】利用两根之积等于ca 即可解决问题.【详解】解:一元二次方程22410x x −+=的两个根为1x、2x ,1212x x ∴=,故选:D .【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于ba −,两根之积等于c a ”是解题的关键.题型2:利用根与系数的关系式求代数式的值【答案】4/0.75【分析】根据根与系数的关系求出12x x +和12x x ⋅的值,然后代入221212x x x x +计算即可.【详解】解:∵22310x x +−=,∴1232x x +=−,1212x x ⋅=−,∴()2212121212313224x x x x x x x x ⎛⎫==−⨯−=⎪⎝++⎭. 故答案为:34.【点睛】本题考查了一元二次方程根与系数的关系,若1x ,2x 为方程20(0)ax bx c a ++=≠的两个根,则1x ,2x 与系数的关系式:12b x x a +=−,12cx x a ⋅=. 例4.(2023春·江苏南京·九年级专题练习)若m ,n 分别是一元二次方程2410x x −+=的两个根,则23m m n −+的值为( ) A .3 B .4 C .5 D .6【答案】A【分析】根据一元二次方程解的定义和根与系数的关系得到2410m m −+=,m +n =4,然后利用整体代入的方法计算.【详解】解:∵m ,n 分别是一元二次方程2410x x −+=的两个根,∴2410m m −+=,m +n =4, ∴241m m −=−,∴2234143m m n m m m n −+=−++=−+=,故选:A .【点睛】本题考查了一元二次方程的解,根与系数的关系,若1x ,2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=−,12cx x a ⋅=,熟练掌握一元二次方程根与系数的关系是解题的关键. 例5.已知12x x ,是方程2133022x x −−=的两根,求下列各式的值:(1)1211x x +;(2)2212x x −;(3)2212x x +;(4)12||x x−.【答案】(1)2−;(2)−3)42;(4). 【解析】解:由韦达定理,得:126x x +=,123x x =−.原式=12122x x x x +=−;原式()()()1212126x x xx x x=+−=−=±6=±=±•=±原式=()21212242x x x x +−=;原式12x x −==.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用.例6.已知2212510520.1m m n n mn n m−−=+−=≠+,,求的值. 【答案】5−.【解析】由22510m m −−=,可得:25120m m −−=,整理得:21520m m +−=,又由于2520n n +−=,所以可知1m 、n 是方程2520x x +−=的两根, 由韦达定理,可得:15n m +=−.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,而且还考查了一元二次方程的根的灵活应用,要注意观察.例7.已知αβ,是方程:2240x x −−=的两根,求代数式3+8+6αβ的值. 【答案】30.【解析】由题及韦达定理可得:2240αα−−=,2αβ+=,得:224αα=+.3+8+6αβ=286ααβ⋅++=()2486ααβ+++=22486ααβ+++=()224486ααβ++++=()81430αβ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,运用了降次等的思想方法.题型3:已知含字母的一元二次方程的一个根,求另一个根及字母的值例8.(2023春·江苏徐州·九年级校考阶段练习)已知关于x 的方程220x x a +−=的一个根为2,则另一个根是______. 【答案】4−【分析】根据一元二次方程根与系数的关系即可求解.【详解】解:设方程220x x a +−=的另一个根为2x ,则222x +=− 解得:24x =−, 故答案为:4−.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200axbx c a ++=≠的两根,12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解题的关键.例9.若方程:2980kx x −+=的一个根为1x =,则k =________;另一个根为________. 【答案】1;8x =.【解析】将1x =代入方程,可得:1k =,再由韦达定理可得:128x x =,得另一根为8x =.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的应用.题型4:有关一元二次方程的根与系数关系的创新题例10.已知一个直角三角形的两个直角边的长恰好是方程:22870x x −+=两个根,求这个直角三角形的周长. 【答案】7.【解析】解:设直角三角形的三边长为a ,b ,c ,且c 是斜边长,由题知,4a b +=,72ab =,由勾股定理,可得:222c a b =+,所以3c =,所以直角三角形的周长7a b c ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,并且考查了直角三角形的性质,即勾股定理的应用.例11.(2023春·江苏苏州·九年级苏州中学校考开学考试)已知关于x 的一元二次方程22430x mx m −+=. (1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值. 【答案】(1)见详解;(2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,然后根据一元二次方程根与系数的关系可得212124,3x x m x x m +=⋅=,进而可得()2124x x −=,最后利用完全平方公式代入求解即可.【详解】(1)证明:由题意得:21,4,3a b m c m ==−=,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,则有:212124,3x x m x x m +=⋅=,∵122x x −=,∴()()2222121212416124x x x x x x m m −=+−=−=,解得:1m =±, ∵0m >, ∴1m =.根与系数的关系是解题的关键.【答案】(1)③;(2)4;(3)10【分析】(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)设关于x 的方程260x x c −+=的两个根为12,x x ,然后根据“三倍根方程”可令213x x =,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)先把一元二次方程进行因式分解变形,然后根据“三倍根方程”的关系可进行求解.【详解】(1)解:由2320x x −+=可得:121,2x x ==,不满足“三倍根方程”的定义;由230x x −=可得:120,3x x ==,不满足“三倍根方程”的定义;由28120x x −+=可得:122,6x x ==,满足“三倍根方程”的定义;故答案为③;(2)解:设关于x 的方程260x x c −+=的两个根为12,x x ,由一元二次方程根与系数的关系可知:126x x +=,12x x c =,令213x x =,则有146x =, ∴132x =,292x =, ∴274c =; (3)解:由()20x m n x mn −++=可得:()()0x m x n −−=,∴12,x m x n==,令3m n =,则有:2222233910mn n m n n n ==++.【点睛】本题主要考查一元二次方程根与系数的关系及解法,熟练掌握一元二次方程根与系数的关系是解题的关键.一、单选题1.(2022秋·江苏无锡·九年级统考期中)关于下列一元二次方程,说法正确的是( ) A .2560x x ++=的两根之和等于5 B .231x x −=的两根之积等于1C .20x x m ++=两根不可能互为倒数D .210x mx ++=中m =0时,两根互为相反数【答案】C【分析】根据一元二次方程根的判别式以及一元二次方程根与系数的关系进行判断即可求解.【详解】A. 2560x x ++=的两根之和等于5−,故该选项不正确,不符合题意;B. 231x x −=,即方程2310x x −−=的两根之积等于1−,故该选项不正确,不符合题意;C. 20x x m ++=,∵1,1,a b c m ===,24140b ac m ∆=−=−≥,解得14m ≤,∵1m ≠,两根之积为m ,∴方程两根之积不可能互为倒数,故该选项正确,符合题意;D. 210x mx ++=中0m =时,即21x =−,此方程无实根,故该选项不正确,不符合题意.故选C .【点睛】本题考查了一元二次方程根的判别式以及一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=≠的两根,12bx x a +=−,12c x x a =.一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【答案】A【分析】利用根与系数的关系12bx x a +=−即可求解.【详解】解:利用根与系数的关系,可得:1222b a a x x a +=−−=−=,x 的方程220ax ax c −+=的一个解为11x =−,()212213x x ∴=−=−−=,故选:A .【点睛】本题主要考查根与系数的关系,解题的关键是熟练掌握根与系数的关系.【答案】D【分析】根据两根之和为10−,以及两根之间的数量关系,求出两个根,再根据两根之积等于26a +,求出a 的值即可.【详解】解:设方程的两个根为,m n ,4=m n ,由根与系数的关系可得:10m n +=−,即:410n n +=−, 解得:2n =−, ∴()428m =⨯−=−,∵()268216mn a =+=−⨯−=,∴5a=; 故选D .【点睛】本题考查一元二次方程根与系数的关系.熟练掌握两根之和等于ba −,两根之积等于c a ,是解题的关键.【答案】A【分析】根据:若一元二次方程()200ax bx c a ++=≠ 两根分别为12x x ,,则有:1212b x x a c x x a ⎧+=−⎪⎪⎨⎪⋅=⎪⎩, 代入数据计算即可.【详解】解:设方程的另一根为1x ,由根据根与系数的关系可得:11115x mx +=⎧⎨⨯=⎩,解得:156x m =⎧⎨=⎩故选:B.【点睛】本题考查了一元二次方程的根与系数的关系,关键要理解一元二次方程的两根之和只与二次项系数和一次项系数有关,两根之积只与二次项系数和常数项有关,从而快速计算结果.5.(2022·江苏南京·南师附中树人学校校考二模)方程()()1210x x +−+=的根的情况,下列结论中正确的是( ) A .两个正根 B .两个负根 C .一个正根,一个负根 D .无实数根【答案】C 【分析】先把方程()()1210x x -++=化为210x x +−=,再根据2Δ41450b ac =-=+=>可得方程有两个不相等的实数根. 【详解】解:∵()()1210x x -++=(p 为常数),∴210x x +−=,∴2Δ41450b ac =-=+=>,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为1−, ∴一个正根,一个负根. 故选:C .【点睛】本题考查一元二次方程根的判别式以及根与系数关系,注意利用偶次方的非负性判断代数式的符号是解决问题的关键. 二、填空题6.(2023·江苏盐城·统考一模)已知关于x 的一元二次方程280x kx +−=的一个根是2-,则它的另一个根为______. 【答案】4【分析】利用根与系数之间的关系来求解. 【详解】解:设方程的另一个根为m ,关于x 的一元二次方程280x kx +−=的一个根是2-,由根与系数之间的关系可得 28m −=− 4m ∴=,故答案为:4.【点睛】本题主要考查了一元二次方程根与系数之间的关系.解题的关键是一元二次方程20ax bx c ++=的两根如果为1x 、2x ,则有12b x x a +=−,12cx x a ⋅=. 7.(2022秋·江苏盐城·九年级统考期中)已知一元二次方程2202210x x −−=的两个根分别是1x 、2x ,则代数式221212x x x x +的值为______. 【答案】2022−【分析】结合题意利用一元二次方程根与系数的关系求得122022x x +=,121x x =−,代入即可求解.【详解】解:一元二次方程2202210x x −−=的两个根分别是1x、2x ,122022x x ∴+=,121x x =−,()2212121212x x x x x x x x ∴+=+12022=−⨯2022=−,故答案为:2022−.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值;熟练掌握根与系数的关系是解题的关键.【答案】2【分析】由根与系数的关系可得12123x x x x m+==,,结合12121x x x x +−=可得出关于m 的一元一次方程,解之即可得出结论. 【详解】解:∵12x x ,是方程230x x m −+=的两个根,∴12123x x x x m+==,, ∵121231x x x x m +−=−=,∴2m =. 故答案为2.【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程()200ax bx c a ++=≠的两根时,1212cb a a x x x x +=−=,.9.(2023秋·江苏扬州·九年级校考期末)已知1x、2x 是关于x 的方程2250x x −−=的两个根,则12x x +值等于________. 【答案】2【分析】根据一元二次方程根与系数的关系得出两根之和即可求解. 【详解】解:1x 、2x 是关于x 的方程2250x x −−=的两个根,12221x x −∴+=−=,故答案为:2.【点睛】本题主要考查了一元二次方程的根与系数的关系,一元二次方程()200ax bx c a ++=≠的根与系数的关系为:12b x x a +=−,12cx x a ⋅=.【答案】6【分析】根据根与系数关系得到两根和与两根积的值,将式子通分代入求解即可得到答案. 【详解】解:由题意可得, ∵1x ,2x 是一元二次方程2560x x +−=的两个根,∴12551x x +=−=−,12661x x −==−,∴121212115566x x x x x x +−+===− 故答案为:56.【点睛】本题考查一元二次方程根与系数之间的关系,解题的关键是熟练掌握12b x x a +=−,12cx x a =.11.(2023秋·江苏南京·九年级统考期末)关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,则p 的取值范围是______. 【答案】21p −<<−【分析】根据一元二次方程根的判别式和根与系数得关系解答即可.【详解】由题意得: 221x x p −−=,∴22(1)0x x p −−+=,∴[]224(2)41(1)48b ac p p ∆=−=−−⨯⨯−+=+,∴122b x x a +=−=,12(1)cx x p a ⋅==−+,∵关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,∴480(1)0p p +>⎧⎨−+>⎩,解得:21p −<<− ∴p 的取值范围是:21p −<<− 故答案为:21p −<<−【点睛】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握相关知识点是解题的关键.【答案】1−/1−【分析】依据根与系数的关系即12bx x a +=−,12c x x a =代入即可求出m n 、的值,最后代入计算即可.1是方程20x mx n ++=的两个根,))11m∴+=−,)()1·1n=,即m =−1n =,1m n ∴+=−, 故答案为:1−.【点睛】本题考查了根与系数的关系,二次根式的混合运算;解题的关键是熟练掌握一元二次方程根与系数的关系.13.(2023·江苏南京·统考二模)若α、β为2240x x +−=的两根,则22ααβα++的值为______. 【答案】0【分析】由已知中α,β是方程2240x x +−=的两个实数根,结合根与系数的关系转化求解即可.【详解】解:α,β是方程2240x x +−=的两个实数根,可得2αβ+=−,∴22()2220ααβαααβααα++=++=−+=.∴22ααβα++的值为0.故答案为:0.【点睛】本题考查的知识点是一元二次方程根与关系,若α,β是一元二次方程20(0)ax bx c a ++=≠的两根时,b a αβ+=−,ca αβ=.14.(2023秋·江苏南京·九年级统考期末)设12,x x 是关于x 的方程2320x x −+=的两个根,则12x x +=_____________.【答案】3【分析】直接利用根与系数的关系12bx x a +=−求解.【详解】解∶根据根与系数的关系12bx x a +=−得123x x +=.故答案为:3.【点睛】本题考車了根与系数的关系∶若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.15.(2023秋·江苏南京·九年级南京外国语学校仙林分校校考期末)设1x 、2x 是方程230x mx m +−+=的两个根,则1212x x x x +−=___________. 【答案】3−【分析】根据根与系数关系,求出两根之和、两根之积即可. 【详解】解:1x 、2x 是方程230x mx m +−+=的两个根,所以,12x x m+=−,123x x m =−+,1212(3)3x x x x m m +−=−−−+=−,故答案为:3−.【点睛】本题考查了一元二次方程根与系数关系,解题根据是熟记根与系数关系,求出两根之和、两根之积.16.(2022秋·江苏淮安·九年级校考期末)若一元二次方程2220x x −−=有两个实数根1x ,2x ,则1212x x x x +−的值是________. 【答案】4【分析】根据一元二次方程根与系数的关系,即可求得.【详解】解:一元二次方程2220x x −−=有两个实数根1x ,2x,122x x ∴+=,122x x =−,()1212224x x x x ∴+−=−−=,故答案为:4.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值问题,熟练掌握和运用一元二次方程根与系数的关系是解决本题的关键. 三、解答题17.(2023·江苏扬州·统考二模)已知关于x 的一元二次方程()2120x m x m −−+−=(1)求证:该方程总有两个实数根.(2)若该方程两个实数根的差为3,求m 的值. 【答案】(1)证明见解析 (2)0或6【分析】(1)由()2120x m x m −−+−=,可知1a =,()1b m =−−,2c m =−,根据()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,证明即可;(2)由()2120x m x m −−+−=,可得121bx x m a +=−=−,122c x x m a ⋅==−,由该方程两个实数根的差为3,可得()2129x x −=,即()()221212124x x x x x x −=+−⋅,()()21429m m −−−=,计算求解即可.【详解】(1)证明:()2120x m x m −−+−=,1a =,()1b m =−−,2c m =−,∴()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,∴该方程总有两个实数根;(2)解:∵()2120x m x m −−+−=,∴121b x x m a +=−=−,122cx x m a ⋅==−,∵该方程两个实数根的差为3,∴()2129x x −=,∵()()221212124x xx x x x −=+−⋅,∴()()21429m m −−−=,解得0m =或6m =, ∴m 的值为0或6.【点睛】本题考查了一元二次方程根的判别,一元二次方程根与系数的关系,完全平方公式的变形.解题的关键在于对知识的熟练掌握与灵活运用.18.(2020秋·江苏南京·九年级统考期中)已知关于x 的方程()220x mx m −+=−.(1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值以及方程的另一个根. 【答案】(1)见解析(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到2(2)4m ∆=−+,然后根据判别式的意义得到结论; (2)设方程的另一个为t ,利用根与系数的关系得到2,22t m t m +==−,然后解方程组即可. 【详解】(1)证明:∵1,,2a b m c m ==−=−,∴22224()41(2)48(2)4b ac m m m m m −=−−⨯⨯−=−+=−+, ∵2(2)0m −≥, ∴2(2)40m −+>,∴0∆>,∴不论m 为何值,该方程都有两个不相等的实数根; (2)解:设方程的另一个为t ,根据根与系数的关系得:2,22t m t m +==−, ∴222t t +−=,解得0=t , ∴2m =,∴m 的值为2,另一个根为0.【点睛】本题考查了判别式的意义以及根与系数的关系:若x1,x2是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.一、单选题1.(2022·江苏·九年级专题练习)设一元二次方程2210x x −−=的两根为1x ,2x ,则1122x x x x −+的值为( ) A .1 B .﹣1 C .0 D .3【答案】D【分析】先利用一元二次方程根与系数的关系得122x x +=,121x x =−,再变形得到11221212x x x x x x x x −+=+−,然后利用整体代入的方法计算.【详解】解:根据根与系数的关系得122x x +=,121x x =−,∴1122x x x x −+1212x x x x =+−()21=−−3=,故选:D .【点睛】本题考查利用一元二次方程根与系数的关系求代数式的值,若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,则12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解决问题的关键.2.(2022秋·江苏常州·九年级校考阶段练习)若m 、n 是方程210x x +−=的两个实数根,则22m m n ++的值为( ) A .4 B .2 C .0 D .-1【答案】C【分析】根据根与系数的关系及方程的解的定义即可求解.【详解】∵m 、n 是方程210x x +−=的两个实数根,∴210m m +−=,1bm n a +=−=−,∴21m m +=,∴()()222110m m n m m m n ++=+++=−=,故选:C .【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的关系、一元二次方程根的定义. 3.(2022秋·江苏南京·九年级校考阶段练习)若关于x 的方程260x mx =--的一个根是2−,则另一个根是( ) A .2 B .﹣2 C .﹣3 D .3【答案】D【分析】根据根与系数关系得出两根之积为-6,进而可以求出另一个根. 【详解】解:关于x 的方程260x mx =--的一个根是2−, 根据根与系数关系可知,两根之积为-6,则另一个根为632=−-,故选:D .【点睛】本题考查了一元二次方程根与系数关系,解题关键是利用根与系数关系求出两根之积为-6. 4.(2022秋·九年级课时练习)若α和β是关于x 的方程210x bx +−=的两根,且2211αβαβ−−=−,则b 的值是( ) A .-3 B .3C .-5D .5【答案】C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ−=−,代入2211αβαβ−−=−得到关于b 的方程,求出b 的值即可.【详解】解:∵α和β是关于x 的方程210x bx +−=的两根,∴+=,1b αβαβ−=−,∴222()1211b αβαβαβαβ−−=−+=−+=− ∴=5b − 故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为ca 是解题的关键.5.(2022秋·江苏苏州·九年级校考阶段练习)设x 1,x 2是方程x 2+5x ﹣6=0的两个根,则x 12+x 22的值是( ) A .5 B .13C .35D .37【答案】D【分析】根据根与系数的关系可以得到x1+x2=-5,x1x2=-6,然后利用将代数式的值代入,计算x12+x22=(x1+x2)2-2x1x2的值.【详解】解:根据题意得x1+x2=-5,x1x2=-6, x12+x22=(x1+x2)2-2x1x2=25+12=37. 故选:D .【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx x a +=−,12cx x a •=.【答案】C【分析】设直角三角形的斜边为c ,两直角边分别为a 与b .根据一元二次方程根与系数关系可得8a b +=,14ab =.再根据勾股定理即可求.【详解】解:设直角三角形的斜边为c ,两直角边分别为a 与b ,直角三角形两直角边是方程28140x x −+=的两根,8a b ∴+=,14ab =,根据勾股定理可得:2222()2642836c a b a b ab =+=+−=−=,6c ∴=.故选:C .【点睛】本题考查勾股定理,一元二次方程根与系数关系,熟练掌握一元二次方程根与系数关系是解题的关键.7.(2020秋·江苏连云港·九年级校考阶段练习)两根均为负数的一元二次方程是( ) A .2712+5=0x x - B .26135=0x x -- C .24215=0x x ++ D .2158=0x x -+【答案】C【分析】因为两根均为负数,所以两实数根的和小于零,两根之积大于零.解题时检验两根之和ba −是否小于零,及两根之积ca 是否大于零.【详解】解:A.125>07x x =,1212>07x x +=,两根均为正数;B.125<06x x =-,1213>06x x +=,两根为一正一负;C.125>04x x =,1221<04x x +=-,两根均为负数;D.128<0x x =-,1215<0x x +=-,两根为一正一负.故答案为:C .【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()2=00ax bx c a ++¹的两根时,12=bx x a +−,12=c x x a .二、填空题8.(2022秋·江苏连云港·九年级校考阶段练习)若a ,b 是方程2220x x +−=的两个实数根,则代数式23a a b ++的值为______. 【答案】0【分析】由一元二次方程的解的定义可得出2220a a +−=,即得出222a a +=.根据一元二次方程根与系数的关系可得出2a b +=−,从而即可求出22320a a b a a a b ++=+++=.【详解】∵a ,b 是方程2220x x +−=的两个实数根,∴2220a a +−=,221a b +=−=−,∴222a a +=,∴22322(2)0a b a a a a b ++=+++=+−=. 故答案为:0.【点睛】本题考查一元二次方程的解的定义,一元二次方程根与系数的关系.掌握方程的解就是使方程成立的未知数的值和熟记一元二次方程根与系数的关系:12b x x a +=−、12cx x a ⋅=是解题关键. 9.(2023春·江苏泰州·九年级泰州市姜堰区第四中学校考阶段练习)设方程2202310x x −−=的两个根分别为12x x 、,则1212x x x x +−的值是___________. 【答案】2024【分析】先根据根与系数的关系可求121220231x x x x +==−,,再把12x x +,12x x 的值整体代入所求代数式计算即可.【详解】解:∵方程2202310x x −−=的两个根分别为12x x、,∴121220231x x x x +==−,,∴1212202312024x x x x =−++=.故答案是:2024.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根与系数的关系:若方程的两根为12x x、,则1212b cx x x x a a +=−⋅=,.10.(2023·江苏南京·九年级专题练习)已知1x 、2x 是一元二次方程250x x −−=的两个实数根,则221122x x x x −+的值是________.【答案】16【分析】先根据根与系数的关系得到121215x x x x +==−,,然后利用整体代入的方法计算.【详解】解:根据题意得121215x x x x +==−,,所以()222211221212313516x x x x x x x x −+=+−=−⨯−=().故答案为:16.【点睛】本题考查了根与系数的关系:若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−⋅=.11.(2022春·江苏南通·九年级校考阶段练习)已知:m 、n 是方程2310x x +−=的两根,则22(33)(33)m m n n ++++=_____.【答案】16【分析】根据m 、n 是方程2310x x +−=的两根,即可得到3m n +=−,1mn =−,2310m m +−=,2310n n +−=,从而得到231m m +=,231n n +=,代入计算即可得到答案.【详解】解:∵m 、n 是方程2310x x +−=的两根,∴3m n +=−,1mn =−,2310m m +−=,2310n n +−=,∴231m m +=,231n n +=,∴()()22(33)(33)131316m m n n ++++=++=,故答案为:16.【点睛】本题考查了一元二次方程根的定义,根与系数的关系,熟知一元二次方程根的定义,根与系数的关系,并根据题意将所求代数式变形是解题关键. 三、解答题12.(2022秋·江苏·九年级专题练习)已知关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x . (1)求m 的取值范围;(2)当11x =−时,求另一个根2x 的值. 【答案】(1)3m ≤ (2)23x =【分析】(1)根据题意得()()22420m ∆=−−−≥,解不等式即可求解; (2)根据根与系数的关系得122x x +=,根据11x =−,即可求解.【详解】(1)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴()()22420m ∆=−−−≥,解得3m ≤,所以m 的取值范围为3m ≤;(2)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴122x x +=, ∵11x =−, ∴23x =.【点睛】本题考查了一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.13.(2022秋·江苏盐城·九年级滨海县第一初级中学校联考阶段练习)已知关于x 的一元二次方程22430x mx m −+=.(1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的平方和为10,求m 的值. 【答案】(1)见解析 (2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为1x,2x ,然后根据一元二次方程根与系数的关系可得124x x m+=,2123x x m ⋅=,再根据两个实数根的平方和为10,可得()222121212210x x x x x x +=+−=,由此可解.【详解】(1)证明:由题意得:1a =,4b m =−,23c m =,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为1x ,2x ,则有124x x m +=,2123x x m ⋅=,∵221210x x +=,∴()222222121212216231010x x x x x x m m m +=+−=−⨯==,解得:1m =±, ∵0m >, ∴1m =.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.14.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程()21360x m x m −++−=.(1)求证:方程总有两个实数根; (2)若12127x x x x ++=,求m 的值. 【答案】(1)见解析 (2)3m =【分析】(1 (2)根据一元二次方程根与系数的关系可得1212136x x m x x m +=+=−,,整体代入12127x x x x ++=中,解出m 的值即可.【详解】(1)∵该一元二次方程为()21360x m x m −++−=,∴()1136a b m c m ==−+=−,,,∴()()2222414361025(5)0b ac m m m m m ⎡⎤−=−+−⨯−=−+=−≥⎣⎦,∴该方程总有两个实数根; (2)∵1212136b cx x m x x m a a +=−=+==−,,又∵12127x x x x ++=,∴1367m m ++−=,解得:3m =.【点睛】本题考查根据判别式判断一元二次方程根的情况,一元二次方程的根与系数的关系.掌握一元二次方程20(0)ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根.熟记一元二次方程根与系数的关系:12b x x a +=−和12cx x a ⋅=是解题关键. 15.(2022秋·江苏·九年级专题练习)关于x 的方程:2(x ﹣k )=x ﹣4①和关于x 的一元二次方程:(k ﹣1)x 2+2mx+(3﹣k )+n =0②(k 、m 、n 均为实数),方程①的解为非正数. (1)求k 的取值范围;(2)如果方程②的解为负整数,k ﹣m =2,2k ﹣n =6且k 为整数,求整数m 的值;(3)当方程②有两个实数根x 1、x 2,满足(x 1+x 2)(x 1﹣x 2)+2m (x 1﹣x 2+m )=n+5,且k 为正整数,试判断|m|≤2是否成立?请说明理由.【答案】(1)k≤2且k≠1;(2)m =﹣2或﹣3;(3)成立,见解析【分析】(1)先解出方程①的解,根据一元二次方程的定义和方程①的根为非正数,得出k 的取值范围,即可;(2)先把k =m+2,n =2m ﹣2代入方程②化简,通过因式分解法,用含m 的代数式表示出一元二次方程的两个实数根,根据方程②的解为负整数,m 为整数,即可求出m 的值;(3)根据(1)中k 的取值范围和k 为正整数得出k =2,化简一元二次方程,并将两根和与积代入计算,得出关于m 、n 的等式,结合根的判别式,即可得到结论. 【详解】(1)∵关于x 的方程:2(x ﹣k )=x ﹣4, 解得:x =2k ﹣4,∵关于x 的方程2(x ﹣k )=x ﹣4的解为非正数, ∴2k ﹣4≤0,解得:k≤2, ∵由一元二次方程②,可知k≠1, ∴k≤2且k≠1;(2)∵一元二次方程(k ﹣1)x2+2mx+(3﹣k )+n =0中k ﹣m =2,2k ﹣n =6, ∴k =m+2,n =2k ﹣6=2m+4﹣6=2m ﹣2,∴把k =m+2,n =2m ﹣2代入原方程得:(m+1)x2+2mx+m ﹣1=0, 因式分解得,[(m+1)x+(m ﹣1)](x+1)=0,∴x1=﹣11mm−+=211m−+,x2=﹣1,∵方程②的解为负整数,m为整数,∴m+1=﹣1或﹣2,∴m=﹣2或﹣3;(3)|m|≤2成立,理由如下:由(1)知:k≤2且k≠1,∵k是正整数,∴k=2,∵(k﹣1)x2+2mx+(3﹣k)+n=0有两个实数根x1、x2,∴x1+x2=21mk−−=﹣2m,x1x2=31k nk−+−=1+n,∵(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,∴2m2=n+5 ①,△=(2m)2﹣4(k﹣1)[(3﹣k)+n]=4m2﹣4(n+1)≥0 ②,把①代入②得:4m2﹣8m2+16≥0,即m2≤4,∴|m|≤2.【点睛】本题主要考查一元一次方程与一元二次方程,涉及解一元一次方程,一元二次方程以及一元二次方程的根与系数的关系,根的判别式,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系,根的判别式,是解题的关键.16.(2022秋·江苏·九年级专题练习)关于x的方程2220x ax a−++=有两个不相等的实数根,求分别满足下列条件的取值范围:(1)两根都小于0;(2)两根都大于1;(3)方程一根大于1,一根小于1.【答案】(1)-2<a<-1;(2)2<a<3;(3)a>3【分析】由关于x的方程x2-2ax+a+2=0有两个不相等的实根,得出△=(-2a)2-4(a+2)>0,解得a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,利用根与系数的关系得到α+β=2a,αβ=a+2,再分别根据:(1)由两根都小于0,得出α+β=2a<0,αβ=a+2>0,此求出a的取值范围;(2)由两根都大于1,得出(α-1)(β-1)>0,且对称轴212a−−>,依此求出a的取值范围;(3)由一根大于1,一根小于1,得出(α-1)(β-1)<0,依此求出a的取值范围;【详解】解:∵关于x的方程x2-2ax+a+2=0有两个不相等的实根,∴△=(-2a)2-4(a+2)>0,∴a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,α+β=2a,αβ=a+2.(1)∵两根都小于0,∴α+β=2a<0,αβ=a+2>0,解得:-2<a<0,又22a−−<,a<0;∵a<-1或a>2,∴-2<a<-1;(2)∵两根都大于1,∴(α-1)(β-1)>0,∴αβ-(α+β)+1>0,∴a+2-2a>-1,∴a<3,又212a−−>,a>1;又a<-1或a>2,∴2<a<3;(3))∵一根大于1,一根小于1,∴(α-1)(β-1)<0,∴αβ-(α+β)+1<0,∴a+2-2a<-1,∴a>3.【点睛】本题考查了根的判别式,根与系数的关系,属于基础题,关键是要熟记x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=ba−,x1x2=ca.17.(2022秋·江苏·九年级专题练习)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:【答案】(1)43(2)4(3)存在,当k=﹣2时,1212212x xy yx x−−=【分析】(1)根据a,b是x2+15x+5=0的解,求出a+b和ab的值,即可求出a bb a+的值.(2)根据a+b+c=0,abc=16,得出a+b=-c,ab=16c,a、b是方程x2+cx+16c=0的解,再根据c2-4•16c≥0,即可求出c的最小值.(3)运用根与系数的关系求出x1+x2=1,x1•x2=k+1,再解y1y2-1221x xx x−=2,即可求出k的值.【详解】(1)∵a、b是方程x2+15x+5=0的二根,∴a+b=﹣15,ab=5,∴a bb a+=()22a b abab+−215255−−⨯=43,故答案是:43;(2)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=16 c,∴a、b是方程x2+cx+16c=0的解,∴c2﹣4•16c≥0,c2﹣34c≥0,∵c是正数,∴c3﹣43≥0,c3≥43,c≥4,∴正数c的最小值是4.(3)存在,当k=﹣2时,1212212x xy yx x−−=.由x2﹣y+k=0变形得:y=x2+k ,由x ﹣y=1变形得:y=x ﹣1,把y=x ﹣1代入y=x2+k ,并整理得:x2﹣x+k+1=0, 由题意思可知,x1 , x2是方程x2﹣x+k+1=0的两个不相等的实数根,故有:()()()()()()()212112121221212121212211214101112112k x x x x k y y x x x x x x x x y y x x x x x x =⎧−−+>⎪+⎪⎪=+⎪⎪=−−⎨⎪+−⎪−−=−−−=⎪⎪⎪⎩即:23420k k k ⎧<−⎪⎨⎪+=⎩解得:k=﹣2.【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.【答案】(1)x1x2=x3x4= (2)454.【分析】(1)利用换元法解方程,设y =x2,则原方程可化为y2﹣5y+6=0,解关于y 的方程得到y1=2,y2=3,则x2=2或x2=3,然后分别解两个元二次方程即可;(2)根据已知条件,把a2、b2看作方程2x2﹣7x+1=0的两不相等的实数根,然后根据根与系数的关系求解.【详解】(1)解:42560x x −+=,设2y x =,则原方程可化为2560y y −+=,解得12y =,23y =,当=2y 时,22x =,解得1x 2=x当=3y 时,23x =,解得3x 4=x −所以原方程的解为1x 2=x 3x 4x =故答案为:1x ,2=x 3x =4x =(2)解:∴实数a ,b 满足:422710a a −+=,422710b b −+=且a b ≠,2a ∴、2b 可看作方程22710x x −+=的两不相等的实数根,2272a b ∴+=,2212a b =g ;∴2424222714522224a b a b a b +=+-=-´=g ()(); 故答案为:454.【点睛】本题主要考查了用“换元法”把高次方程转化为一元二次方程,韦达定理,完全平方公式,其中转化思想是解决问题的关键.。

专题21.10 一元二次方程的根与系数的关系(拓展提高)(解析版)

专题21.10 一元二次方程的根与系数的关系(拓展提高)一、单选题1.已知1x ,2x 是一元二次方程2430x x -+=两个根,则1212x x x x --的值为( )A .1-B .7-.C .1D .7 【答案】A 【分析】根据根与系数的关系12b x x a +=-,12c x x a =,在原方程中找到一元二次方程的系数 a 、b 、c 就可以求出1212x x x x --的值即可.【详解】解:∵1x ,2x 是一元二次方程2430x x -+=两个根,∴由根与系数的关系得,12441b x x a -+=-=-=,12331c a x x ===, ∴()12121212341x x x x x x x x --=-+=-=-,故选:A .【点睛】本题考查的是一元二次方程根与系数的关系,熟悉相关性质是解题的关键.2.已知关于x 的方程x 2+kx +2=0的两个根为x 1,x 2,且1212110x x x x ++=,则k 的值为( ) A .0B .2C .4D .8【答案】C 【分析】根据根与系数关系列出方程求解即可.【详解】解:由题意知,x 1+x 2=﹣k ,x 1•x 2=2. 则由1212110x x x x ++=得, 2112120x x x x x x ++=⋅,即202k -+=. 解得k =4.故选:C .【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.3.如果m 、n 是一元二次方程x 2+x =4的两个实数根,那么多项式2n 2﹣mn ﹣2m 的值是( ) A .16 B .14 C .10 D .6【答案】B【分析】先根据一元二次方程的解的定义得到24n n +=,即24n n =-,依此可得()()22224282n mn m n mn m m n mn --=---=-+-,然后根据根与系数的关系得到1m n +=-,4mn =-,再利用整体代入的方法计算.【详解】解:∵n 是一元二次方程x 2+x =4的根,∴n 2+n =4,即n 2=﹣n +4,∵m 、n 是一元二次方程x 2+x =4的两个实数根, ∴b m n a+=-,c mn a = ∴1m n +=-,4mn =-∴()()22224282n mn m n mn m m n mn --=---=-+-=2+4+8=14. 故选B .【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()200++=≠ax bx c a 的两根时,12b x x a +=-,12c x x a=,同时也考查了一元二次方程的解. 4.等腰三角形的一边长为4,另外两边的长是关于x 的方程2100x x k -+=的两个实数根,则该等腰三角形的周长是( )A .14B .14或15C .4或6D .24或25【答案】A【分析】分为腰长为4和底边长为4两种情况讨论,再根据韦达定理即可得解.【详解】解:设底边为a ,分为两种情况:①当腰长是4时,根据韦达定理:a +4=10,解得:a =6,即此时底边为6,②底边为4,根据韦达定理:2a =10,解得a =5,所以该等腰三角形的周长是14.故选:A .【点睛】本题考查了有关等腰三角形的分类讨论,韦达定理;能够正确的分类讨论是本题的关键. 5.关于x 的方程ax 2+(a +2)x +9a =0有两个不等的实数根x 1,x 2,且x 1<1<x 2,那么a 的取值范围是( )A .﹣27<a <25B .a >25C .a <﹣27D .﹣211<a <0 【答案】D 【分析】根据一元二次方程的根的判别式,建立关于a 的不等式,求出a 的取值范围.又存在x 1<1<x 2,即(x 1-1)(x 2-1)<0,x 1x 2-(x 1+x 2)+1<0,利用根与系数的关系,从而最后确定a 的取值范围.【详解】解:∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2-4a×9a=-35a 2+4a+4>0, 解得2275a -<<, 又∵x 1<1<x 2,∴x 1-1<0,x 2-1>0,那么(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,122a x x a ++=-,x 1x 2=9, 即2910a a+++<, 解得2011a -<<, 综上所述,a 的取值范围为:2011a -<<. 故选D .【点睛】本题考查了一元二次方程根的判别式及根与系数的关系.掌握相关知识是关键:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.根与系数的关系为:1212,b c x x x x a a+=-=. 6.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,其中正确的有( )个.①方程x 2+5x +6=0是倍根方程:②若pq =2,则关于x 的方程px 2+4x +q =0是倍根方程;③若(x ﹣3)(mx +n )=0是倍根方程,则18m 2+15mn +2n 2=0;④若方程ax 2+bx +c =0是倍根方程,且3a +b =0,则方程ax 2+bx +c =0的一个根为1A .1B .2C .3D .4【答案】B【分析】①解得方程后即可利用倍根方程的定义进行判断;②已知条件2pq =,然后解方程240px x q ++=即可得到正确的结论.③根据(3)()0x mx n -+=是倍根方程,且且13x =,2n x m =-,得到32n m =-,或6n m=-,从而得到320m n +=,60m n +=,进而得到2218152(32)(6)0m mn n m n m n ++=++=正确;④利用“倍根方程”的定义进行解答.【详解】解:①解方程2560x x ++=得:12x =-,23x =-,∴方程2560x x ++=不是倍根方程,故①错误;②2pq =,解方程240px x q ++=得:1x ,2x = 122x x ∴≠,故②错误;③(3)()0x mx n -+=是倍根方程,且13x =,2n x m=-, ∴32n m =-,或6n m=-, 320m n ∴+=,60m n +=,2218152(32)(6)0m mn n m n m n ∴++=++=,故③正确; ④方程20ax bx c ++=是倍根方程,∴设122x x =,∵3a+b=0,123x x ∴+=,2223x x ∴+=,21x ∴=,故④正确.【点睛】本题考查了一元二次方程的解,根与系数的关系,根的判别式,反比例函数图形上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.二、填空题7.若关于x 的一元二次方程2(1)20x m x +++=的一个根是1-,则另一个根是_________.【答案】-2【分析】把-1代入方程求m ,再把m 代回方程,解方程即可;或用根与系数关系可求.【详解】解:方法一,把-1代入方程2(1)20x m x +++=,得,1(1)20m -++=,解得,m=2,代入原方程得,2320x x ++=,解得,121,2x x =-=-,故答案为:-2;方法二,设另一个根是a ,根据根与系数关系,a ×(-1)=2,a =-2,故答案为:-2【点睛】本题考查了一元二次方程的根和一元二次方程根与系数关系,选择不同方法解题,体现思维的灵活性,准确把握知识是解题关键.8.若实数a 、b 满足a 2﹣8a +5=0,b 2﹣8b +5=0,则a +b 的值_____.【答案】8或8±【分析】分类讨论:当a =b ,解方程易得原式=8±;当a ≠b ,可把a 、b 可看作方程x 2﹣8x +5=0的两根,然后根据根与系数的关系求解.【详解】解:当a =b 时,由a 2﹣8a +5=0解得a =∴a +b =8±;a 、b 可看作方程x 2﹣8x +5=0的两根,∴a +b =8.故答案为8或8±. 【点睛】本题主要考查解一元二次方程以及根与系数的关系,能够对a 、b 进行分类讨论是解题关键. 9.若实数m 、n 满足21010m m -+=,21010n n -+=,则代数式33m n mn +的值为______.【答案】98【分析】由题意得:m 、n 是方程21010x x -=+的两个根,利用跟与系数的关系,得出10m n +=,1⋅=m n ,进而即可求解.【详解】解:∵实数m 、n 满足21010m m -+=,21010n n -+=,∴m 、n 是方程21010x x -=+的两个根,∴10m n +=,1⋅=m n ,∴33m n mn +=222()()2mn m n mn m n mn ⎡⎤+=+-⎣⎦=21102198⎡⎤⨯-⨯=⎣⎦,故答案是:98.【点睛】本题主要考查一元二次方程根与系数的关系,完全平方公式,把实数m 、n 看作是方程21010x x -=+的两个根,是解题的关键. 10.已知α、β是方程x 2-2x -1=0的两个根,则α2+2β=_____.【答案】5【分析】先用一元二次方程跟与系数的关系,再利用方程变形即可【详解】解:由题意可得:+=2=-1αβαβ,∴2+24=αβ∴2=42αβ-∵α、β是方程x 2-2x -1=0的两个根∴2210αα--=∴()24210αβ---=故答案是:5【点睛】本题考查一元二次方程跟与系数的关系,换元法是关键11.已知方程2410x x --=的两根为12,x x ,则()()1211x x --=________.【答案】4-【分析】根据根与系数关系,求出两根之和、两根之积,代入求值即可.【详解】解:方程2410x x --=的两根为12,x x ,所以,124x x +=,121x x ⋅=-,()()121212111()x x x x x x --+-+=,把124x x +=,121x x ⋅=-代入得,原式=1414--=-,故答案为:-4.【点睛】本题考查了一元二次方程根与系数关系,解题关键是明确一元二次方程根与系数关系,求出两根之和、两根之积,把所求式子变形,整体代入求值.12.若1x ,2x 是关于x 的方程()22230x k x k --+=的两个实数根,且12:1:4x x =,则k 的值是___________. 【答案】23k =或6k =- 【分析】设方程的两根分别为x 1,x 2,根据根与系数的关系得到1223x x k +=-,212x x k =,根据题意有12:1:4x x =,可得2316120k k +-=,解得23k =或6k =-,而△≥0,即(2k ﹣3)2﹣4k 2≥0,解得34k ≤;最后得到满足条件的k 值; 【详解】解:根据题意1223x x k +=-,212x x k =,∵12:1:4x x =,∴214x x =,∴12215234x k x k =-⎧⎨=⎩,∴222345-⎛⎫⨯= ⎪⎝⎭k k , 整理得2316120k k +-=, 解得23k =或6k =-. ∵方程有两个实数根∴△≥0,即(2k ﹣3)2﹣4k 2≥0, 解得34k ≤, ∴23k =或6k =-. 故答案为:23k =或6k =-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系:若方程的两根分别为x 1,x 2,则x 1+x 2b a =-,x 1•x 2c a=. 13.已知一元二次方程ax 2+bx +c =0(a ≠0).下列说法:①若a +c =0,则方程一定有两个不相等的实数根;②若a +b +c =0,则1一定是这个方程的实数根;③若b 2﹣6ac >0,则方程一定有两个不相等的实数根;④若ax 2+bx +c =0(a ≠0)的两个根为2和3,则1211,23x x ==是方cx 2+bx +a =0(a ≠0)的根,其中正确的是_____(填序号).【答案】①②④【分析】根据一元二次方程根的判别式、根与系数的关系、解的意义求解.【详解】解:①因为a +c =0,a ≠0,所以a 、c 异号,所以△=b 2﹣4ac >0,所以方程有两个不等的实数根故①正确;②∵x=1时,ax 2+bx +c =a+b+c ,∴a +b +c =0时,一定有一个根是1,故②正确;③根据b 2﹣6ac >0,不能得到b 2﹣4ac >0,从而不能证得方程ax 2+bx +c =0一定有两个不相等的实数根,故③错误;④∵2和3是ax 2+bx +c =0(a ≠0)的两个根, ∴235,236b c a a-=+==⨯=, ∴51,66b a c c -==,而115111,236236b a c c+==-⨯==, ∴121123x x ==,是方和cx 2+bx +a =0(a ≠0)的根,故④正确, ∴正确的结论是①②④,故答案为:①②④,【点睛】本题考查一元二次方程的应用,熟练掌握一元二次方程根判别式的计算与应用、根与系数的关系、解的意义是解题关键.14.已知对于两个不相等的实数a 、b,定义一种新的运算:@a b a b=+,如6@15615217===+,已知m ,n 是一元二次程22170x x -+=的两个不相等的实数根,则[()@m n mn +=_______. 【答案】25【分析】首先根据韦达定理求解两根之和与两根之积,然后代入原式根据定义进行求解.【详解】由m ,n 是22170x x -+=的两个不相等的实数根可得:21m n +=,7mn =故[()@(21@m n mn +=217⎛= +⎝⎭28⎛= ⎝⎭28===2=25= 【点睛】本题考查了一元二次方程的根与系数关系(也叫韦达定理),实数的定义新运算,此类题型一定要严格按照题目中的定义来求解,注意过程的正确性.三、解答题15.若关于x 的方程()21410k x x ---=有两个实数根.(1)求k 的取值范围;(2)若方程的两根1x ,2x ,满足()()12114x x ++=,求k 的值.【答案】(1)k ≥-3且k ≠1;(2)74【分析】(1)根据方程有两个实数根,结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出结论.(2)根据一元二次方程的根与系数的关系可以得到x 1+x 2=41k -,x 1x 2=11k --,再将它们代入()()12114x x ++=,即可求出k 的值.【详解】(1)∵关于x 的一元二次方程()21410k x x ---=有两个实数根,∴△=42+4(k ﹣1)=4k +12≥0,且k -1≠0,解得:k ≥-3且k ≠1.∴k 的取值范围为:k ≥-3且k ≠1.(2)由根与系数关系得:x 1+x 2=41k - ,x 1x 2=11k --, ∴()()1211x x ++=x 1x 2+(x 1+x 2)+1=41k -+11k --=4. 解得k =74. 经检验,k =74是分式方程的解. 故k 的值是74. 【点睛】本题主要考查了根的判别式及根与系数的关系,熟练运用根的判别式及根与系数的关系是解决问题的关键.16.已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若已知方程的一个根为﹣2,求方程的另一个根以及m 的值.【答案】(1)见解析;(2)方程的另一根为0,m 的值为1-【分析】(1)由△=(m +3)2﹣4×1×(m +1)=(m +1)2+4>0可得答案;(2)设方程的另外一根为a ,根据一元二次方程根与系数的关系得出2321a m a m -=--⎧⎨-=+⎩,解之即可得出答案. 【详解】(1)证明:∵△=(m +3)2﹣4×1×(m +1)=m 2+6m +9﹣4m ﹣4=m 2+2m +1+4=(m +1)2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根;(2)设方程的另外一根为a ,根据题意,得:2321a m a m -=--⎧⎨-=+⎩, 解得:01a m =⎧⎨=-⎩, 所以方程的另一根为0,m 的值为1-.【点睛】本题考查的是一元二次方程根的判别式与一元二次方程根与系数的关系,掌握以上知识解决一元二次方程根的问题是解题的关键.17.非零实数a ,b (a ≠b )满足a 2﹣a ﹣2013=0,b 2﹣b ﹣2013=0,求11a b+的值. 【答案】12013- 【分析】根据题意,可把a 和b 看作方程x x --=220130的两根,根据根与系数的关系得到a +b =1,ab =-2013,再变形11a b+得到a b ab +,然后利用整体代入的方法计算即可. 【详解】解:∵非零实数a ,b (a ≠b )满足220130a a --=,220130b b --=,∴实数a 、b 是方程x x --=220130的两根.由根与系数的关系可知a +b =1,ab =-2013. ∴111120132013a b a b ab ++===--. 【点睛】本题考查一元二次方程根与系数的关系以及代数式求值.若12x x ,是一元二次方程20(a 0)++=≠ax bx c 的两个根,那么12b x x a +=-,12c x x a=. 18.已知m ,n 是方程x 2﹣2x ﹣1=0的两个根,是否存在实数a 使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8?若存在,求出a 的值;若不存在,请说明理由.【答案】存在,a =-6【分析】根据方程的解的定义得出m 2-2m =1,n 2-2n =1,m +n =2,再整体代入即可得出a 的值.【详解】解:存在,理由如下:∵m ,n 是方程x 2﹣2x ﹣1=0的两个根,∴m 2﹣2m =1,n 2﹣2n =1,m +n =2,∴﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)=﹣(m +n )[7(m 2﹣2m )+a ][3(n 2﹣2n )﹣7]=﹣2×(7+a )(3﹣7)=8(7+a ),由8(7+a )=8得a =﹣6,∴存在实数a =﹣6,使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8.【点睛】本题考查了一元二次方程的解、根与系数的关系,解题的关键是得出m 2-2m =1,n 2-2n =1,m +n =2,注意解题中的整体代入思想.19.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.【答案】(1)见解析;(2)经过,理由见解析【分析】(1)根据判别式公式得△=m 2≥0,即可得到答案;(2)根据一元二次方程根与系数的关系,得到x 1+x 2和x 1x 2关于m 的表达式,整理n =x 12+x 22-4,得n =(m +2)2,即可得到答案.【详解】解:(1)证明:∵△=[-(m +4)]2-4(2m +4)=m 2≥0,∴该一元二次方程总有两个实数根;(2)根据题意得:x 1+x 2=m +4,x 1x 2=2m +4,n =x 12+x 22-4=(x 1+x 2)2-2x 1x 2-4,=(m +4)2-2(2m +4)-4=m 2+4m +4=(m +2)2即n =(m +2)2,经过(-5,9).【点睛】本题考查了根与系数的关系,根的判别式,坐标与图形性质,解题的关键:(1)正确掌握根的判别式,(2)正确掌握一元二次方程根与系数的关系,坐标与图形性质.20.已知:α,β(α>β)是一元二次方程210x x --=的两个实数根,设1s αβ=+,222s αβ=+, …,n n n s αβ=+.根据根的定义,有210αα--=,210ββ--=,将两式相加,得22()()20αβαβ+-+-=,于是,得2120s s --=.根据以上信息,解答下列问题: ①利用配方法求α,β的值,并利用一元二次方程根与系数的关系直接写出1s ,2s 的值.②猜想:当n ≥3时,n s ,1n s -,2n s -之间满足的数量关系,并证明你的猜想的正确性.(注:关于x 的一元二次方程20ax bx c ++=若有两根12,x x ,则有1212;b c x x x x a a +=-=)【答案】①12α+=,12β=;11s =,23s =;②12n n n s s s --=+,证明见解析 【分析】①按照配方法的步骤对原方程进行求解即可得出α,β的值,然后结合根与系数的关系求出1s ,2s 的值即可;②根据材料定义得120n n n ααα----=和120n n n βββ----=,然后联立求和即可推出结论.【详解】①移项,得21x x -=,配方,得22211121222x x ⎛⎫⎛⎫-⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭,即21524x ⎛⎫-= ⎪⎝⎭,开平方,得122x -=±,即x =,∴α=,β=. 于是,11s =,23s =.②猜想:12n n n s s s --=+.证明:根据根的定义,210αα--=,两边都乘以2n α-,得120n n n ααα----=,①同理,120n n n βββ----=,②①+②,得1122()()()0n n n n n n αβαβαβ----+-+-+=,∵n n n s αβ=+,111n n n s αβ---=+,222n n n s αβ---=+,∴120n n n s s s ----=,即12n n n s s s --=+.【点睛】本题考查一元二次方程根与系数的关系以及新定义问题,理解材料给出的定义,熟练掌握一元二次方程根与系数的关系是解题关键.。

专题04 一元二次方程的根与系数的关系(提高)(原卷版)

专题04 一元二次方程的根与系数的关系知识点一、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①;②; ③;④; ⑤;21x x ,a b x x -=+21ac x x =21222121212()2x x x x x x +=+-12121211x x x x x x ++=2212121212()x x x x x x x x +=+2221121212x x x x x x x x ++=2121212()2x x x x x x +-=22121212()()4x x x x x x -=+-⑥;⑦⑧; ⑨;⑩. (4)已知方程的两根,求作一个一元二次方程;以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号.设一元二次方程的两根为、,则①当△≥0且时,两根同号. 当△≥0且,时,两根同为正数;当△≥0且,时,两根同为负数.②当△>0且时,两根异号.当△>0且,时,两根异号且正根的绝对值较大;当△>0且,时,两根异号且负根的绝对值较大.12()()x k x k ++21212()x x k x x k =+++12||x x -==22212121222222121212()211()x x x x x x x x x x x x ++-+==12x x -==122|||||x x x +==2|x =20(0)ax bx c a ++=≠1x 2x 120x x >120x x >120x x +>120x x >120x x +<120x x <120x x <120x x +>120x x <120x x +<(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根,则必有一根(,为有理数).一、单选题1.(2020·江西吉安市·九年级期中)已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .132.(2019·广西桂林市田家炳中学八年级期末)已知m ,n 是关于x 的一元二次方程2x 3x a 0-+=的两个解,若()()m 1n 16--=-,则a 的值为( )A .﹣10B .4C .﹣4D .103.(2019·山西九年级专题练习)已知x 1、x 2是关于x 的方程x 2、ax、2=0的两根,下列结论一定正确的是( )A .x 1≠x 2B .x 1+x 2、0C .x 1•x 2、0D .x 1、0、x 2、0 4.(2018·全国九年级单元测试)已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是( )A .k >43且k ≠2B .k ≥43且k ≠2C .k >34D .k ≥34 5.(2020·广州市番禺区实验中学九年级月考)已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠ B .21120x x -= C .122x x += D .122x x ⋅=∆aa ab6.(2020·江西赣州市·九年级期末)一元二次方程2420x x -+=的两根为1x ,2x ,则2111242x x x x -+的值为____________ .7.(2020·江苏南京市·九年级期中)设m 、n 是一元二次方程x 2、2x 、7、0的两个根,则m 2、3m 、n 、_______.8.(2020·江苏扬州市·九年级月考)如果m ,n 是两个不相等的实数,且满足m 2﹣m=3,n 2﹣n=3,那么代数式2n 2﹣mn+2m+2015= .9.(2020·西南交通大学附属中学九年级月考)已知1x ,2x 是关于x 的一元二次方程2210x x k ++-=的两个实数根,且22121213x x x x +-=,则k 的值为____.三、解答题10.(2020·沭阳县怀文中学九年级月考)关于x 的一元二次方程x 2+3x+m -1=0的两个实数根分别为x 1,x 2.(1)求m 的取值范围.(2)若2(x 1+x 2)+ x 1x 2+10=0.求m 的值.11.(2020·四川省九龙县中学校九年级期中)已知1x ,2x 是一元二次方程2220x x k -++=的两个实数根.(1)求k 的取值范围;(2)是否存在实数k ,使得等式12112k x x +=-成立?如果存在,请求出k 的值,如果不存在,请说明理由. 12.(2020·河南商丘市·九年级月考)已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.13.(2020·乐山博瑞特网络科技有限公司九年级期中)关于x的一元二次方程x2+(2k+1),x x.x+k2+1=0有两个不等实根12(1)求实数k的取值范围.,x x满足|x1|+|x2|=x1·x2,求k的值.(2)若方程两实根1214.(2020·湖北孝感市·九年级其他模拟)已知关于x的方程x2-(2k-1)x+k2-2k+3=0有两个不相等的实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,是否存在这样的实数k,使得|x1|-|x2|若存在,求出这样的k值;若不存在,请说明理由.15.(2019·台州市书生中学九年级开学考试)已知关于x的一元二次方程x2、6x+、2m+1、=0有实数根.、1)求m的取值范围;、2)如果方程的两个实数根为x1、x2,且2x1x2+x1+x2≥20,求m的取值范围.。

一元二次方程根与系数的关系


(2)解:当a=5为底边长时,b=c 当a=5为腰长时,不妨设a=b=5, 由根与系数的关系:5+c=2k-3 2 ∴Δ = (2K-5) =0,k=2.5, 5c=2k-4 2 原方程为:x -2x+1=0 解得:c=1,k=4.5 ∴b=c=1 ∵b+c<a ∴此三角形的周长为a+b+c=11 ∴此时不构成三角形,舍去。
_年 _月 _日
星期_______
天气_____ 自我评价:___________ 悄悄话:老师我想对你说______ _______________________ _______________________ ________________________
学习课题:_____________ 知识归纳与整理:________ _____________________ 有那些数学思想方法_____ 我的收获与困惑_________
分析解答
2、已知关于的方程。x2-(2k-3)x +2k-4=0 (1)求证:无论取什么实数值,方程总有实数根。 (2)若等腰三角形的一边长a=5,另两边长b、c恰好是这个方程的两个实数根, 求这个三角形的周长?
(1)证明: ∵Δ =[-(2k-3)]2-4(2k-4) =(2K-5)2 ∴不论k取何值,(2K-5)2 ≥0, 即Δ ≥0,原方程总有实数根。
2、方程2x2-3x+1=0的两根记作x1,x2, 不解方程,求:
(1) x1 x2 x2 x1 ;
分析解答
由根与系数的关系得:x1+x2=3/2 x1x2=1/2
x x ( x1 x2 ) 2 2 x1 x2 x1 x2 x1 x2 x1 x2 x2 x1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根与系数的关系专题
1、若方程x2-4x+m=0与x2-x-2m=0有一个根相同,则m= 。

2,若关于y的方程y2-my+n=0的两个根中只有一个根为0,那么m,n应满
足。

3、证明:如果有理系数方程x2+px+q=0有一个根是形如A+B的无理数(A、B均为有理数),
那么另一个根必是A-B。

4、设:3a2-6a-11=0,3b2-6b-11=0且a≠b,求a4-b4的值。

5、已知一元二次方程(2k-3)x2+4kx+2k-5=0,且4k+1是腰长为7的等腰三角形
的底边长,
求当k取何整数时,方程有两个整数根。

6、已知:α、β是关于x的方程x2+(m-2)x+1=0的两根,
求(1+mα+α2)(1+mβ+β2)的值。

7、已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程
x2+qx+p=0的两根,求常数p、q的值。


8、已知x1、x2是关于x的方程x2+m2x+n=0的两个实数根;y1、y2是关于y的方程y2+5my+7=0的两个实数根,且x1-y1=2,x2-y2=2,求m、n的值。

9、关于x的方程m2x2+(2m+3)x+1=0有两个乘积为1的实根,x2+2(a+m)x+2a-m2+6m -4=0有大于0且小于2的根。

求a的整数值。

10、已知关于x的一元二次方程x2+2x+p2=0有两个实根x1和x2(x1≠x2),在数轴上,表示x2的点在表示x1的点的右边,且相距p+1,求p的值。

11、已知关于x的一元二次方程ax2+bx+c=0的两根为α、β,且两个关于x的方程x2+(α+1)x+β2=0与x2+(β+1)x+α2=0有唯一的公共根,求a、b、c的关系式。

12、如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根α、β,那么(α-1)2+(β-1)2的最小值是多少?
13、设x1,x2是方程3x2-2x-2=0的两个根,利用根与系数的关系,求下列各式的值:
(1)(x1-4)(x2-4);
(2)x13x24+x14x23;
(3)
⎪⎪




⎪⎪




+
1
2
2
13
1
3
1
x
x
x
x

(4)x13+x23。

14、已知方程x2+mx+12=0的两实根是x1和x2,方程x2-mx+n=0的两实根是x1+7和x2+7,求m和n的值。

15、在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。

这个方程的根应该是什么?
16、已知x1,x2是方程2x2+3x-1=0的两个根,利用根与系数的关系,求下列各式的值:
(1)(2x 1-3)(2x 2-3);
(2)x 13x 2+x 1x 23。

17、已知a 2=1-a ,b 2=1-b ,且a ≠b ,求(a -1)(b -1)的值。

18、.已知m ,n 是一元二次方程x 2-2x -5=0的两个实数根,求2m 2+3n 2+2m 的值。

19、已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的两根之比为2∶1, 求证:2b 2=9ac 。

20、已知一元二次方程x 2-10x+21+a=0。

(1)当a 为何值时,方程有一正、一负两个根?(2)此 方程会有两个负根吗?为什么?
21、当m 为何值时,方程3x 2+2x+m -8=0:(1)有两个大于-2的根?(2)有一个根大于-2,另一个 根小于-2 ?
22、已知2s 2+4s -7=0,7t 2-4t -2=0,s ,t 为实数,且st ≠1。

求下列各式的值: (1)t st 1
+;; (2)t s st 3
23+-。

23、已知x 1,x 2是一元二次方程x 2+m x+n=0的两个实数根
x 12+x 22+(x 1+x 2)2=3,5222221=+x x ,求m 和n 的值。

相关文档
最新文档