求代数式的值经典练习(有答案)

合集下载

代数式的值 浙教版七年级上册练习题(含答案)

代数式的值 浙教版七年级上册练习题(含答案)

4.3代数式的值一、选择题1.已知|x|=3,|y|=2,且xy>0,则x−y的值等于()A. 5或−5B. 1或−1C. 5或1D. −5或−12.若|a|=8,|b|=5,且ab<0,那么a−b的值为()A. 3或13B. 13或−13C. 8或−8D. −3或−133.已知m是√15的整数部分,n是√10的小数部分,则m2−n的值是()A. 6−√10B. 6C. 12−√10D. 134.已知|2m+n+1|+(3y+1)2=0,则3y+2m+n的值是()A. 1B. 0C. −2D. 25.已知代数式x−5y的值是100,则代数式−2x+10y+5的值是()A. 205B. −200C. −195D. 2006.已知a+b=12,则代数式2a+2b−3的值是()A. 2B. −2C. −4D. −3127.若a,b互为相反数,c,d互为倒数,则代数式(a+b−1)(cd+1)的值是()A. 1B. 0C. −1D. −28.已知a2+3a=1,则代数式2a2+6a−1的值为()A. 0B. 1C. 2D. 39.已知a+b=4,则代数式1+a2+b2的值为()A. 3B. 1C. 0D. −110.若x2−3x−5=0,则6x−2x2+5的值为()A. 0B. 5C. −5D. −10二、填空题11.如果m−n=3,那么2m−2n−3的值是______.12.在一次智力竞赛中,主持人问了这样的一道题目:“a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,请问:a、b、c三数之和为多少?”你能回答主持人的问题吗?其和应为______.13.若|x−5|+(y+1)2=0,则xy的值是_______14.有理数2,+7.5,−0.03,−300%,0,中,非负整数有a个,负数有b个,正分数有c个,则a−b+c=__________.三、解答题15.已知a,b互为相反数,m,n互为倒数,c的绝对值为2,求代数式a+b+mn−c的值.16.某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式分别表示去甲、乙两店购买所需的费用;(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)当需要购买40盒乒乓球时,你能给出一种更为省钱的方法吗?试写出你的购买方法和所需费用.17.分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为5的点表示的数,求|3a−b+2c−d|的倒数.答案和解析1.【答案】B【解析】解:∵|x|=3,|y|=2,∴x=±3,y=±2.又xy>0,∴x=3,y=2或x=−3,y=−2.∴x−y=±1.故选:B.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数的乘法法则:同号得正,异号得负.本题考查了代数式求值、绝对值的性质:互为相反数的绝对值相等.能够根据两个数的乘积的符号判断两个数的符号的关系.2.【答案】B【解析】【分析】本题主要考查的是绝对值,有理数的乘法,有理数的减法,代数式求值的有关知识,先根据ab<0可以得到a,b异号,然后求出a,b,再代入代数式求值即可.【解答】解:∵ab<0,∴a,b异号,∵|a|=8,|b|=5,∴a=8,b=−5或a=−8,b=5,∴a−b=8−(−5)=13或a−b=−8−5=−13.故选B.3.【答案】C【解析】略4.【答案】C【解析】【分析】本题主要考查了绝对值,完全平方的非负性,令2m+n+1=0,3y+1=0,运用整体代入可以求出2m+n=−1,3y=−1的值代入即可求出结果.【解答】解:∵|2m+n+1|+(3y+1)2=0∴2m+n+1=0,3y+1=0∴2m+n=−1,3y=−1∴3y+2m+n=−2.故选C.5.【答案】C【解析】【分析】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.原式前两项提取−2变形后,把已知x−5y=100代入计算即可求出值.【解答】解:∵x−5y=100,∴原式=−2(x−5y)+5=−200+5=−195故选C.6.【答案】B【解析】【分析】本题主要考查的是代数式求值,运用了整体代入法的有关知识,将给出的代数式进行变形,然后整体代入求值即可.【解答】解:∵a+b=12,∴原式=2(a+b)−3=2×12−3=1−3=−2,故选B.7.【答案】D【解析】【分析】本题主要考查的是代数式求值,相反数,倒数的有关知识,先利用相反数,倒数的定义得到a+b=0,cd=1,然后代入代数式求值即可.解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴原式=(−1)×(1+1)=−2,故选D.8.【答案】B【解析】【分析】此题主要考查了代数式求值,正确将原式变形是解题关键.直接利用已知将原式变形,然后整体代入计算即可求出答案.【解答】解:∵a2+3a=1,∴2a2+6a=2(a2+3a)=2∴2a2+6a−1=2−1=1.故选B.9.【答案】A【解析】解:当a+b=4时,原式=1+12(a+b)=1+12×4=1+2=3,故选:A.将a+b的值代入原式=1+12(a+b)计算可得.本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.10.【答案】C【解析】本题考查了代数式求值,整体代入法,关键是由x2−3x−5=0,得x2−3x=5把x2−3x看作一个整体,代入计算的值即可.【解答】解:6x−2x2+5,=−2x2+6x+5=−2(x2−3x)+5=−2×5+5=−5.故选C.11.【答案】3【解析】解:∵m−n=3,∴原式=2(m−n)−3=2×3−3=6−3=3.故答案为:3.原式前两项提取公因式变形后,把已知等式代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.12.【答案】2【解析】解:∵a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,∴a=1,b=1,c=0,∴a+b+c=1+1+0=2.故答案是2.先根据已知条件求出a、b、c的值,再代入代数式求值即可.解题的关键是先求出a、b、c的值,然后再求代数式的值.13.【答案】−514.【答案】2【解析】【分析】本题考查了有理数的分类,解题的关键是分类的标准要不重不漏的找到符合条件的a,b,c的值.根据有理数的分类标准把给出的非负整数有a个,负数有b个,正分数有c 个,,即可求出a−b+c的值.【解答】解:有理数2,+7.5,−0.03,−300%,0中,非负整数有3个,负数有2个,正分数有1个,则a−b+c=3−2+1=2.故答案为2.15.【答案】解:∵a,b互为相反数,m,n互为倒数,c的绝对值为2,∴a+b=0,mn=1,c=±2,当c=2时,a+b+mn−c=0+1−2=−1;当c=−2时,a+b+mn−c=0+1−(−2)=0+1+2=3;由上可得,代数式a+b+mn−c的值是−1或3.【解析】本题考查的是相反数定义,倒数定义和绝对值的性质以及代数式的值,根据a,b互为相反数,m,n互为倒数,c的绝对值为2,可以求得a+b,mn、c的值,从而可以求得所求式子的值.16.【答案】解:(1)甲店购买需付款48×5+(x−5)×12=(12x+180)元;乙店购买需付款48×90%×5+12×90%×x=(10.8x+216)元;(2)当x=40时,甲店需12×40+180=660元;乙店需10.8×40+216=648元;所以乙店购买合算;(3)先甲店购买5副球拍,送5盒乒乓球240元,另外35盒乒乓球再乙店购买需378元,共需618元.【解析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先甲店购买5副球拍,送5盒乒乓球,另外35盒乒乓球再乙店购买即可.此题考查列代数式,理解两种方案的优惠方案,得出运算的方法是解决问题的关键.17.【答案】解:∵a是最小的正整数,∴a=1,∵b是最大的负整数,∴b=−1,∵c是绝对值最小的有理数,∴c=0,∵d是数轴上到原点距离为5的点表示的数,∴d=±5,∴|3a−b+2c−d|=|3+1+0−5|=1或|3a−b+2c−d|=|3+1+0+5|=9∴|3a−b+2c−d|的倒数为1或19【解析】本题主要考查了有理数的加减混合运算,有理数、绝对值,数轴及倒数,熟练掌握各自的定义是解决本题的关键.根据最小的正整数为1,最大的负整数为−1,绝对值最小的有理数为0,以及数轴上到原点距离的定义,确定出a,b,c,d的值,即可求出|3a−b+2c−d|的值,再求出其倒数即可.。

代数式经典测试题及答案

代数式经典测试题及答案

代数式经典测试题及答案一、选择题1.若(x +1)(x +n )=x 2+mx ﹣2,则m 的值为( )A .﹣1B .1C .﹣2D .2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x 的多项式,再将它与x 2+mx-2作比较,即可分别求得m ,n 的值.【详解】解:∵(x+1)(x+n)=x 2+(1+n)x+n ,∴x 2+(1+n)x+n=x 2+mx-2, ∴12n m n +=⎧⎨=-⎩, ∴m=-1,n=-2.故选A .【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅=【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -=D .(﹣2a )3=﹣8a 3 【答案】D【解析】 【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案. 【详解】 A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A .B .C .D .无法确定 【答案】A【解析】【分析】 利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】 =(AB-a )·a+(CD-b )(AD-a )=(AB-a )·a+(AD-a )(AB-b )=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a )∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b )=(AB-a )(AD-a-b)∵AD <a+b , ∴-<0, 故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.13.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.14.下列运算正确的是( )A .2352x x x +=B .()-=23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.15.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .16.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .17.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意.故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。

七年级数学上册代数式的值配套练习及答案

七年级数学上册代数式的值配套练习及答案

3.3代数式的值(一)一、基础训练1.用__________代替代数式中的________,按照代数式中的运算关系计算,所得的结果是代数式的值.2.当x=_______时,代数式53x的值为0.3.当a=4,b=12时,代数式a2-ba的值是___________.4.小张在计算31+a的值时,误将“+”号看成“-”号,结果得12,那么31+a的值应为_____________.5.三角形的底边为a ,底边上的高为h ,则它的面积s=_______,若s=6cm2,h=5cm,则a=_______cm.二、典型例题例1 已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值.分析首先将原代数式变形成(a2+5ab)+3(3b2+2ab),然后将整体代入.例2当m=2,n=1时,(1)求代数式(m+2)2和m2+2mn+n2的值;(2)写出这两个代数式值的关系.(3)当m=5,n=-2时,上述的结论是否仍成立?(4)根据(1)(2),你能用简便方法算出:当m=0.125,n=0.875时,m2+2mn+n2的值吗?分析通过代入具体数值,得知(m+2)2=m2+2mn+n2,再运用此等式求值.三、拓展提升例小明读一本共m页的书,第一天读了该书的13,第二天读了剩下的15.(1)用代数式表示小明两天共读了多少页;(2)求当m=120时,小明两天读的页数.四、课后作业1.当a =2,b =1,c =-3时,代数式2c b a b-+的值为___________. 2.若x =4时,代数式x 2-2x +a 的值为0,则a 的值为________.3.若5a b +=,6ab =,则ab a b --=________.4.当7x =时,代数式357ax bx +-=.则当7x =时,35ax bx ++=_____.5.如果某船行驶第1千米的运费是25元,以后每增加1千米,运费增加5元.现在某人租船要行驶s 千米(s 为整数,s ≥1),所需运费表示为___________________.当s =6千米时,运费为________元.6.若代数式2a 2+3a +1的值为5,求代数式4a 2+6a +8的值.7.已知2a b a b+=-,求224()a b a b a b a b +---+的值.8.从2开始,连续的偶数相加,和的情况如下表:n .并由此计算下列各题:(1) 2+4+6+8+…+202(2) 126+128+130+…+3003.3代数式的值(一)一、基础训练1.具体数值字母2. 53. 134. 505. 12ah125二、典型例题例1a2+11a+9b2=(a2+5ab)+3(3b2+2ab)=76+3×51=229 例2 (1)99(2)相等(3)成立(4)1三、拓展提升例3(1)715m(2)56四、课后作业1.4 32.-83. 14. 175. 20+5s50元6. 167.7 3 88.S=n(n+1)(1)101×(101+1)=10302;(2)150×(150+1)-62(62+1)=18744.3.3代数式的值(二)一、基础训练1.已知a,b互为相反数,c、d互为倒数,则代数式2(a+b)-3cd的值为______.2.填表:÷2+2x( )+1( )2输出( )输入y 输入x.3.右图是一个数值转换机,写出图中的输出结果:输入2- 0 0.5 输出4.当x .5.当x y x y -+=2时,代数式x y x y -+-22x y x y+-的值是___________. 二、典型例题 例1根据右边的数值转换器,按要求填写下表. x 1- 0 1 2- y 1 12- 0 12 输出 例2 填写下表,并观察下列两个代数式的值的变化情况: n 1 2 3 4 5 6 7 8 …5n +6 …n 2 …(1)(2)估计一下,哪个代数式的值先超过100?三、拓展提升例 已知311=-y x ,求代数式yxy x y xy x ---+2232的值. 分析 变形后运用整体的思想带入,可使分子分母同除以“xy ”.四、课后作业1.当x =1,y =32,z =53时,代数式y (x -y +z )的值为_______. 2.若23250x y -+=,那么23(321)x y -+=______.2x 2 14 2x +1 9 3 12x 1163.定义a*b =ab b a+,则2*(2*2)= . 4.如图所示,某计算装置有一数据入口和计算结果出口,根据图中的程序, 计算函数值,若输入的x 值为75,则输出的结果是________.5.在下列计算程序中填写适当的数或转换步骤:6.若7:4:3::=z y x ,且182=+-z y x ,求代数式z y x -+2的值.3.3代数式的值(二)一、基础训练1.-3 y =x 2 -1≤x y =5x -2≤x ≤-1 y =-x +2 1≤x ≤2输出y 值 输入x 值2.3 1281816 17 2125443.-15 -3 0 4.45.17 5二、典型例题:例1 2 0 1 3例2 (1)6或-1 (2)n2三、拓展提升:例3 3 5四、课后作业:1.4 32.-123.3 24.3 55.略6.8。

.2代数式的值同步练习含答案解析

.2代数式的值同步练习含答案解析

代数式的值(30分钟50分)一、选择题(每小题4分,共12分)1.当a=1,b=2时,a2+b2的值是( )A.5B.6C.7D.82.若a=-,b=2,c,d互为倒数,则代数式2(a+b)-3cd的值为( )A.2B.-1C.-3D.03.根据如图所示程序计算y的值,若输入的x的值为,则输出的y值为( )A. B. C. D.二、填空题(每小题4分,共12分)4.若m,n互为倒数,则mn2-(n-1)的值为______.5.在高中时我们将学到:叫做二阶行列式,它的算法是:ad-bc,那么=______.6.定义新运算“⊗”,a⊗b=a-4b,则12⊗(-1)=______.三、解答题(共26分)7.(6分)求代数式的值:4x2+3xy-x2-9,其中x=2,y=-3.8.(10分)公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.如果用a表示脚印长度,b表示身高.关系类似于:b=7a-3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(2)在某次案件中,抓获了两名可疑人员,一个身高为1.87m,另一个身高1.75m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?【拓展延伸】9.(10分)第22届冬奥会将于2019年2月7日在索契拉开帷幕,激起了人们参与体育运动的热情,我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220-a).(1)正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?答案解析1.【解析】选A.当a=1,b=2时,a2+b2=12+22=1+4=5.2.【解析】选D.c,d互为倒数,所以cd=1.当a=-,b=2时,2(a+b)-3cd=2×(-+2)-3×1=2×-3=3-3=0.3.【解析】选B.因为2<<4,所以当x=时,输出的y值为.4.【解析】因为m,n互为倒数,所以mn=1,所以mn2-(n-1)=mn·n-n+1=n-n+1=1.答案:15.【解析】根据题意可知,本题求当a=1,b=2,c=3,d=4时,ad-bc的值,所以ad-bc=1×4-2×3=4-6=-2.答案:-26.【解析】12⊗(-1)=×12-4×(-1)=8.答案:87.【解析】原式=3x2+3xy-9,当x=2,y=-3时,原式=3×4+3×2×(-3)-9=-15.8.【解析】(1)当a=24.5时,b=7×24.5-3.07=168.43(cm).即身高约为168.43cm.(2)当a=26.3时,b=7×26.3-3.07=181.03(cm).187-181.03=5.97.181.03-175=6.03.因为5.97<6.03,所以身高为1.87m的可疑人员的可能性更大.9.【解析】(1)当a=14时,b=0.8(220-a)=0.8×(220-14)=0.8×206=164.8≈165(次).(2)因为10秒钟心跳次数为22次,所以1分钟心跳次数为22×6=132(次).当a=45时,b=0.8(220-a)=0.8×(220-45)=140>132,所以这个人没有危险.。

求代数式的值专项练习60题(有答案)

求代数式的值专项练习60题(有答案)

45.已知a是最小的正整数,b是a的相反数,c的绝对值为9,试求2a+2b ﹣3c的值. 46.已知2x2+3x=5,求代数式﹣4x2﹣6x+6的值. 47.当a=3,b=﹣2,c=﹣5时,代数式b2﹣4ac的值是 _________ . 48.若|a|=4,b是绝对值最小的数,c是最大的负整数,求a+b﹣c的 值. 49.已知a与b互为相反数,c与d互为倒数,|x|=5,求x2+ (a+b)2012+(﹣cd)2013的值. 50.若|x﹣4|+(2y﹣x)2=0,求代数式x2﹣2xy+y2的值. 51.已知|m|=3,n2=16,且mn<0,求2m﹣3n的值. 52.若a、b互为相反数,c、d互为倒数,|m|=3,求 +m2﹣3cd+5m的值. 53.己知:|x|=4,y2= ;且x>0,y<0,求2x﹣7y的值. 54.已知m2﹣mn=21,mn﹣n2=﹣12.求下列代数式的值: (1)m2﹣n2(2)m2﹣2mn+n2. 55.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣ 2)=32+2×3×(﹣2)=﹣3 (1)试求(﹣2)※3的值 (2)若1※x=3,求x的值 (3)若(﹣2)※x=﹣2+x,求x的值 56.已知a是最小的正整数,b、c是有理数,且 有|2+b|+(3a+2c)2=0,求代数式
∴原式=2a﹣3﹣2b =2(a﹣b)﹣3 =2×1﹣3 =﹣1. 故答案为﹣1 24.∵x2﹣2x=6, ∴﹣3x2+6x+5=﹣3(x2﹣2x)+5=﹣3×6+5=﹣13. 故答案为﹣13 25.原式=x﹣y﹣2, 当x﹣y=5时,原式=5﹣2=3. 故答案为3 26.∵a2+ab=5,b2+ab=2, ∴a2+ab+b2+ab=7, ∴a2+2ab+b2=7. 故答案为:7 27.6x+10=3(2x+3)+1=15+1=16. 故答案是:16 28.∵m2+2m﹣2=0, ∴m2+2m=2, ∴2m2+4m﹣9=2(m2+2m)﹣9=2×2﹣9=﹣5. 故答案为﹣5. 29.由已知得: 3x2﹣4x+6=9, 即3x2﹣4x=3, , = (3x2﹣4x)+6, =

求代数式的值专项练习60题(有答案)ok

求代数式的值专项练习60题(有答案)ok

求代数式的值专项练习60题(有答案)1.当x=﹣1时,代数式2﹣x的值是_________ .2.若a2﹣3a=1,则代数式2a2﹣6a+5的值是_________ .3.若a2+2a=1,则(a+1)2= _________ .4.如图是一个数值转换机,若输入a值为2,则输出的结果应为_________ .5.若x+y=﹣1,且(x+y)2﹣3(x+y)a=7,则a2+2= _________ .6.若a、b互为相反数,x、y互为倒数,则式子2(a+b)+5xy的值为_________ .7.若a+b=2,则2a+2b+1= _________ .8.当a=1,|a﹣3|= _________ .9.若x=﹣3,则= _________ ,若x=﹣3,则﹣x= _________ .10.若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为_________ .11.若a﹣b=,则10(b﹣a)= _________ .12.如果m﹣n=,那么﹣3(n﹣m)= _________ .13.a、b互为相反数,m,n互为倒数,则(a+b)2+= _________ .14.a,b互为相反数,a≠0,c、d互为倒数,则式子的值为_________ .15.若a﹣b=1,则代数式a﹣(b﹣2)的值是_________ ;若a+b=1,则代数式5﹣a﹣b的值是_________ .16.d是最大的负整数,e是最小的正整数,f的相反数等于它本身,则d﹣e+2f的值是_________ .17.当x= _________ 时,代数式2009﹣|2008﹣x|有最大值,最大值为_________ .18.若|m|=3,则m2= _________ .19.若代数式2a+2b的值是8,则代数式a+b的值是_________ .20.若m=n﹣5,则5m﹣5n+5等于_________ .21.已知x=﹣,则代数式1﹣x3的值等于_________ .22.当x=2时,x3﹣x﹣8= _________ .23.若代数式a﹣b的值是1,那么代数式2a﹣(3+2b)的值等于_________ .24.若x2﹣2x的值是6,则﹣3x2+6x+5的值是_________ .25.已知x﹣y=5,代数式x﹣2﹣y的值是_________ .26.已知:a2+ab=5,b2+ab=2,则a2+2ab+b2= _________ .27.若2x+3=5,则6x+10等于_________ .28.若m2+2m﹣2=0,则2m2+4m﹣9= _________ .29.已知多项式3x2﹣4x+6的值为9,则多项式的值为_________ .30.若3a2﹣a﹣3=0,则6a2﹣2a+9= _________ .31.若(3+a)2+|b﹣2|=0,则3a﹣2b﹣2012的值为_________ .32.在数轴上,点A、B分别表示有理数 a、b,原点O恰好是AB的中点,则(a+b)2004+()2005的值是_________ .33.如果x2+3x﹣1的值是4,则代数式2x2+6x+5的值是_________ .34.已知a、b互为相反数,c、d互为倒数,m的绝对值为2,求m2+a+b+的值.35.求代数式的值:(1)当,b=5时,求8a+3b的值;(2)已知a=|﹣4|,b=(﹣2)3,求b2﹣ab的值.36.已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值.37.当x=2,y=﹣4时,求代数式x2+2xy+y2的值.38.如果有理数a、b满足|a﹣1|+(b+1)2=0,求a101+b100的值.39.当x=﹣,y=﹣3时,求代数式x2﹣2xy+y2的值.40.已知,|a|=3,|b|=5,且a2>0,b3<0,求2a+b的值.41.当x=7时,代数式ax3+bx﹣5的值为7;当x=﹣7时,代数式ax3+bx﹣5的值为多少?42.求代数式的值:(1)当a=﹣2,b=5时,求2a+5b的值;(2)已知a=|﹣3|,b=(﹣2)3,求a2+b2的值.43.有理数m,n为相反数,x,y互为负倒数,z的绝对值等于7,求3m+3n+5xy+z的值.44.三个有理数a,b,c的积是负数,其和为正数,当x=++时,试求x2011﹣2010x+2009 的值.45.已知a是最小的正整数,b是a的相反数,c的绝对值为9,试求2a+2b﹣3c的值.46.已知2x2+3x=5,求代数式﹣4x2﹣6x+6的值.47.当a=3,b=﹣2,c=﹣5时,代数式b2﹣4ac的值是_________ .48.若|a|=4,b是绝对值最小的数,c是最大的负整数,求a+b﹣c的值.49.已知a与b互为相反数,c与d互为倒数,|x|=5,求x2+(a+b)2012+(﹣cd)2013的值.50.若|x﹣4|+(2y﹣x)2=0,求代数式x2﹣2xy+y2的值.51.已知|m|=3,n2=16,且mn<0,求2m﹣3n的值.52.若a、b互为相反数,c、d互为倒数,|m|=3,求+m2﹣3cd+5m的值.53.己知:|x|=4,y2=;且x>0,y<0,求2x﹣7y的值.54.已知m2﹣mn=21,mn﹣n2=﹣12.求下列代数式的值:(1)m2﹣n2(2)m2﹣2mn+n2.55.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3(1)试求(﹣2)※3的值(2)若1※x=3,求x的值(3)若(﹣2)※x=﹣2+x,求x的值56.已知a是最小的正整数,b、c是有理数,且有|2+b|+(3a+2c)2=0,求代数式的值.57.如果4a﹣3b=7,并且3a+2b=19,求14a﹣2b的值.58.已知,求代数式的值.59.已知a、b互为相反数,c、d互为倒数,x的绝对值是5.试求﹣x2+[a+b+cd2﹣(d﹣1)]﹣(a+b﹣4)3﹣|cd ﹣3|的值.60.已知当x=2时,多项式ax5+bx3+cx+3的值为100,那么当x=﹣2时,求多项式ax5+bx3+cx+3的值.求代数式的值60题参考答案:1.∵x=﹣1∴2﹣x=2﹣(﹣1)=2+1=3.2.∵a2﹣3a=1,∴原式=2×1+5=7.3.等式两边同时加1,等式即可转换为a2+2a+1=2,即为(a+1)2=2.故答案为:24.﹣3a2+1=﹣3×4+1=﹣11.5.∵x+y=﹣1,∴(x+y)2﹣3(x+y)a=7,1+3a=7,即a=2,则a2+2=4+2=66.∵a、b互为相反数,x、y互为倒数,∴a+b=0,xy=1,∴2(a+b)+5xy=0+5=57.2a+2b+1=2(a+b)+1=2×2+1=5.8.当a=1时,|a﹣3|=|1﹣3|=|﹣2|=2.9.(1)∵x=﹣3,∴=﹣;(2)∵x=﹣3,∴﹣x=﹣(﹣3)=3.10.由题意得:a+b=0且a≠0、b≠0,∴原式=﹣1×0=0.11.当a﹣b=时,原式=10×(﹣)=﹣4.故填﹣4.12.当m﹣n=时,原式=﹣3×[﹣(m﹣n)]=﹣3×(﹣)=.故填.13.∵a、b互为相反数∴a+b=0∵m,n互为倒数∴mn=1∴(a+b)2+=02+=3故此题应该填3.14.∵a,b互为相反数,a≠0,c、d互为倒数,∴a+b=0,cd=1,∴式子=+(﹣1)2007﹣12008=0﹣1﹣1=﹣2,故答案为﹣2 将a﹣b=1代入得:所求的结果为1+2=3.同理,整理代数式得,5﹣a﹣b=5﹣(a+b),将a+b=1代入得,所求结果为5﹣1=4.故本题答案为:3、4.16.由题意知,d=﹣1,e=1,f=0,所以d﹣e+2f=﹣1﹣1+0=﹣2.故应填﹣217.∵代数式2009﹣|2008﹣x|有最大值,∴2008﹣x=0,即x=2008.当x=2008时,代数式2009﹣|2008﹣x|=2009.故当x=2008时,代数式2009﹣|2008﹣x|有最大值,最大值为200918.∵|m|=3,∴m=﹣3或3,∴m2=(±3)2=919.由题意得:2a+2b=8∴a+b=4.20.∵m=n﹣5,∴m﹣n=﹣5,∴5m﹣5n+5=5(m﹣n)+5=﹣25+5=﹣20.21.∵x=﹣,∴1﹣x3=1﹣(﹣)3=1+=4,故答案为422.当x=2时,x3﹣x﹣8=23﹣2﹣8=﹣2.故答案为:﹣223.∵a﹣b=1,∴原式=2a﹣3﹣2b=2(a﹣b)﹣3=2×1﹣3=﹣1.故答案为﹣124.∵x2﹣2x=6,∴﹣3x2+6x+5=﹣3(x2﹣2x)+5=﹣3×6+5=﹣13.故答案为﹣1325.原式=x﹣y﹣2,当x﹣y=5时,原式=5﹣2=3.故答案为326.∵a2+ab=5,b2+ab=2,∴a2+ab+b2+ab=7,∴a2+2ab+b2=7.故答案为:727.6x+10=3(2x+3)+1=15+1=16.故答案是:16∴m2+2m=2,∴2m2+4m﹣9=2(m2+2m)﹣9=2×2﹣9=﹣5.故答案为﹣5.29.由已知得:3x2﹣4x+6=9,即3x2﹣4x=3,,=(3x2﹣4x)+6,=×3+6=7.故答案为:730.∵3a2﹣a﹣3=0,∴3a2﹣a=3,∴6a2﹣2a+9=2(3a2﹣a)+9=2×3+9=15.故答案为15.31.根据题意得,3+a=0,b﹣2=0,解得a=﹣3,b=2,所以,3a﹣2b﹣2012=3×(﹣3)﹣2×2﹣2012=﹣9﹣4﹣2012=﹣2025.故答案为:﹣202532.∵点A、B分别表示有理数 a、b,原点O恰好是AB 的中点,∴a+b=0,即a=﹣b,∴(a+b)2004+()2005=0﹣1=﹣133.由x2+3x﹣1=4得x2+3x=5,∴2x2+6x+5=2(x2+3x)+5=2×5+5=15.故本题答案为:15.34.a,b互为相反数,则a+b=0,c,d互为倒数,则cd=1,m的绝对值是2,则m=±2,当m=2时,原式=4+0+=;当m=﹣2时,原式=4+0﹣=.35.(1)∵,b=5,∴8a+3b=﹣4+15=11;(2)∵a=|﹣4|,b=(﹣2)3,∴a=4,b=﹣8时,∴b2﹣ab=64+32=96.(3分)36.a2+11ab+9b2=a2+5ab+6ab+9b2=a2+5ab+3(2ab+3b2)∵a2+5ab=76,3b2+2ab=51,37.∵x=2,y=﹣4,∴x+y=2﹣4=﹣2,x2+2xy+y2=(x+y)2=(﹣2)2=4.38.∵|a﹣1|+(b+1)2=0,∴a﹣1=0,b+1=0,∴a=1,b=﹣1,当a=1,b=﹣1时,原式=1101+(﹣1)100=239.当时,原式==﹣3+9=.40.∵|a|=3,且a2>0,∴a=±3,∵|b|=5,b3<0,∴b=﹣5,∴当a=3,b=﹣5时,2a+b=6﹣5=1;当a=﹣3,b=﹣5时,2a+b=﹣6﹣5=﹣11;答:2a+b的值为1或﹣1141.∵x=7时,代数式ax3+bx﹣5的值为7,∴a×73+7b﹣5=7,即a×73+7b=12,∴当x=﹣7时,a×(﹣7)3﹣7x﹣5=﹣(a×73+7b)﹣5=﹣12﹣5=﹣17.42.(1)当a=﹣2,b=5时,2a+5b=2×(﹣2)+5×5=21;(2)∵a=|﹣3|=3,b=(﹣2)3=﹣8,∴a2+b2=9+64=7343.∵m,n为相反数,x,y互为负倒数,z的绝对值等于7,∴m+n=0,xy=﹣1,z=±7,∴3m+3n+5xy+z=3(m+n)+5xy+z=3×0+5×(﹣1)+z=﹣5+z,当z=7时,3m+3n+5xy+z=﹣5+7=2;当z=﹣7时,3m+3n+5xy+z=﹣5﹣7=﹣12.∴3m+3n+5xy+z的值为2或﹣1244.∵三个有理数a,b,c的积是负数,其和为正数,∴三个有理数a,b,c中有两个正数、一个负数,∴、、中有两个1和一个﹣1,∴x=++=1,∴x2011﹣2010x+2009=12011﹣2010×1+2009=045.∵a是最小的正整数,∴a=1,∴b=﹣1,∵c的绝对值为9,∴c=9或﹣9,当c=9时,2a+2b﹣3c=2×1+2×(﹣1)﹣3×9=﹣27,当c=﹣9时,2a+2b﹣3c=2×1+2×(﹣1)﹣3×(﹣9)=27,所以,代数式的值是27或﹣2746.∵2x2+3x=5,∴(2x2+3x)×(﹣2)=5×(﹣2),即:﹣4x2﹣6x=﹣10,∴﹣4x2﹣6x+6=﹣10+6=﹣447.当a=3,b=﹣2,c=﹣5时,原式=(﹣2)2﹣4×3×(﹣5)=64.故答案是6448.由|a|=4,得a=4或a=﹣4,∵b是绝对值最小的数,∴b=0,又∵c是最大的负整数,∴c=﹣1,∴a+b﹣c=4+0﹣(﹣1)=4+1=5,或a+b﹣c=﹣4+0﹣(﹣1)=﹣4+1=﹣3,即a+b﹣c的值为﹣3或549.∵a与b互为相反数,∴a+b=0,∵c与d互为倒数∴cd=1,∵|x|=5,∴x2=25,∴x2+(a+b)2012+(﹣cd)2013=25+0+(﹣1)=24.50.因为|x﹣4|+(2y﹣x)2=0,所以x﹣4=0,2y﹣x=0,解得:x=4,y=2,x2﹣2xy+y2=(x﹣y)2,把x=4,y=2代入得:(4﹣2)2=4,所以代数式x2﹣2xy+y2的值为:451.∵|m|=3,n2=16,∴m=±3,n=±4,又∵mn<0,∴(1)当m=3,n=﹣4时,2m﹣3n=2×3﹣3×(﹣4),=6+12,=18;(2)当m=﹣3,n=4时,2m﹣3n=2×(﹣3)﹣3×4,=﹣6﹣12,=﹣18.综上所述,2m﹣3n的值为18或﹣1852.∵a、b互为相反数,c、d互为倒数,|m|=3,∴a+b=0,cd=1,m=±3,①m=3时,原式=0+9﹣3+15=21;∴+m2﹣3cd+5m的值是21或﹣953.∵|x|=4,y2=;且x>0,y<0,∴x=4,y=﹣,∴2x﹣7y=2×4﹣7×(﹣)=8+1=954.(1)∵m2﹣mn=21,mn﹣n2=﹣12,∴m2﹣n2=(m2﹣mn)+(mn﹣n2)=21﹣12=9;(2)∵m2﹣mn=21,mn﹣n2=﹣12,∴m2﹣2mn+n2=(m2﹣mn)﹣(mn﹣n2)=21﹣(﹣12)=21+12=3355.(1)(﹣2)※3=(﹣2)2+2×(﹣2)×3=4﹣12=﹣8;(2)∵1※x=3,∴12+2x=3,∴2x=3﹣1,∴x=1;(3)﹣2※x=﹣2+x,(﹣2)2+2×(﹣2)x=﹣2+x,4﹣4x=﹣2+x,﹣4x﹣4=﹣2﹣4,﹣5x=﹣6,x=56.由已知得a=1,又因为|2+b|+(3a+2c)2=0,所以2+b=0,3a+2c=0,所以b=﹣2,c=.把a=1,b=﹣2,c=代入原式求得:57.∵4a﹣3b=7,并且3a+2b=19,∴14a﹣2b=2(7a﹣b)=2[(4a+3a)+(﹣3b+2b)]=2[(4a﹣3b)+(3a+2b)]=2(7+19)=52,答:14a﹣2b的值为52∴xy=2(x+y)∴原式===59.∵a、b互为相反数,c、d互为倒数,x的绝对值是5.∴a+b=0,cd=1,x2=25,∴﹣x2+[a+b+cd2﹣(d﹣1)]﹣(a+b﹣4)3﹣|cd﹣3| =﹣25+(0+d﹣d+1)﹣(0﹣4)3﹣|1﹣3|=﹣25+1+64﹣2=3860.x=2时,25a+23b+2c+3=100,∴25a+23b+2c=97,x=﹣2时,ax5+bx3+cx+3=﹣25a﹣23b﹣2c+3=﹣97+3=﹣94。

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)1、已知x+y=3,求代数式x²-xy的值。

解:将x+y=3代入式中,得x²-xy=x²-(3-x)x=2x²-3x,再将x+y=3代入式中,得x=3-y,代入原式中,得2(3-y)²-3(3-y),化简得-6y+15,所以代数式x²-xy的值为15-6y。

2、已知a+b=3ab,求代数式a+b的值。

解:将a+b=3ab代入式中,得a+b=3(a+b)ab,移项得3ab(a+b)-a-b=0,因式分解得(3ab-1)(a+b)=0,因为a+b≠0,所以3ab=1,代入a+b=3ab中,得a+b=3/3=1.4、已知2x-y=6,x²+y²=13,求代数式x-y的值。

解:将2x-y=6代入式中,得y=2x-6,代入x²+y²=13中,得x²+(2x-6)²=13,化简得5x²-24x+25=0,解得x=1或5,代入y=2x-6中,得y=-4或4,所以x-y的值为5或-3.6、已知y/x=2,则x的值是多少?解:将y/x=2代入式中,得y=2x,代入x-y=6中,得x-2x=6,解得x=-6,所x的值是-6.7、已知x-3xy+y/xy=27,求代数式3x-xy+3y的值。

解:将x-3xy+y/xy=27代入式中,得xy²-3xy+y=27xy,移项得xy²-3xy+y-27xy=0,化简得y(x-3)(y-9)=0,因为y≠0,所以x=3或y=9,代入3x-xy+3y中,得3(3)-3(3)(2)+3(9)=12,所以代数式3x-xy+3y的值为12.8、已知x-5=4y-4-y,则代数式2+4的值是多少?解:将x-5=4y-4-y代入式中,得x=3y-1,代入2+4中,得2+4=2+(3y-1)+4=3y+5,所以代数式2+4的值为3y+5.9、化简求值:(2x+2)/(2x+1)÷(x-3)/(x+1),其中x≠-1,-1/2.解:将(2x+2)/(2x+1)÷(x-3)/(x+1)化简得(2x+2)/(2x+1)×(x+1)/(x-3),分子分母同时约分,得(x+1)/(2x-3),将x=-1/2代入式中,得-1,所以代数式的值为-1.10、x-4x²+1=0,求代数式x的值。

代数式求值(习题及答案)

代数式求值(习题)➢ 例题示范例1:若23a b -=,则代数式2(2)422000b a a b --++的值是_______.思路分析观察已知,发现字母a ,b 的值无法确定,所以考虑整体代入.对比已知及所求,把2a -b 当作一个整体,对所求式子进行变形.原式=2(2)2(2)2000a b a b ---+最后整体代入,化简➢ 巩固练习1. 关于x 的代数式222(28)4(21)x x kx x x ⎡⎤+---+⎣⎦,当k 为何值时,代数式的值是常数?2. 若关于x 的代数式2214(45)64x mx x x mx mx ⎛⎫+---+- ⎪⎝⎭的值与x 无关,求代数式2223(21)363m m m m ⎡⎤-+-+⎢⎥⎣⎦的值. 3. 若232a b a b -=+,则代数式2(2)15(2)22a b a b a b a b-+-+-+的值是_______. 4. 若代数式2346x x -+的值是9,则代数式2463x x -+的值是___________. 5. 若2x y =,则代数式45x y x y-+的值是___________. 6. 已知当5x =时,代数式25ax bx +-的值是10,则当5x =时,代数式25ax bx ++的值是____________.7. 已知当3x =-时,代数式535ax bx cx ++-的值是7,则当3x =时,代数式535ax bx cx ++-的值是__________.8. 若m 表示一个两位数, n 表示一个两位数,把m 放在n 的右边,则这个四位数可用代数式表示为_____________.9. 若a 表示一个一位数,b 表示一个两位数,c 表示一个三位数,把c 放在a的左边,b 放在a 的右边,组成一个六位数,则这个六位数可用代数式表示为__________________.➢ 思考小结1. 已知3240x x --=,则代数式3361x x -++的值是_______.通过本讲的学习,小明的做法:①把含有字母的项“32x x -”作为整体,则324x x -=;②在所求的代数式中找整体,对比系数解决:小刚的做法:①把最高次项“3x ”作为整体,则324x x =+;②在所求的代数式中找整体,对比系数解决:小聪的做法:①把“324x x --”作为整体;②在所求的代数式中找整体,对比系数解决:对比小明、小刚、小聪的做法,我们发现无论把“32x x -”, “3x ”还是“324x x --”作为整体,代入,目标都是把所求的代数式降次,这种转化的思想是“高次降次”.【参考答案】➢巩固练习1.当k=6时,代数式的值为常数2.m=-1,原式=-m-3,当m=-1时,原式=-23.114.75.16.207.-178.100n+m9. 1 000c+100a+b➢思考小结-11。

代数式求值经典例题

11.已知a+b+c=2,a 2+b 2+c 2=8,求ab+bc+ca 的值。

2.已知y=ax 5+bx 3+cx+d ,当x=0时,y=-3;当x=-5时,y=9。

当x=5时,求y 的值。

3.若14(a 2+b 2+c 2)=(a+2b+3c)2,求a:b:c 。

4.设x+2z=3y,试判断x 2-9y 2+4z 2+4xz 的值是不是定值,如果是定值,求出它的值;否则,请说明理由。

5.已知a+b+c=3, a 2+b 2+c 2=3,求a 2002+b 2002+c 2002的值。

6.证明:对于任何四个连续自然数的积与1的和一定是某个整数的平方。

7.已知a 2+b 2=1,c 2+d 2=1,ac+bd=0,求ab+cd 的值。

(整体代入法)已知a 为有理数,且a 3+a 2+a+1=0,求1+a+a 2+a 3+…+a 2001的值。

试一试若______,3,2=++==c b ba b ca b则例2、(将条件式变形后代入化简)已知a+b+c=0,求(a+b)(b+c)(c+a)+abc 的值。

当a=-0.2,b=-0.04时,求代数式)(41)16.0(7271)(73722b a b a b a +-++-+值。

例3、已知x 2+4x=1,求代数式x 5+6x 4+7x 3-4x 2-8x+1的值。

如果a 是x 2-3x+1=0的根,试求1825222345+-+-a a a a a 的值.例4、已知x,y ,z 是有理数,且x=8-y,z 2=xy -16,求x,y,z 的值。

巩固练习1、 已知a+b+c=3,(a -1)3+(b -1)3+(c -1)3=0,且a=2,求a 2+b 2+c 2的值。

22、 若,a c z c b y b a x -=-=-求x+y+z 的值.课后习题:1、如图,将图(1)中a ⨯b 的矩形剪去一些小矩形得图(2),图(3),分别求出各图形的周长,其中EF=c 。

2023-2024年初一年级数学求解代数式的值,例题、习题附加答案

求代数式的值练习目的:能用具体的数值代替代数式中的字母,求出代数式的值。

什么是代数式的值:通常我们将代数式中的字母用具体指代的数字代替,并按照代数式的运算法则运算出具体的数值结果,就成作为代数式的值。

例1学校为了开展校体育活动,需要购进一批篮球,要求每班能分配2个,学校后备余留15个。

那么学校需要购进多少个篮球?解:设前学校共有n个班级,那么学校需要购进的篮球总数为:n.2+15假设,现在学校有20个班级(即20n),那么篮球总数=就是:2=+20⨯.2+15n=5515进一步假设,现在学校有班级25个(即25n),那么篮=球总数就是:+⨯+2==n.651515225由例题可以看出,当n取值不同是,代数式15n的计算2+结果也不同。

当20=n时,n的值是55;当25=n时,代数式152+代数式15n的值是65.2+例2当375===,z ,y x 时,求代数式z)y x x(462-+的值. 解:z)y x x(462-+=)(3476525⨯-⨯+⨯⨯=12)42(105-+⨯=405⨯=200.例3根据下面a,b 的值,求代数式ab a -2的值: (1)205==,b a ;(2)24==,b a .解:(1)当205==,b a 时,代数式ab a -2的值为: a b a -2=52052-=425-=21. (2)当24==,b a 时,代数式ab a -2的值为: a b a -2=4242-=2116-=2115. 练一练:1、求下列代数式的值.(1)当2=x 时,求代数式12-x 的值. 解:当2=x 时,求代数式12-x 的值为:12-x =122-=3.(2)当3143==,y x 时,求代数式y)x(x -的值. 解:当3143==,y x 时,求代数式y)x(x -的值为: y)x(x -=)(314343-⨯=12543⨯=165. 2、当213==,b a 时,求下列代数式的值.(1)(b a +)2;(2)(b a -)2. 解:(1)当213==,b a 时,代数式(b a +)2的值为: (b a +)2=(3+21)2=2)27(=449. (2)当213==,b a 时,代数式(b a -)2的值为: (b a -)2=(213-)2=2)25(=425. 3、当25==,y x 时,求代数式yx y x 4354--的值. 解:当25==,y x 时,求代数式y x y x 4354--的值为: y x y x 4354--=24532554⨯-⨯⨯-⨯=8151020--=710. 4、当2085===c ,b a ,时,求下列代数式的值:(1)b )a)(c (c c --+;(2)b a a c +-.解:(1)当2085===c ,b a ,时,代数式b )a)(c (c c --+的值为:b )a)(c (c c --+=)820()520(20-⨯-+=20+1215⨯=20+180=200. (2)当2085===c ,b a ,时,代数式ba a c +-的值为:b a ac +-=85520+-=1315.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求代数式的值专项练习60题(有答案)1.若a﹣b=,则10(b﹣a)= _________ .2.如果m﹣n=,那么﹣3(n﹣m)= _________ .3.a、b互为相反数,m,n互为倒数,则(a+b)2+= _________ .4.a,b互为相反数,a≠0,c、d 互为倒数,则式子的值为_________ .5.若a﹣b=1,则代数式a﹣(b﹣2)的值是_________ ;若a+b=1,则代数式5﹣a﹣b的值是_________ .6.d是最大的负整数,e是最小的正整数,f的相反数等于它本身,则d﹣e+2f的值是_________ .7.当x= _________ 时,代数式2009﹣|2008﹣x|有最大值,最大值为_________ .8.若|m|=3,则m2= _________ .9.若代数式2a+2b的值是8,则代数式a+b的值是_________ .10.若m=n﹣5,则5m﹣5n+5等于_________ .11.当x=﹣1时,代数式2﹣x的值是_________ .12.若a2﹣3a=1,则代数式2a2﹣6a+5的值是_________ .13.若a2+2a=1,则(a+1)2= _________ .14.如图是一个数值转换机,若输入a值为2,则输出的结果应为_________ .15.若x+y=﹣1,且(x+y)2﹣3(x+y)a=7,则a2+2= _________ .16.若a、b互为相反数,x、y互为倒数,则式子2(a+b)+5xy的值为_________ .17.若a+b=2,则2a+2b+1= _________ .18.当a=1,|a﹣3|= _________ .19.若x=﹣3,则= _________ ,若x=﹣3,则﹣x= _________ .20.若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为_________ .21.已知x=﹣,则代数式1﹣x3的值等于_________ .22.当x=2时,x3﹣x﹣8= _________ .23.若代数式a﹣b的值是1,那么代数式2a﹣(3+2b)的值等于_________ .24.若x2﹣2x的值是6,则﹣3x2+6x+5的值是_________ .25.已知x﹣y=5,代数式x﹣2﹣y的值是_________ .26.已知:a2+ab=5,b2+ab=2,则a2+2ab+b2=_________ .27.若2x+3=5,则6x+10等于_________ .28.若m2+2m﹣2=0,则2m2+4m﹣9= _________ .29.已知多项式3x2﹣4x+6的值为9,则多项式的值为_________ .30.若3a2﹣a﹣3=0,则6a2﹣2a+9= _________ .31.若(3+a)2+|b﹣2|=0,则3a﹣2b﹣2012的值为_________ .32.在数轴上,点A、B分别表示有理数 a、b,原点O恰好是AB的中点,则(a+b)2004+()2005的值是_________ .33.如果x2+3x﹣1的值是4,则代数式2x2+6x+5的值是_________ .34.已知a、b互为相反数,c、d互为倒数,m的绝对值为2,求m2+a+b+的值.35.求代数式的值:(1)当,b=5时,求8a+3b的值;(2)已知a=|﹣4|,b=(﹣2)3,求b2﹣ab的值.36.已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值.37.当x=2,y=﹣4时,求代数式x2+2xy+y2的值.38.如果有理数a、b满足|a﹣1|+(b+1)2=0,求a101+b100的值.39.当x=﹣,y=﹣3时,求代数式x2﹣2xy+y2的值.40.已知,|a|=3,|b|=5,且a2>0,b3<0,求2a+b 的值.41.当x=7时,代数式ax3+bx﹣5的值为7;当x=﹣7时,代数式ax3+bx﹣5的值为多少?42.求代数式的值:(1)当a=﹣2,b=5时,求2a+5b 的值;(2)已知a=|﹣3|,b=(﹣2)3,求a2+b2的值.43.有理数m,n为相反数,x,y互为负倒数,z的绝对值等于7,求3m+3n+5xy+z的值.44.三个有理数a,b,c的积是负数,其和为正数,当x=++时,试求x2011﹣2010x+2009 的值.45.已知a是最小的正整数,b是a的相反数,c的绝对值为9,试求2a+2b﹣3c的值.46.已知2x2+3x=5,求代数式﹣4x2﹣6x+6的值.47.当a=3,b=﹣2,c=﹣5时,代数式b2﹣4ac的值是_________ .48.若|a|=4,b是绝对值最小的数,c是最大的负整数,求a+b﹣c的值.49.已知a与b互为相反数,c与d互为倒数,|x|=5,求x2+(a+b)2012+(﹣cd)2013的值.50.若|x﹣4|+(2y﹣x)2=0,求代数式x2﹣2xy+y2的值.51.已知|m|=3,n2=16,且mn<0,求2m﹣3n的值.52.若a、b互为相反数,c、d互为倒数,|m|=3,求+m2﹣3cd+5m的值.53.己知:|x|=4,y2=;且x>0,y<0,求2x﹣7y 的值.54.已知m2﹣mn=21,mn﹣n2=﹣12.求下列代数式的值:(1)m2﹣n2(2)m2﹣2mn+n2.55.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3(1)试求(﹣2)※3的值(2)若1※x=3,求x的值(3)若(﹣2)※x=﹣2+x,求x的值56.已知a是最小的正整数,b、c是有理数,且有|2+b|+(3a+2c)2=0,求代数式的值.57.如果4a﹣3b=7,并且3a+2b=19,求14a﹣2b的值.58.已知,求代数式的值.59.已知a、b互为相反数,c、d互为倒数,x的绝对值是5.试求﹣x2+[a+b+cd2﹣(d﹣1)]﹣(a+b﹣4)3﹣|cd﹣3|的值.60.已知当x=2时,多项式ax5+bx3+cx+3的值为100,那么当x=﹣2时,求多项式ax5+bx3+cx+3的值.1.∵x=﹣1∴2﹣x=2﹣(﹣1)=2+1=3.2.∵a2﹣3a=1,∴原式=2×1+5=7.3.等式两边同时加1,等式即可转换为a2+2a+1=2,即为(a+1)2=2.故答案为:24.﹣3a2+1=﹣3×4+1=﹣11.5.∵x+y=﹣1,∴(x+y)2﹣3(x+y)a=7,1+3a=7,即a=2,则a2+2=4+2=66.∵a、b互为相反数,x、y互为倒数,∴a+b=0,xy=1,∴2(a+b)+5xy=0+5=57.2a+2b+1=2(a+b)+1=2×2+1=5.8.当a=1时,|a﹣3|=|1﹣3|=|﹣2|=2.9.(1)∵x=﹣3,∴=﹣;(2)∵x=﹣3,∴﹣x=﹣(﹣3)=3.10.由题意得:a+b=0且a≠0、b≠0,∴原式=﹣1×0=0.11.当a﹣b=时,原式=10×(﹣)=﹣4.故填﹣4.12.当m﹣n=时,原式=﹣3×[﹣(m﹣n)]=﹣3×(﹣)=.故填.13.∵a、b互为相反数∴a+b=0∵m,n互为倒数∴mn=1∴(a+b)2+=02+=3故此题应该填3.14.∵a,b互为相反数,a≠0,c、d互为倒数,∴a+b=0,cd=1,∴式子=+(﹣1)2007﹣12008=0﹣1﹣1=﹣2,故答案为﹣215.整理所求代数式得:a﹣(b﹣2)=a﹣b+2,将a﹣b=1代入得:所求的结果为1+2=3.同理,整理代数式得,5﹣a﹣b=5﹣(a+b),将a+b=1代入得,所求结果为5﹣1=4.故本题答案为:3、4.16.由题意知,d=﹣1,e=1,f=0,所以d﹣e+2f=﹣1﹣1+0=﹣2.故应填﹣217.∵代数式2009﹣|2008﹣x|有最大值,∴2008﹣x=0,即x=2008.当x=2008时,代数式2009﹣|2008﹣x|=2009.故当x=2008时,代数式2009﹣|2008﹣x|有最大值,最大值为200918.∵|m|=3,∴m=﹣3或3,∴m2=(±3)2=919.由题意得:2a+2b=8∴a+b=4.20.∵m=n﹣5,∴m﹣n=﹣5,∴5m﹣5n+5=5(m﹣n)+5=﹣25+5=﹣20.21.∵x=﹣,∴1﹣x3=1﹣(﹣)3=1+=4,故答案为422.当x=2时,x3﹣x﹣8=23﹣2﹣8=﹣2.故答案为:﹣223.∵a﹣b=1,∴原式=2a﹣3﹣2b=2(a﹣b)﹣3=2×1﹣3=﹣1.故答案为﹣124.∵x2﹣2x=6,∴﹣3x2+6x+5=﹣3(x2﹣2x)+5=﹣3×6+5=﹣13.故答案为﹣1325.原式=x﹣y﹣2,当x﹣y=5时,原式=5﹣2=3.故答案为326.∵a2+ab=5,b2+ab=2,∴a2+ab+b2+ab=7,∴a2+2ab+b2=7.故答案为:727.6x+10=3(2x+3)+1=15+1=16.故答案是:1628.∵m2+2m﹣2=0,∴m2+2m=2,∴2m2+4m﹣9=2(m2+2m)﹣9=2×2﹣9=﹣5.故答案为﹣5.29.由已知得:3x2﹣4x+6=9,即3x2﹣4x=3,,=(3x2﹣4x)+6,=×3+6=7.故答案为:730.∵3a2﹣a﹣3=0,∴3a2﹣a=3,∴6a2﹣2a+9=2(3a2﹣a)+9=2×3+9=15.故答案为15.31.根据题意得,3+a=0,b﹣2=0,解得a=﹣3,b=2,所以,3a﹣2b﹣2012=3×(﹣3)﹣2×2﹣2012=﹣9﹣4﹣2012=﹣2025.故答案为:﹣202532.∵点A、B分别表示有理数 a、b,原点O恰好是AB 的中点,∴a+b=0,即a=﹣b,∴(a+b)2004+()2005=0﹣1=﹣133.由x2+3x﹣1=4得x2+3x=5,∴2x2+6x+5=2(x2+3x)+5=2×5+5=15.故本题答案为:15.34.a,b互为相反数,则a+b=0,c,d互为倒数,则cd=1,m的绝对值是2,则m=±2,当m=2时,原式=4+0+=;当m=﹣2时,原式=4+0﹣=.35.(1)∵,b=5,∴8a+3b=﹣4+15=11;(2)∵a=|﹣4|,b=(﹣2)3,∴a=4,b=﹣8时,∴b2﹣ab=64+32=96.(3分)36.a2+11ab+9b2=a2+5ab+6ab+9b2=a2+5ab+3(2ab+3b2)∵a2+5ab=76,3b2+2ab=51,∴a2+11ab+9b2=76+3×51=76+153=22937.∵x=2,y=﹣4,∴x+y=2﹣4=﹣2,x2+2xy+y2=(x+y)2=(﹣2)2=4.38.∵|a﹣1|+(b+1)2=0,∴a﹣1=0,b+1=0,∴a=1,b=﹣1,当a=1,b=﹣1时,原式=1101+(﹣1)100=239.当时,原式==﹣3+9=.40.∵|a|=3,且a2>0,∴a=±3,∵|b|=5,b3<0,∴b=﹣5,∴当a=3,b=﹣5时,2a+b=6﹣5=1;当a=﹣3,b=﹣5时,2a+b=﹣6﹣5=﹣11;答:2a+b的值为1或﹣1141.∵x=7时,代数式ax3+bx﹣5的值为7,∴a×73+7b﹣5=7,即a×73+7b=12,∴当x=﹣7时,a×(﹣7)3﹣7x﹣5=﹣(a×73+7b)﹣5=﹣12﹣5=﹣17.42.(1)当a=﹣2,b=5时,2a+5b=2×(﹣2)+5×5=21;(2)∵a=|﹣3|=3,b=(﹣2)3=﹣8,∴a2+b2=9+64=7343.∵m,n为相反数,x,y互为负倒数,z的绝对值等于7,∴m+n=0,xy=﹣1,z=±7,∴3m+3n+5xy+z=3(m+n)+5xy+z=3×0+5×(﹣1)+z=﹣5+z,当z=7时,3m+3n+5xy+z=﹣5+7=2;当z=﹣7时,3m+3n+5xy+z=﹣5﹣7=﹣12.∴3m+3n+5xy+z的值为2或﹣1244.∵三个有理数a,b,c的积是负数,其和为正数,∴三个有理数a,b,c中有两个正数、一个负数,∴、、中有两个1和一个﹣1,∴x=++=1,∴x2011﹣2010x+2009=12011﹣2010×1+2009=045.∵a是最小的正整数,∴a=1,∵b是a的相反数,∴b=﹣1,∵c的绝对值为9,∴c=9或﹣9,当c=9时,2a+2b﹣3c=2×1+2×(﹣1)﹣3×9=﹣27,当c=﹣9时,2a+2b﹣3c=2×1+2×(﹣1)﹣3×(﹣9)=27,所以,代数式的值是27或﹣2746.∵2x2+3x=5,∴(2x2+3x)×(﹣2)=5×(﹣2),即:﹣4x2﹣6x=﹣10,∴﹣4x2﹣6x+6=﹣10+6=﹣447.当a=3,b=﹣2,c=﹣5时,原式=(﹣2)2﹣4×3×(﹣5)=64.故答案是6448.由|a|=4,得a=4或a=﹣4,∵b是绝对值最小的数,∴b=0,又∵c是最大的负整数,∴c=﹣1,∴a+b﹣c=4+0﹣(﹣1)=4+1=5,或a+b﹣c=﹣4+0﹣(﹣1)=﹣4+1=﹣3,即a+b﹣c的值为﹣3或549.∵a与b互为相反数,∴a+b=0,∵c与d互为倒数∴cd=1,∵|x|=5,∴x2=25,∴x2+(a+b)2012+(﹣cd)2013=25+0+(﹣1)=24.50.因为|x﹣4|+(2y﹣x)2=0,所以x﹣4=0,2y﹣x=0,解得:x=4,y=2,x2﹣2xy+y2=(x﹣y)2,把x=4,y=2代入得:(4﹣2)2=4,所以代数式x2﹣2xy+y2的值为:451.∵|m|=3,n2=16,∴m=±3,n=±4,又∵mn<0,∴(1)当m=3,n=﹣4时,2m﹣3n=2×3﹣3×(﹣4),=6+12,=18;(2)当m=﹣3,n=4时,2m﹣3n=2×(﹣3)﹣3×4,=﹣6﹣12,=﹣18.综上所述,2m﹣3n的值为18或﹣1852.∵a、b互为相反数,c、d互为倒数,|m|=3,∴a+b=0,cd=1,m=±3,①m=3时,原式=0+9﹣3+15=21;②m=﹣3时,原式=0+9﹣3﹣15=﹣9;∴+m2﹣3cd+5m的值是21或﹣9 53.∵|x|=4,y2=;且x>0,y<0,∴x=4,y=﹣,∴2x﹣7y=2×4﹣7×(﹣)=8+1=954.(1)∵m2﹣mn=21,mn﹣n2=﹣12,∴m2﹣n2=(m2﹣mn)+(mn﹣n2)=21﹣12=9;(2)∵m2﹣mn=21,mn﹣n2=﹣12,∴m2﹣2mn+n2=(m2﹣mn)﹣(mn﹣n2)=21﹣(﹣12)=21+12=3355.(1)(﹣2)※3=(﹣2)2+2×(﹣2)×3=4﹣12=﹣8;(2)∵1※x=3,∴12+2x=3,∴2x=3﹣1,∴x=1;(3)﹣2※x=﹣2+x,(﹣2)2+2×(﹣2)x=﹣2+x,4﹣4x=﹣2+x,﹣4x﹣4=﹣2﹣4,﹣5x=﹣6,x=56.由已知得a=1,又因为|2+b|+(3a+2c)2=0,所以2+b=0,3a+2c=0,所以b=﹣2,c=.把a=1,b=﹣2,c=代入原式求得:57.∵4a﹣3b=7,并且3a+2b=19,∴14a﹣2b=2(7a﹣b)=2[(4a+3a)+(﹣3b+2b)]=2[(4a﹣3b)+(3a+2b)]=2(7+19)=52,答:14a﹣2b的值为5258.∵=2∴xy=2(x+y)∴原式===59.∵a、b互为相反数,c、d互为倒数,x的绝对值是5.∴a+b=0,cd=1,x2=25,∴﹣x2+[a+b+cd2﹣(d﹣1)]﹣(a+b﹣4)3﹣|cd﹣3| =﹣25+(0+d﹣d+1)﹣(0﹣4)3﹣|1﹣3|=﹣25+1+64﹣2=3860.x=2时,25a+23b+2c+3=100,∴25a+23b+2c=97,x=﹣2时,ax5+bx3+cx+3=﹣25a﹣23b﹣2c+3=﹣97+3=﹣94。

相关文档
最新文档