流体力学第四章.
流体力学第四章

由连续方程 V2
2
A1 V1 A2
,代入上式,有
A V A h j (1 1 ) 2 1 ,即1 (1 1 ) 2 A2 2 g A2
如以
V1
A2 则有 V2代入,则有 A1
2 A2 2 V2 h j ( 1) , 即 2 ( A2 1) 2 A1 2g A1
4.3.2 混合长度理论
4.3.3 湍流的速度分布 1、粘性底层(层流底层)
dv (1) 很大; dy
(2)粘性底层的厚度δ很小。 2、湍流核心
dv (1) dy
很小;
(2)区域大。 3、 过渡层—有时可将它算在湍流核心的 范围。
速度分布:在粘性底层中速度分布是直 线规律;湍流核心中为对数关系。 粗糙度 Δ 管壁凹凸不平的平均尺寸。 水利光滑管 δ>Δ 粗糙度对湍流核心几乎没有影响。 水利粗糙管 δ<Δ 粗糙度的大小对湍流特性产生直接影响。
《流体力学》
教学课件
第4章 流体在圆管中的流动
1 流体在固体内部的管中流动和缝隙中流动; 2 流体在固体外部的绕流; 3 流体在固体一侧的明渠流动; 4 流体与固体不相接触的孔口出流和射流。
4.1 雷诺实验
雷诺实验
雷诺实验发现 1.用不同的流体在相同直径的管道中进行实验,
所测得的临界速度 vk 是各不相同的;
T
有
W W W ,代入上式,得
T
1 1 W W W dt W W dt T0 T0 T 1 所以 T W dt 0 0
T
即脉动量的时均值
W 0
运用时均统计法就将湍流分为两个组成部分:一部分是用时均值表示 的时均流动;另一部分是用脉动值表示的脉动运动。时均流动代表运动 的主流,脉动反映湍流的本质。
流体力学第四章:流体阻力及能量损失

优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
工程流体力学 第4章 流体运动学

qV
vdA
A
断面平均流速:过流断面各点速度的断面平均值,以V标记,有
V
vdA
A
qV
AA
对任一点有
v V v
§4-2 描述流体运动的基本概念
四、一、二、三元流动
一、二、三元流动又称为一、二、三维流动。 一元流动(One-dimensional Flow):流体的运动
v v (x, y, z) p p(x, y, z)
§4-2 描述流体运动的基本概念
三、流管、流束、流量与平均速度 流管:流场中过封闭曲线上各点作流线所围成的管状
曲面,见图。
流束:流管内所有流线的集合为流束。 微小流束:断面积无限小的流束。 总流:无数流束的总和。 注:(1)流束表面没有流体穿越;
间曲线,该瞬时位于曲线上各点的流体质点的速度与曲线在 该点相切,(如图示)。
§4-2 描述流体运动的基本概念
(2)流线的作法:欲作流场中某瞬时过A点的流线,可
在该瞬时作A点速度 v1 ;在 v1 上靠近A点找点 2,并在同 一时刻作 2点速度 v2;再在 v2上靠近2点找点3,也在同一 时刻作速度 v3 ;依次作到 N点,得到折线A-2-3-…-N,当
工程流体力学 第四章 流体运动学
§4-1 描述流体运动的两种方法
流体运动学研究流体运动的规律,不追究导致运动的力 学因素。
研究流体运动的方法
一、拉格朗日法(Lagrange Method) 拉格朗日法又称随体法。它追踪研究每一个流体质点的
运动规律,综合所有的流体质点,从而得到整个流场的运动 规律,参见图。
a y
流体力学第四章 水头损失

P59表4-1为不同形状导管的临界雷诺数(水力半径)。
雷诺数的物理意义: Re = V d/ 粘性大、 Re 小、 易层流
13
§4–5 层流的水头损失---圆管中的层流
在这一章节主要讨论粘性力和沿程水头损失 hf 的规律。
假设流体在等截面水平圆管中作层流运动。取出其中半径 为 r 的圆柱体作为研究对象,写出运动方程式:(因为是定常
因此在计算每一个具体流动的水头损失时,首先须要判 别该流体的流动状态,而雷诺数为判别流体是层流还是湍 流提供了准则。
11
§4-4 雷诺数
管中流体的平均流速不是一个独立不变的量。
由实验知:流体平均流速与流体运动粘性成正比、与管道直 径d成反比;则引入一个无量纲比例常数Re 可写为:
V= Re /d
其中 Re 称为雷诺数。
8
(c)继续增大管内流速,则染色流束剧烈地波动,最后个别部 分出现破裂,并失掉原来的清晰的形状,混杂在很多小旋涡中。 染色液体很快充满整个管,如图c。这表明此时管内的流体向前 流动时处于完全无规则的混乱状态,称其为“湍流”,或“紊 流”。
流体由层流转变为湍流时 的平均流速,称之为“上临 界速度VC `”。
长管、短管
不是由管道的长与短来决定,而是由局部水头损失与沿程水头 损失的比例大小来确定。
长管:沿程损失比局部损失和速度水头的和大,局部损失可忽略;
短管:局部损失和速度水头的和比沿程损失大,考虑局部损失;
§4-3 流体流动两种状态
在不同条件下,流体质点的运动可能表现为两种状态。 一是、流体质点作有规则的运动,在运动过程中质点之间
互不混杂、互不干扰。 二是、流体质点的运动非常混乱。 1883年英国科学家雷诺进行了负有盛名的雷诺实验。
工程流体力学第4章流体在圆管中的流动

流体在圆管中的摩擦系数
定义
表示流体在圆管中流动时, 流体与管壁之间的摩擦力 与压力梯度之间的比值。
影响因素
流体的物理性质、管道的 粗糙度、流动状态等。
测量方法
通过实验测定,常用的实 验设备有摩擦系数计和流 阻仪等。
流体在圆管中的流动效率
定义
表示流体在圆管中流动的能量转 换效率,即流体在流动过程中所 消耗的能量与流体所具有的能量
流速分布受流体粘性和密度的影响, 粘性越大、密度越小,靠近管壁处流 速降低越快。
03
流体在圆管中的流动现象
流体阻力
01
02
03
定义
流体在流动过程中,由于 流体内部以及流体与管壁 之间的摩擦力而产生的阻 力。
影响因素
流体的物理性质、流动状 态、管道的形状和尺寸等。
减小阻力措施
选择适当的流速、优化管 道设计、使用减阻剂等。
之比。
影响因素
流体的物理性质、管道的形状和尺 寸、流动状态等。
提高效率措施
优化管道设计、改善流体物性、降 低流速等。
流体பைடு நூலகம்圆管中的流动稳定性
定义
表示流体在圆管中流动时,流体的速 度和压力等参数随时间的变化情况。
影响因素
流动稳定性控制
通过控制流体物性、流速和管道设计 等措施,保持流体在圆管中的流动稳 定性。
根据输送距离、流量和扬程要求,选择合适的水 泵。
输送效率
优化输送管道布局,降低流体阻力,提高输送效 率。
输送安全性
确保输送过程中不发生泄漏、堵塞等安全问题。
液压系统
液压元件
根据液压系统要求,选择合适的液压元件,如油泵、阀、油缸等。
系统稳定性
确保液压系统在各种工况下稳定运行,避免压力波动和振动。
流體力學第四章伯努利方程

第四章 伯努利方程4.1 伯努利方程4.1.1 理想流体沿流线的伯努利方程1. 伯努利方程的推导将欧拉运动微分方程式积分可以得到流体的压力分布规律,但只能在特殊的条件下,不可能在任何的情况下都可求得其解,故我们需对流场作出如下假设:(1)理想流体(2)定常流动(3)质量力有势(4)不可压缩流体(5)沿流线积分在定常流动的条件下,理想流体的运动微分方程(欧拉运动微分方程)可以写成 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂-∂∂+∂∂+∂∂=∂∂-∂∂+∂∂+∂∂=∂∂-z v v y v v x v v z p f z v v y v v x v v y p f z v v y v v x v v x p f z z z y z x z y z y y y x y x z x y x x x ρρρ111 (4.1) 将这个方程沿流线积分,如图4.1所示,可得到伯努利方程。
为此,将式(4.1)的第一式乘以x d 得x zv v x y v v x x v v x x p x f x z x y x x x d d d d 1d ∂∂+∂∂+∂∂=∂∂-ρ (1) 按照流线方程 zy x v z v y v x d d d == 将有,y v x v x y d d =,z v x v x z d d =故式(1)可写成x x x x x x x x x v v z zv v y y v v x x v v x x p x f d d d d d 1d =∂∂+∂∂+∂∂=∂∂-ρ (2) 式(4.1)的另外两式分别乘y d 、z d 后,作类似的代换,可得y y y v v y yp y f d d 1d =∂∂-ρ (3)z z z v v z zp z f d d 1d =∂∂-ρ (4) 将式(2)、(3)和式(4)相加,得 z z y y x x z y x v v v v v v z zp y y p x x p z f y f x f d d d )d d d (1d d d ++=∂∂+∂∂+∂∂-++ρ (5) p 的全微分可以表示为 dz zp dy y p dx x p dp ∂∂+∂∂+∂∂= 质量力有势,则必存在势函数U ,满足y f y f x f z zU y y U x x U U y y x d d d d d d d ++=∂∂+∂∂+∂∂=而 2/d d d d 2v v v v v v v z z y y x x =++式中等号右端的v 为平均速度。
流体力学课件第四章流动阻力和水头损失

l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*
8
§4-4 圆管中的层流
层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系
均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态
两种流态
v小
' c
v小
v > vc
v大 v大
临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类
沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。
流体力学 第四章 量纲分析

v l
F 3 l
3 Fp Fm3 300 20 2400000 N 2400 kN l
5.按雷诺准则和佛劳德准则导出的物理量比尺表 比尺
名称
λυ=1 长度比尺λl 流速比尺λv λl λl-1
雷诺准则 λυ≠1 λl λυλl-1
弗劳德准则 λl λl1/2
加速度比尺λa
取m个基本量,组成(n-m)个无量纲的π项
F 1 , 2 ,, nm 0
例:求有压管流压强损失的表达式 解:步骤
a.找出物理过程中有关的物理量,组成未知的函数关系
f p, ,, l , d , , v 0
b.选取基本量
n7
常取:几何学量l(d),运动学量v,动力学量ρ
vp vm
up um
v λv——速度比尺
l t tm lm vm v
tp lp vp
时间比例尺 加速度比尺
v 2 a v t l
qV p qVm
流量比例尺 q 运动粘度比例尺 角速度比例尺
3 3 l 2l v lm tm t
Re
vl
雷诺数——粘性力的相似准数
(2)佛劳德准则——重力是主要的力
FGP FIP FGm FIm
改成
FIm FIP FGP FGm
FG mg gl 3
FI l 2v 2
2 vm g p l p g m lm
v2 p
无量纲数
v2 Fr gl
佛劳德数——重力的相似准数 (3)欧拉准则——压力是主要的力
20 vm v p 300 6000km / h lm 1 lp
难以实现,要改变实验条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、流态的判别准则——临界雷诺数
雷诺实验发现影响流体流态的四个因素是v、d、μ、。
由该四个参数组成的无量纲数Re (称为雷诺数),决定着流 态,即: vd vd Re
与临界流速对应的雷诺数为临界雷诺数(用Rek表示),即:
v k d v k d Rek
圆管流动: Rek ≈ 2000
紊流
过渡状态
层流
紊流转变为层流时,管中平均流速称为临界流速(vk)。
2018/10/19
9
二、沿程损失与断面 平均流速的关系
oa为直线, de为近似直线, 都满足下述方程:
lghf lgk mlgv
或:
h f kv m
层流时,m=1; 紊流时,m=1.75~2.0;
2018/10/19 10
流速分布:
r J 2
J du rdr 2
u=f (r)
4
r0
最大速度在管轴上(r =0): umax 断面平均流速: v qv A
udA
A
J 2 r0 4
v
umax=2v
A
1 J 2 umax r0 8 2
圆管层流过水断面上流速分布呈旋转抛物面分布。
圆管层流运动沿程阻力系数:
64 λ= Re
2018/10/19 16
例1:某制冷系统中,用内径为 d=10mm,长为 l =3m的输油管 输送润滑油。 已知该润滑油的运动粘滞系数ν=1.80210-4 m2/s, 求流量为qv=75cm3/s时,润滑油在管道上的沿程损失。 解:
qv 4 qv 4 75 106 v 0.96 2 2 A d 0.01
§4-1 沿程损失与局部损失
总水头线 总 损 失
2018/10/19
2
一、沿程阻力与沿程损失
克服流体与边壁之间的阻力产生的能量损失,用h f表示。 产生在均匀的直管段上。 沿程损失的计算: 对于液体: 沿程阻 力系数 对于气体:
l v 2 pf d 2
管长
l v2 hf d 2g
2018/10/19 15
三、圆管层流运动的沿程损失
J 2 v r0 8
8v J 2 l r0 hf
2 32vl 64 l v 2 l v hf 2 d 2g d Re d 2 g
l v2 hf d 2g
圆管层流中,沿程水头损失与断面平均流速的一次方成正比。
13
二、圆管层流过流断面上的切应力与流速分布
切应力分布:
r J 2
0
r0
r
v
圆管层流均匀流过流断面上的切应力呈直线分 布,管轴处τ=0,管壁处τ=τmax,达最大值。
2018/10/19 14
0
由牛顿内摩擦定律: y r0 r du du 1 rJ dy dr 2 J 2 积分得: u r C 4 J 2 又边界上r=r0时,u=0代入得:C r0 4 J 2 2 ( r0 r ) 流速分布: u
总水头线
2018/10/19
7
§4-2 流体的两种流动型态及判别准则
一、两种流态
英国物理学家雷诺通过实验发现流体具有两种不 同的流动型态。
雷诺实验装置:
颜料盒
动画
细管 水箱 玻璃管 阀门
2018/10/19 8
雷诺实验现象:
阀门开度由小到大即:流速由小到大时:
层流
过渡状态
紊流
阀门开度由大到小即:流速由大到小时:
17
§4-4 紊流运动的特征与紊流阻力
一、紊流的特征与时均化
紊流特征 质点掺混:流体质点在流动过程中不断相互掺混。 运动参数的脉动:流体中涡体不断的产生、发展、衰减
和消失,使固定空间点上的速度、压强等总是围绕一个平 均值而波动——脉动。
2018/10/19
18
紊流运动的时均值
第四章 流动阻力与能量损失
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节
2018/10/19 1
沿程损失与局部损失 流体的两种流动型态及其判别准则 圆管中层流运动的沿程损失 紊流运动的特征和紊流阻力 紊流沿程阻力系数的实验研究 紊流阻力系数经验公式与莫迪图 非圆形断面管的沿程损失 管道流动的局部损失
v2 hj 2g
( m) (Pa)
对于气体:
pj
v 2
2
p j hj
局部损失发生在管段局部,总水头线在局部某断面下降。
2018/10/19 5
2018/10/19
6
三、管路的总能量损失
hw hf hj
( m) (Pa) 总 损 失
pw p f p j
vd
m/s
0.96 0.01 Re 53.3 2000 4 1.802 10
故为层流
64 64 1.2 Re 53.3
l v2 3 0.962 所以: h f 1.2 16.91 d 2g 0.01 2 9.81
m(油柱)
2018/10/19
流速 ( m) 管径
p f hf
(Pa) 密度
沿程损失与管段长度成正比。总水头线表现为均匀的下降。
2018/10/19 3
2018/10/19
4
二、局部阻力与局部损失
在边壁急剧变化,流速分布急剧调整的局部区段上,集中 产生的流动阻力,由此引起的损失,以hj表示。 在管道进、出口、异径管接头、弯管三通、阀门等各种管件 处产生局部水头损失。 局部损失的计算: 对于液体: 局部阻力系数
Re 2000
为层流;
Re 2000
为紊流
实际上,Re=2000~4000为过渡区,在这个区域里,层流 极不稳定,稍有扰动,就转变为紊流。
2018/10/19 11
§4-3 圆管中层流运动的沿程损失
一、均匀流动方程式(沿程水头损失与切应力的关系 )
2018/10/19
12
取圆管均匀流段中半径为r的流束为研究对象, 由受力平衡:
p1 A - p2 A Al cos - 2rl 0 0
p1
2 2 v1 p2 v 2 z2 hf 由能量方程: z1 2g 2g
联立上两式得:
r 0 J 2l 2
——均匀流动方程式
rh f
J = hf l
称水力坡度。
2018/10/19