Deform实验报告镦粗与挤压
DEFORM实验报告镦粗与挤压

DEFORM实验报告镦粗与挤压引言:镦粗与挤压是金属加工中常见的两种变形方式。
镦粗是通过一系列重复的敲击来使金属材料产生塑性变形,而挤压则是通过外力的作用使金属材料通过孔口或模口挤压出来。
这两种变形方式在工业生产和实验研究中具有重要的应用,能够改善材料的力学性能和形状,提高材料的工艺性能。
实验目的:通过实验研究镦粗与挤压对钢材和铝材的影响,探究这两种变形方式对材料性能的改善和变化规律。
实验装置与材料:1.镦粗实验装置:包括铁床、镦粗锤和试样夹具。
2.挤压实验装置:包括挤压机、模具和试样夹具。
3.钢材和铝材试样:分别为圆形钢材和铝材坯料。
实验步骤:1.镦粗实验:a.在铁床上固定试样夹具,并将圆形钢材试样放入夹具中。
b.使用镦粗锤对试样进行重复的敲击,使其产生塑性变形。
c.根据预设镦粗次数,进行相应次数的敲击。
d.取出试样,进行显微组织分析和力学性能测试。
2.挤压实验:a.将铝材坯料放入模具中,并固定模具和试样夹具。
b.启动挤压机,通过外力的作用使铝材通过模具排出,形成挤压后的试样。
c.取出试样,进行显微组织分析和力学性能测试。
实验结果与分析:1.镦粗实验结果:通过显微组织观察和力学性能测试,发现经过镦粗变形的钢材试样的晶粒尺寸明显减小,形成更加致密的组织结构,同时也能够提高材料的硬度和强度。
2.挤压实验结果:通过显微组织观察和力学性能测试,发现经过挤压变形的铝材试样的晶粒变细,形成更加均匀的组织结构,同时也能够提高材料的硬度和强度。
结论:镦粗与挤压是两种常见的金属变形方式,通过实验研究发现,这两种变形方式都能够显著改善材料的晶粒尺寸和组织结构,提高材料的硬度和强度。
在工业生产和实验研究中,可以根据具体需求选择适合的变形方式,以改善材料性能和工艺性能。
Deform实验报告镦粗报告.pptx

d. 设定 Bottom Die 的 General,其中设定 Object Type 为 Rigid, Assign Temperature 为 200;
e. 设定 Simulation Control 中的 Units 为 SI,Step 中的 Starting Step Number 为-1, Number of Simulation Steps 为 40,Step Increment to Save 为 1, Primary Die 为 Top Die ,With Constant Die Displacement 为 1in.,然后点击 OK 。
第二组数据:
13
第三组数据:
14
第四组数据:
15
5)最大应力分布(抓取6步) 第一组数据:
第二组数据:
16
第三组数据:
17
第四组数据:
18
4实验小结
答: 通过1、2、3、4的变形可以看出,1和3没有在压缩的过程中是属于均
匀的变形过程,而2和4由于存在摩擦力,出现了不均匀的变形,圆柱体四 周出现鼓形轮廓。圆柱体在镦粗时除了受到变形工具的压缩力外,在断面 接 触处有摩擦力作用,摩擦力阻碍金属质点横向流动,使得圆柱体产生鼓 形。 对比2和4可知,2比4出现的鼓形更为明显。
实验报告
实验名称 __ __ _ 实验课程
EFORM-3D镦粗仿真实验 锻造工艺及模具设计
指导教师 ______________ _
专业班级 __________
DEFORM实验报告镦粗与挤压

铜陵学院课程实验报告实验名称圆柱体压缩过程模拟实验课程材料成型计算机模拟实验一圆柱体压缩过程模拟1实验目的与内容1.1 实验目的进一步熟悉 AUTOCAD或 PRO/E实体三维造型方法与技艺,掌握 DEFORM软件的前处理、后处理的操作方法与技能,学会运用 DEFORM软件分析压缩变形的变形力学问题。
1.2实验内容运用 DEFORM模拟如图 1 所示的圆柱坯压缩过程。
锤头工件砧板图 1圆柱体压缩过程模拟(一)压缩条件与参数锤头与砧板:尺寸200×200×20mm,材质 DIN-D5-1U,COLD,温度室温。
工件:材质 DIN_CuZn40Pb2,尺寸如表 1 所示,温度室温。
表 1实验参数序号圆柱体直径,圆柱体高度,摩擦系数,滑锤头运动速压缩程度, % mm mm动摩擦度, mm/s1100150012021001500.21203100250012041002500.2120(二)实验要求(1)运用 AUTOCAD或 PRO/e绘制各模具部件及棒料的三维造型,以 stl 格式输出;(2)设计模拟控制参数;(3)DEFORM前处理与运算(参考指导书);(4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态;(5)比较方案 1 与 2、3 与 4、1 与 3 和 2 与 4 的模拟结果,找出圆柱体变形后的形状差别,说明原因;(6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。
2实验过程2.1 工模具及工件的三维造型根据给定的几何尺寸,运用 AUTOCAD 或 PRO/E 分别绘制坯料、锤头和砧板的几何实体,文件名称分别为 workpiece, topdie,bottomdie,输出 STL 格式。
2.2 压缩过程模拟2.2.1 前处理建立新问题:程序DEFORM6.1 Name 栏中填写“ Forging”Finish File New Problem进入前处理界面。
(完整word版)DEFORM-2D有限元模拟正反挤压

学生学号123456 实验课成绩武汉理工大学学生实验报告书实验课程名称材料成型CAE综合实验开课学院材料学院指导老师姓名学生姓名学生专业班级成型0802班2011 —2012 学年第一学期实验课程名称:材料CAE综合实验实验项目名称DEFORM-2D软件的操作与实例演练实验成绩实验者专业班级成型0802 组别同组者实验日期年月日第一部分:实验分析与设计(可加页)一、实验内容描述(问题域描述)1.了解认识DEFORM-2D软件的窗口界面。
2.了解DEFORM-2D界面中各功能键的作用。
3.掌握利用DEFORM-2D有限元建模的基本步骤。
4.学会进入前处理、后处理操作。
5.学会对DEFORM-2D模拟得出的图像进行数值分析,得出结论二、实验基本原理与设计(包括实验方案设计,实验手段的确定,试验步骤等,用硬件逻辑或者算法描述)DEFORM是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。
通过在计算机上模拟整个加工过程,帮助工程师和设计人员:设计工具和产品工艺流程,减少昂贵的现场试验成本。
提高工模具设计效率,降低生产和材料成本。
缩短新产品的研究开发周期。
DEFORM-2D适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT微机平台。
可以分析平面应变和轴对称等二维模型。
它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。
三、主要仪器设备及耗材1.计算机2.DEFORM-2D软件第二部分:实验调试与结果分析(可加页)一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)DEFORM-2D软件操作流程:一、前处理1. 创建新的问题打开DEFORM-2D软件,单击,“New Problem”,设置好存储路径,文件名改为英文。
2.设置模拟控制单击,打开Simulation Control窗口,设置单位为SI,如图,其他默认不变。
Deform模拟实验报告

第一章挤压模具尺寸及工艺参数的制定1.1实验任务已知:空心坯料Φ90×25mm,材料是黄铜(DIN-CuZn40Pb2),内径与挤压针直径相同。
所要完成成品管直径26mm,模孔工作带直径36mm,模孔出口带直径46mm。
完成如下操作:(1)根据所知参数设计挤压模具主要尺寸和相关工艺参数,并运用AUTOCAD(或Pro/E)绘制坯料挤压过程平面图。
(2)根据所绘出的平面图形,在三维空间绘出三维图。
并以STL格式分别输出各零件图形,并保存。
(3)运用DEFORM-3D模拟该三维造型,设置模拟参数,生成数据库,最终完成模拟过程。
1.2挤压温度的选取挤压温度对热加工状态的组织、性能的影响极大,挤压温度越高,制品晶粒越粗大,挤制品的抗拉强度、屈服强度和硬度的值下降,延伸率增大。
由于黄铜在730℃时塑性最高,而在挤压过程中由于变形、摩擦产热使配料温度升高,若把黄铜预热到730℃,坯料可能超过最佳塑性成型温度,所以选取坯料初始温度为500℃。
挤压筒、挤压模具也要预热,以防止过大的热传递导致金属温度分布不均,影响制品质量,预热温度与坯料温度不能相差太大,故选取为300℃。
挤压速度的选取挤压速度对制品组织与性能的影响,主要通过改变金属热平衡来实现。
挤压速度低,金属热量逸散较多,致使挤压制品尾部出现加工组织;挤压速度高,锭坯与工具内壁接触时间短,能量传递来不及,有可能形成变形区内的绝热挤压过程,使金属的速度越来越高,导致制品表面裂纹。
而且在保证产品质量和设备能量允许的前提下尽可能提高挤压速度。
根据挤压流程可计算得挤压比为λ=13,故挤压垫速度为为1.5 mm/s。
第二章工模具尺寸2.1 挤压筒尺寸确定2.1.1考虑坯料挤压过程中的热膨胀,取挤压筒内径为mm;2.2.2挤压筒外径为,故挤压筒外径为mm;2.2.3挤压筒长度(2-1)式中:—锭坯最大长度,对重金属管材为;—锭坯穿孔时金属增加的长度;—模子进入挤压筒的深度;—挤压垫厚度。
Deform实验报告(第五组)

LOGO 单击Remesh Criteria按钮,设置为图示数据:
数据设置
LOGO
设置运动方向及速度
单击Movement按钮将上模的运动方向设置为Z方向,将上模的速度设 置为1mm/s。如图示:
LOGO
选择工作面
按钮。如
单击d.按钮,分别单击工件两个对称面后,点击 图示:
LOGO
但是我们都一一克服了,这次实验也培养了我么分析问题解决问题的能力,
也为我们今后的学习奠定了良好的基础。
LOGO
进行数据处理
回到先前界面,单击Run进行数据处理,时间大约半小时左右,耐心 等待处理结果
LOGO
微型齿轮挤压GIF动画模拟
LOGO
挤压齿轮的最大应力的GIF动画演示
LOGO
进行点的跟踪
点击Point Track按钮选取工件上6个点,如图示:
LOGO 应用Deform后处理系统进行stress应力分析
应力分析
LOGO
GIF动画
LOGO
分析
由图表以及GIF动画可以看出,6个点的应力先是随时间慢慢增大,大约在2秒
的时候打到最大值,而后维持了一段时间,大约3秒,在5秒左右随时间慢慢 减小,直至挤压结束。而且不同的点随时间的变化是不同的。
LOGO
内应力变化曲线
LOGO
分析
由图可以看出,内应力都随时间慢慢增大,其中,第四点,即靠近坯料表面 的应力变化最大,其余的5点变化趋势都比较紧凑。
进行体积补偿
单击Properties按钮,选择Active in FEM按钮进行体积补偿计算。
如图示:
LOGO
进行边界曲率,应变,应变率的设置
单击Mesh按钮,单击Weighting Factors按钮,将数据设置为如图示:
deform实验报告

deform实验报告
《Deform实验报告》
在本次实验中,我们对deform进行了深入的研究和探索,以期能够更好地了解其性能和潜在应用。
deform是一种新型材料,具有非常特殊的性质和潜力,因此我们对其进行了一系列的实验和分析。
首先,我们对deform的物理性质进行了研究。
通过对其密度、硬度、弹性等参数的测量和分析,我们发现deform具有非常独特的物理性质,具有很高的弹性和柔韧性,同时又具有一定的硬度和稳定性。
这些性质为其在各种工程领域的应用提供了广阔的可能性。
其次,我们对deform的化学性质进行了研究。
通过对其化学成分和结构的分析,我们发现deform具有很高的化学稳定性和耐腐蚀性,能够在各种恶劣环境下保持稳定。
这为其在化工、材料科学等领域的应用提供了很大的优势。
最后,我们对deform的应用潜力进行了探讨。
通过对其在机械、建筑、医疗等领域的应用进行分析,我们发现deform具有非常广泛的应用潜力,能够在各种领域发挥重要作用。
例如,在建筑领域,deform可以用于制造新型的结构材料,提高建筑物的抗震性能;在医疗领域,deform可以用于制造生物医用材料,用于骨折治疗和人工关节等方面。
总的来说,通过本次实验,我们对deform的性能和潜力有了更深入的了解,相信在未来的研究和应用中,deform将会发挥越来越重要的作用,为人类社会的发展做出更大的贡献。
DEFORM

k = (d max− d min)
d min
12.5% 2.4%
从对比图和尺寸的比较可以看出, 从对比图和尺寸的比较可以看出,扭压成型可以明 显减小鼓形。 为鼓形系数 扭压鼓形系数只有2.4,而 为鼓形系数,扭压鼓形系数只有 显减小鼓形。K为鼓形系数 扭压鼓形系数只有 而 普通镦粗达到了12.5 普通镦粗达到了
扭压复合加载成型
LOGO
锻造镦粗出现的问题 工件与工具接触面存在摩擦,阻碍 金属流动,使成型所需的压力增加及导 致不均匀的变形,可能产生裂纹,鼓形 等。 在高温下镦粗时,温度降低快,屈 服极限较高,产生不均匀变形更为明显。
Your site here
LOGO
如上图所示,开始镦粗后上下表面有摩擦力, 如上图所示,开始镦粗后上下表面有摩擦力,阻碍金属向外 流动,中间不存在摩擦力,而由于塑性变形总体积不变, 流动,中间不存在摩擦力,而由于塑性变形总体积不变,所以出 现了如图的鼓形。 现了如图的鼓形。 Your site here
Your site here
LOGO
提高镦粗时均匀性的工艺方法
B :结果分析 结果分析
鼓形对比 以下是每20步的对比图(上边为普通镦粗,下边为 扭压加载)
Your site here
LOGO
提高镦粗时均匀性的工艺方法
最终尺寸比较 最终尺寸
成型方法
最小直径 普通镦粗 扭压复合加载 104.1 112.1 最大直径 117.1 114.8
Your site here
LOGO
提高镦粗时均匀性的工艺方法 第三类方法: 第三类方法:扭压复合加载成型 一.原理:扭压复合成型工艺是在
工件高度方向上施加压力的同时, 使工件产生扭转运动,将被动摩擦 转化为促进金属流动的主动摩擦的 一种新型工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铜陵学院课程实验报告实验名称圆柱体压缩过程模拟实验课程材料成型计算机模拟指导教师张金标. 专业班级10材控(2). 姓名吕志辉. 学号1010121056 .2013年05月19日实验一 圆柱体压缩过程模拟1 实验目的与内容1.1 实验目的进一步熟悉AUTOCAD 或PRO/E 实体三维造型方法与技艺,掌握DEFORM 软件的前处理、后处理的操作方法与技能,学会运用DEFORM 软件分析压缩变形的变形力学问题。
1.2 实验内容运用DEFORM 模拟如图1所示的圆柱坯压缩过程。
(一)压缩条件与参数锤头与砧板:尺寸200×200×20mm ,材质DIN-D5-1U,COLD ,温度室温。
工件:材质DIN_CuZn40Pb2,尺寸如表1所示,温度室温。
砧板工件锤头图1 圆柱体压缩过程模拟(二)实验要求(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl格式输出;(2)设计模拟控制参数;(3)DEFORM前处理与运算(参考指导书);(4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态;(5)比较方案1与2、3与4、1与3和2与4的模拟结果,找出圆柱体变形后的形状差别,说明原因;(6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。
2 实验过程2.1工模具及工件的三维造型根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、锤头和砧板的几何实体,文件名称分别为workpiece,topdie,bottomdie,输出STL格式。
2.2 压缩过程模拟2.2.1 前处理建立新问题:程序→DEFORM6.1→File→New Problem→Next→在Problem Name栏中填写“Forging”→ Finish→进入前处理界面。
设置模拟控制:点击工具栏中Simulation Controls按钮→Main按钮。
在Simulation Title一栏中填入Forging。
在Operation Name一栏中填入deform。
在Units栏中选中SI。
在Mode一栏中只选Deformation。
添加对象:点击+按钮添加对象,依次为“Workpiece”、“Top Die”、“Bottom Die”。
定义对象的材料模型:在对象树上选择Workpiece→点击General按钮→选中Plastic选项→点击Assign Temperature按钮→填入温度为20→点击OK按钮;选择Top Die→点击General按钮→选中Rigid选项→点击Assign Temperature按钮→填入温度为20→点击OK按钮→勾选Primary Die选项→如此重复,定义其它工模具的材料模型(不勾选Primary Die选项)。
导入毛坯几何文件:分别选中Workpiece、Top Die、Bottom Die,在操作窗口中单击Geometry按钮→Import Geo按钮,导入在CAD中事先画好的造型文件。
调整对象位置关系:在工具栏点击Object Positioning按钮进入对象位置关系调整对话框→根据锻压要求及实体造型调整相互位置关系→点击OK按钮完成。
实体网格化:在对象树上选择Workpiece→点击Mesh →选择Detailed Settings的General选项卡→点击Absolute,Size Ratio改为3,Element Size选Min Element Size,设为3→点击Surface Mesh ,生成表面网格→点击Solid Mesh 生成实体网络。
设置对象材料属性:在对象树上选择Workpiece→点击Material→点击other→选择DIN-CuZn40Pb2[1050-1400F(550-750C)]→点击Load完成材料属性的添加。
设置主动工具运行速度:选择Top Die→点击Movement→在type栏上选中Speed选项→在Direction选中主动工具运行,如-Z→在speed卡上选中Define选项,其性质选为Constant,填入速度值为1mm/s。
设置坯料边界条件:选中物体Workpiece→单击d按钮→选中Symmetry plane图标→然后分别选中坯料的对称面→单击添加按钮。
工件体积补偿:选择Workpiece→点击Property→在Target V olume卡上选中Active in FEM+meshing选项→点击Calculate V olume按钮→点击Yes按钮。
设置模拟参数:点击工具栏中Simulation Controls按钮→点击Step按钮→在Number of Simulation Steps栏中填入模拟步数为30→Step Increment to Save栏中填入每隔2步就保存模拟信息→在With Die Displacement栏中选Constant,填入1→点击OK按钮完成模拟设置。
边界条件定义:点击Inter-Object按钮→在对话框上选择Workpiece—Top Die→点击Edit按钮→点击Deformation卡Friction栏上选中Shear和Constant选项,填入摩擦系数为0→点击Close按钮→如此重复,依次设置其它接触关系→点击Generate all按钮→点击Tolerance 按钮→点击OK按钮完成边界条件设置。
2.2.2 生成库文件在工具栏上点击Database generation按钮→点击Check按钮→没有错误信息则点击Generate按钮→完成模拟数据库的生成。
2.2.3 退出前处理程序在工具栏上点击Exit按钮,退出前处理程序界面。
2.2.4 模拟运算在主控程序界面上,单击项目栏中的forging.DB文件→单击Run按钮,进入运算对话框→单击Start按钮开始运算→单击Stop按钮停止运算→单击Summary,Preview,Message,Log按钮可以观察模拟运算情况。
2.2.5重复操作按表格1所列的另外三种情况,改变摩擦系数跟坯料高度再做三次模拟操作。
2.3 后处理模拟运算结束后,在主控界面上单击forging.DB文件→在Post Processor栏中单击DEFORM-3D Post按钮,进入后处理界面。
1)观察变形过程:点击播放按钮查看成型过程;方案一变形过程方案二变形过程方案三变形过程方案四变形过程图2 四种方案的变形过程2)观察最大应力分布:在状态变量的下拉菜单中选择Stress –Max principal,点击播放按钮查看成型过程中最大应力分布及其变化情况;3)观察最大应变分布:在状态变量的下拉菜单中选择Strain –Total- Max principal,点击播放按钮查看成型过程中最大应变分布及其变化情况;4)观察破坏系数分布:在状态变量的下拉菜单中选择Damage,点击播放按钮查看成型过程中可能产生破坏的情况;5)成型过程载荷:点击Load Stroke按钮,生成变形工具加载曲线图,保存图形文件为load.png,并保存图表的数据;3 实验结果与分析3.1观察最大应力分布图3 方案一(高度150;摩擦系数0)图4 方案二(高度150;摩擦系数0.2)图5 方案三(高度250;摩擦系数0)图6 方案四(高度250;摩擦系数0.2)1)比较图3和图4的颜色分布并在每个区域随机用鼠标点击一些点查看最大应力值,可以看出:①摩擦系数为0时,坯料各部分应力分布较均匀,处于三向压应力状态,为均匀变形。
②摩擦系数为0.2时,坯料各部分应力分布不均匀:圆柱体端部的接触面附近处于强烈的三向压应力状态;在与垂直作用力轴线呈45°交角的区域也处于三向压应力状态,但应力值较前者较小;在与垂直作用力轴线呈45°交角的区域径向向外的区域里,最大应力逐渐由压应力变为拉应力,该区域为二压一拉应力状态。
该坯料的变形为不均匀变形。
原因:镦粗时,由于受到接触表面摩擦力的影响,会使接触表面附近的金属变形受阻。
而接触表面摩擦力的影响,沿径向由侧边向中心逐渐增强,沿高度方向由端面向中心逐渐减弱,故产生不均匀变形。
为了保持物体完整性,会出现附加应力,从而改变物体的应力状态。
2)比较图5和图6,其与图3和图4应力分布情况相似。
再比较图3和图5,可以看出:不同高度,在相同压下量下,应力分布同样较均匀,但最大应力的大小有所差异。
最后比较图4和图6可以看出:不同高度,在相同压下量下,不均匀变形所对应的各个区域的体积跟最大应力大小都有所差异。
综上,高度对均匀变形和不均匀变形的应力状态同样有影响。
3.2观察最大应变分布图7 方案一(高度150;摩擦系数0)图8 方案二(高度150;摩擦系数0.2)图9 方案三(高度250;摩擦系数0)图10 方案四(高度250;摩擦系数0.2)1)比较图7和图8的颜色分布并在每个区域随机用鼠标点击一些点查看最大应变值,可以看出:①摩擦系数为0时,坯料各部分应变分布较均匀,为均匀变形。
由于坯料在轴向上的为压缩变形且变形量为0.2,根据体积不变定律并参照图中最大应力值,可知该坯料在径向和周向均为拉伸变形,所以该坯料处于一向压缩两相拉伸应变状态。
观察变形前后的坯料形状,还可以发现其形状在变形前后相似,这点符合均匀变形的特点。
②摩擦系数为0.2时,坯料各部分应变分布不均匀:位于圆柱体端部接触面附近,由于受接触面摩擦影响较大,且远离与垂直作用力轴线呈大致45°交角的最有利滑移区域,在此区域内产生塑性变形较为困难,为难变形区;处于与垂直作用力大致为45°交角的最有利变形区域,且受摩擦影响较小,因此在此区域内最易发生塑性变形,为易变形区。
处于易变形区四周的区域,其变形量介于难变形区与易变形区之间,为自由变形区。
观察变形前后的坯料形状,便可以发现其形状在变形后呈单鼓形,这正是由于不均匀变形。
2)比较图9和图10,其与图7和图8应变分布情况相似。
再比较图7和图9,可以看出:不同高度,在相同压下量下,应变分布同样较均匀,但最大应变的大小有所差异。
最后比较图8和图10可以看出:不同高度,在相同压下量下,不均匀变形所对应的各个区域的体积跟最大应变大小都有所差异。
综上,高度对均匀变形和不均匀变形的应变状态同样有影响。
3.3观察破坏系数分布图11 方案一(高度150;摩擦系数0)图12 方案二(高度150;摩擦系数0.2)图13 方案三(高度250;摩擦系数0)图14 方案四(高度250;摩擦系数0.2)由上面四幅图可以看出,破坏系数均为0。
说明在此镦粗过程中,晶格畸变不是很严重,坯料不容易被破坏。