Deform棒材热挤压过程模拟

合集下载

基于deform的纯铜管热挤压过程数值模拟

基于deform的纯铜管热挤压过程数值模拟
收稿日期 "!""#E"=E&’ 作者简介 " 林高用 %&C##E &# 男 # 湖南 省 洞 口 县 人 # 副 教 授 # 博 士 # 主 要从事材料加工的科研与教学 ^ 电话 ’"’$&E??$#=?% $
7819:;<!7 有限元 软件 5=6 对纯铜 管热挤 压 过 程
进行数值模拟分析 # 并着重研究挤压速度对变形 过程中热力学参数的影响规律 ! 模拟分析所需的
% 数值模拟结果及分析
%&$ 不同挤压速度下的温度场
金属塑性变 形 过 程 中 ";"E 以 上 的 变 形 能 以
"%
万方数据
! 铸造 锻 压 !"#
()*+,-./ / 0// 4// 123.,-.
材料与挤压模具工作带的摩擦产生了较高的剪切 应变 # 在试验的挤压速度变化范围内 "等效应变随 挤压速度的变化只产生很小的变化 " 且变化规律
88?* 的情况下 " 随着挤压速度的提高 " 压缩锥 和
定径区的最高等效应力值均提高 " 但当挤压速度 为 $"788?*7时 "等效应力反而有所降低 " 这可能是 因为高速变形时温度效应造成的 ! 在实际生产加 工时 " 因快速挤压引起的温度升高可能使纯铜坯 料产生动态再结晶 " 从而使变形抗力降低 ! 在数值 模拟过程中并未考虑动态再结晶的问题 " 因此关 于这一点 " 还有待更深入地分析 ! !热加工工艺 " !""# 年第 $% 卷第 &’ 期
"#$%&’ ’()’&*++,-.)%/00120$32*

Deform模拟实验报告

Deform模拟实验报告

第一章挤压模具尺寸及工艺参数的制定1.1实验任务已知:空心坯料Φ90×25mm,材料是黄铜(DIN-CuZn40Pb2),内径与挤压针直径相同。

所要完成成品管直径26mm,模孔工作带直径36mm,模孔出口带直径46mm。

完成如下操作:(1)根据所知参数设计挤压模具主要尺寸和相关工艺参数,并运用AUTOCAD(或Pro/E)绘制坯料挤压过程平面图。

(2)根据所绘出的平面图形,在三维空间绘出三维图。

并以STL格式分别输出各零件图形,并保存。

(3)运用DEFORM-3D模拟该三维造型,设置模拟参数,生成数据库,最终完成模拟过程。

1.2挤压温度的选取挤压温度对热加工状态的组织、性能的影响极大,挤压温度越高,制品晶粒越粗大,挤制品的抗拉强度、屈服强度和硬度的值下降,延伸率增大。

由于黄铜在730℃时塑性最高,而在挤压过程中由于变形、摩擦产热使配料温度升高,若把黄铜预热到730℃,坯料可能超过最佳塑性成型温度,所以选取坯料初始温度为500℃。

挤压筒、挤压模具也要预热,以防止过大的热传递导致金属温度分布不均,影响制品质量,预热温度与坯料温度不能相差太大,故选取为300℃。

挤压速度的选取挤压速度对制品组织与性能的影响,主要通过改变金属热平衡来实现。

挤压速度低,金属热量逸散较多,致使挤压制品尾部出现加工组织;挤压速度高,锭坯与工具内壁接触时间短,能量传递来不及,有可能形成变形区内的绝热挤压过程,使金属的速度越来越高,导致制品表面裂纹。

而且在保证产品质量和设备能量允许的前提下尽可能提高挤压速度。

根据挤压流程可计算得挤压比为λ=13,故挤压垫速度为为1.5 mm/s。

第二章工模具尺寸2.1 挤压筒尺寸确定2.1.1考虑坯料挤压过程中的热膨胀,取挤压筒内径为mm;2.2.2挤压筒外径为,故挤压筒外径为mm;2.2.3挤压筒长度(2-1)式中:—锭坯最大长度,对重金属管材为;—锭坯穿孔时金属增加的长度;—模子进入挤压筒的深度;—挤压垫厚度。

DEFORM-3D在温挤压中的应用

DEFORM-3D在温挤压中的应用

Deform-3D在温挤压中的应用林喜佳(广东工业大学,材料与能源学院,广东省广州市,510006)摘要:Deform(Design Environment for Forming)是一套基于有限元分析的工艺仿真系统,用于分析金属成形及相关工业的各种成形工艺和热处理工艺。

本文通过利用Deform 3D有限元软件对泵盖的挤压进行数值模拟,通过网格划分、有限元方法(FEM)求解器和点追踪等功能的应用,对速度、应力和应变进行分析,从而得到金属成形过程的流动规律,温度场、力学场分布以及成形件可能存在的问题。

关键词:Deform;金属成形;温挤压Deform是一套基于有限元分析的工艺仿真系统,用于分析金属成形及相关工业的各种成形工艺和热处理工艺。

通过在计算机上模拟整个加工过程,可减少昂贵的现场试验成本,提高工模具设计效率,降低生产和材料成本,缩短新产品的研究开发周期。

随着新工艺、新技术、新设备和新产品的不断更新,挤压工艺面临着越来越大的挑战。

与此同时,各行业对成形件的质量和精度的要求也越来越高,生产的成本越来越低。

于是,计算机辅助工程分析作为计算机分析方法已成为共识,它是提高挤压水平的重要技术手段。

1 Deform概况及功能Deform不同于其他有限元程序,它是专为金属成形设计的。

它具有非常友好的图形用户界面,帮助用户很方便地进行准备数据和成形分析。

这样工程师便可把精力主要集中在工艺分析上,而不是去学习繁琐的计算机系统。

Deform专为大变形问题设计了一个全自动的、优化的网格再划分系统。

Deform是一个高度模块化、集成化的有限元模拟软件,它主要包括前处理器、模拟器、后处理器三大模块。

前处理器处理模具和坯料的材料信息及集合信息的输入、成形条件的输入,建立边界条件,还包括有限元网格自动生成器;模拟器是集弹性、弹塑性、刚塑性、热传导于一体的有限元求解器;后处理器是将模拟结果可视化,并输出模拟结果数Deform的功能主要包括成形分析和热处理两部分:⑴成形分析:①冷、温、热锻的成形和热传导耦合分析,提供材料流动、模具充填、成形载荷、模具应力、纤维流向、缺陷形成和韧性破裂等信息;②丰富的材料数据库,包括各种钢、铝合金、铜合金、钛合金等,用户还可以自行输入材料参数;③刚性、塑性和热粘塑性材料模型,特别适用于大变形成形分析;弹塑性材料适用于分析残余应力和回弹问题。

基于DEFORM的汽车轮毂轴管热挤压过程的数值模拟

基于DEFORM的汽车轮毂轴管热挤压过程的数值模拟

FORGING2008年第2期1前言轮毂轴管(图1)是汽车后桥上一个重要的保安件,要承受各种复杂的交变应力与疲劳载荷[1]。

因此,其工作环境的特殊性决定了其较高的质量要求和挤压工艺参数的精确化。

传统挤压工艺的制定主要是建立在经验基础上,采用试错法不断调整工艺参数和修改模具,不仅研发周期长,而且挤压件的质量难以保证。

随着数值模拟技术的发展,可以采用计算机对金属成形过程进行分析,掌握变形过程中各种场量的变化情况。

并可对变形过程中工件内部缺陷等进行预测,对挤压工艺的制定具有重要的参考价值。

本文利用有限元软件DEFORM对轴管坯料的挤压过程进行了数值模拟。

并对挤压后工件的损伤、应力场、应变场及其分布的原因进行了分析,为制定生产工艺提供了参考[2]。

2建模及模拟条件应用DEFORM软件对汽车轮毂轴管热挤压过程的数值模拟,首先需建立有限元分析模型,如图2所示。

模型初始条件为:①设定上下模为刚性模型,工件为弹性模型;TheNumericalSimulationofLargeCylinderForginginForgingProcessunderHighTemperatureXUFeixia,CUIZhenshan,CHENWen,FUQiang(Dept.ofPlasticityFormingEng.,ShanghaiJiaoTongUniv.,Shanghai200030,China)Abstract:Thistextisbasedonthetraditionalshellforgingtechnologyforlargescalecylinderathightempera-ture.Therelationshipsbetweenanvil'smovementandtherotationofthesustainingcolumninhigh-temperatureforg-ingprocessoflargecylinderforgings,anditsinfluenceonforgingsdimensionhavebeenresearchedbyfiniteelementsimulation.Besides,itraisesamoreaccuratemethodforjudgingforging'sprecisionbycomparingthesimulationre-sultswiththeforgingin3Dsoftware.Keywords:ForgingP Large-scalecylinderP NumericalsimulationP Quality!98!60+10!70!88!152!6519590380625015图1轮毂轴管零件图收稿日期:2008-01-17作者简介:温志高(1967-)男,硕士,高级工程师,从事热挤压工艺技术研究文章编号:1672-0121(2008)02-0058-03基于DEFORM的汽车轮毂轴管热挤压过程的数值模拟温志高(河南英威东风机械有限公司,河南南阳474674)摘要:本文建立了汽车轮毂轴管的有限元分析模型,利用DEFORM软件模拟了工件热挤压过程,并分析了工件的损伤、应力场及应变场的分布情况和原因。

deform棒材热挤压实验报告

deform棒材热挤压实验报告

(二)实验要求 (1)运用 AUTOCAD 或 PRO/e 绘制各模具部件及棒料的三维造型,以 stl 格式输
出; (2)设计模拟控制参数; (3)DEFORM 前处理与运算; (4)DEFORM 后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖
分观察圆柱体内部应力、应变及损伤值分布状态; (5)运用 DEFORM 后处理 Flow Net(流动栅格)功能观察金属流动的不均匀
59
60
挤压垫
挤压垫
挤压筒
挤压筒
图 2 棒材热挤压示意图
挤压工具:尺寸如图所示,材质 DIN-D5-1U,COLD,温度 3500。 坯料:材质 DIN_CuZn40Pb2,尺寸98×60,温度 6300。 工艺参数:挤压速度 10mm/s,摩擦系数 0.1。
140
1245
100
859
450
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

deform模拟实验报告_正挤_反挤_图文(精)

deform模拟实验报告_正挤_反挤_图文(精)

学生学号实验课成绩武汉理工大学学生实验报告书实验课程名称材料成型CAM开课学院材料学院指导老师姓名学生姓名学生专业班级2011 — 2012 学年第一学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。

为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。

1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。

2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。

3、实验报告应由实验预习、实验过程、结果分析三大部分组成。

每部分均在实验成绩中占一定比例。

各部分成绩的观测点、考核目标、所占比例可参考附表执行。

各专业也可以根据具体情况,调整考核内容和评分标准。

4、学生必须在完成实验预习内容的前提下进行实验。

教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。

5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。

在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。

6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。

附表:实验考核参考内容及标准观测点考核目标成绩组成实验预习1.预习报告2.提问3.对于设计型实验,着重考查设计方案的科学性、可行性和创新性对实验目的和基本原理的认识程度,对实验方案的设计能力20%实验过程1.是否按时参加实验着重考查学生的实验态度、基本操30%2.对实验过程的熟悉程度3.对基本操作的规范程度4.对突发事件的应急处理能力5.实验原始记录的完整程度6.同学之间的团结协作精神作技能;严谨的治学态度、团结协作精神结果分析1.所分析结果是否用原始记录数据2.计算结果是否正确3.实验结果分析是否合理4.对于综合实验,各项内容之间是否有分析、比较与判断等考查学生对实验数据处理和现象分析的能力;对专业知识的综合应用能力;事实求实的精神50%实验课程名称材料成型CAM实验项目名称DEFORM-2D软件的操作与实例演练实验成绩实验者专业班级组别同组者实验日期年月日第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)一、实验目的1)了解认识DEFORM软件的窗口界面。

Deform-3D在挤压中的应用1

Deform-3D在挤压中的应用1

Deform-3D在挤压中的应用挤压就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。

挤压过程分为开始(填充)挤压阶段、基本(平流)挤压阶段和终了(紊流)挤压三个阶段。

在填充挤压阶段:金属发生横向流动,出现单鼓或双鼓变形。

随着挤压杆的向前移动,挤压力呈直线上升。

随着填充过程中锭坯直径增大,在锭坯的表面层出现了阻碍其自由增大的周向附加拉应力。

随着填充过程进行,锭坯长度缩短,直径增大,中间部分首先与挤压筒壁接触,由于摩擦作用,从而在表面层出现了阻碍金属向前后两个空间流动的纵向附加拉应力。

在基本挤压阶段:金属不发生横向流动。

挤压力随挤压杆向前移动几乎呈直线下降。

在终了挤压阶段:金属的横向流动剧烈增加,并产生环流,挤压力增加,产生挤压缩尾。

这些因素使其变形机理非常复杂,很难用准确的数学关系式进行描述,从而导致生产过程中对产品质量控制的难度增大。

采用DEFORM软件对大变形生产工序进行模拟分析和控制,能有效地对挤压生产进行指导。

这里主要介绍DEFORM塑性成形模拟的基本过程和方法。

关键字:DEFORM 挤压塑性成形DEFORM软件模拟塑性成形的基本流程:(1)几何模型的建立。

DEFORM-3D不具有三维造型功能,所以物理模型要在其他三维软件中建立。

例如用CAD,Pro/e,UG等三维造型软件造型,然后,通过另存为STL格式,实现模型与数值模拟软件间的数据转换。

(2)网格的划分与重划分。

划分网格是将问题的几何模型转化成离散化的有限元网格。

分网时要根据问题本身的特点选择适当的单元类型。

根据问题的几何和受力状态的特点,尽可能的选用比较简单的的单元类型。

网格划分的方法有映射法或称为结构化的方法和自由的或非结构化的方法两种,根据不同问题类型应选用合适的方法划分网格。

网格划分太大则模拟精度降低;网格划分太小模拟准确性上升,但是模拟时间增加,效率降低。

Deform-棒材热挤压过程模拟

Deform-棒材热挤压过程模拟

铜陵学院课程实验报告实验名称棒材热挤压过程模拟实验课程材料成型计算机模拟指导教师张金标. 专业班级10 材控(2)班. 姓名彭建新. 学号1010121064 .2013年05月23日实验二棒材热挤压过程模拟1实验目的与内容1.1实验目的进一步熟悉DEFORM软件前处理、后处理的操作方法,掌握热力耦合数值模拟的模拟操作。

深入理解并掌握DEFORM软件分析热挤压的塑性变形力学问题。

1.2 实验内容运用DEFORM模拟如图2所示的黄铜(DIN_CuZn40Pb2)棒挤压过程(已知:坯料φ98⨯100mm)图1 棒材挤压示意图(一)挤压条件与参数挤压工具:尺寸如图所示,材质DIN-D5-1U,COLD,温度3500。

坯料:材质DIN_CuZn40Pb2,尺寸φ98×100,温度6300。

工艺参数:挤压速度10mm/s,摩擦系数0.1。

(二)实验要求(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl格式(二)实验要求(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl 格式输出;(2)设计模拟控制参数;(3)DEFORM前处理与运算;(4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态;(5)运用DEFORM后处理Flow Net(流动栅格)功能观察金属流动的不均匀性,说明原因;(6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。

2 实验过程2.1挤压工模具及工件的三维造型根据给定的几何尺寸,并从书中查得工作带长度为10mm,入口圆角半径为5mm,挤压垫外径为99mm,挤压垫厚度为9mm,运用AUTOCAD或PRO/E分别绘制坯料、挤压模、挤压垫、挤压筒的几何实体,文件名称分别为extrusion workpiece,extrusion die,extrusion dummy block,extrusion chamber。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铜陵学院课程实验报告实验名称棒材热挤压过程模拟实验课程材料成型计算机模拟指导教师张金标. 专业班级10材控(2). 姓名彭建新. 学号1010121064 .2012年04月23日实验二棒材热挤压过程模拟1 实验目的与内容1.1 实验目的进一步熟悉DEFORM软件前处理、后处理的操作方法,掌握热力耦合数值模拟的模拟操作。

深入理解并掌握DEFORM软件分析热挤压的塑性变形力学问题。

1.2 实验内容运用DEFORM模拟如图2所示的黄铜(DIN_CuZn40Pb2)棒挤压过程(已知:坯料φ90⨯25mm)。

图1 棒材热挤压示意图挤压工具:尺寸如图所示,材质DIN-D5-1U,COLD,温度3500。

坯料:材质DIN_CuZn40Pb2,尺寸φ98×60,温度6300。

工艺参数:挤压速度10mm/s,摩擦系数0.1。

(二)实验要求(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl格式输出;(2)设计模拟控制参数;(3)DEFORM前处理与运算;(4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态;(5)运用DEFORM后处理Flow Net(流动栅格)功能观察金属流动的不均匀性,说明原因;(6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。

2 实验过程2.1挤压工模具及工件的三维造型根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、挤压模、挤压垫、挤压筒的几何实体,文件名称分别为extrusion workpiece,extrusion die,extusion mandrel,extusion dummy block,extusion chamber。

输出STL格式。

说明:上述几何形体尽量在一个空间体系下用相对尺寸绘制,保证它们的装配关系;所有实体造型都要在空间体系的第一象限内,即几何点的坐标值非负。

2.2 挤压模拟1.前处理2.建立新问题:注:单位制度选择:点击Simulation Conrol按钮→Main按钮→在Units栏中选中SI(国际标准单位制度)。

3.添加对象:点击+按钮添加对象,依次为“workpiece”、“top die”、“bottom die”和“object 4”,在Object Name栏中填入extrusion workpiece→点击Change按钮→点击geometry →点击import→选择extrusion workpiece.stl实体文件→打开;重复操作,依次添加extrusion die,extusion mandrel,extusion dummy block,extusion chamber。

4.定义对象的材料模型5.模拟控制设置6.实体网格化说明:工模具不作分析,可以不进行网格划分。

7.设置对象材料属性:在对象树上选择extrusion workpiece→点击Meterial→点击other→选择DIN-CuZn40Pb2→点击Assign Meterial完成材料属性的添加;8.设置主动工具运行速度:在对象树上选择extusion dummy block→点击Movement→在speed/force选项卡的type栏上选中Speed选项→在Directiont选中主动工具运行,如-Y→在speed卡上选中Define选项,其性质选为Constant,填入数度值,如10mm/s;9.工件体积补偿:在对象树上选择extrusion workpiece→点击Property→在Target V olume卡上选中Active选项→点击Calculate V olumer按钮→→点击Yes按钮→勾选Compensate during remeshing10.边界条件定义:在工具栏上点击Inter-Object按钮→在对话框上选择extrusion workpiece—extusion dummy block→点击Edit按钮→点击Deformation卡Friction栏上选中Shear和Constant选项,填入摩擦系数或选择摩擦类型如Hot Forging (Lubricated) →点击Thermal→选中Constant选项,填入传热系数或选择传热类型如Fomging →点击Close按钮→如此重复,依次设置其它接触关系→点击Generate all按钮点击tolerace 按钮→点击OK按钮完成边界条件设置;保存k文件:在对象树上选择extrusion workpiece→点击Save按钮→点击保存按钮→保存工件的前处理信息→重复操作,依次保存各工模具的信息。

2.2.1 生成库文件2.2.2 退出前处理程序在工具栏上点击Exi按钮,退出前处理程序界面。

2.2.3 模拟运算在主控程序界面上,单击项目栏中的stick extrusion.DB 或tuble extrusion.DB文件→单击Run按钮,进入运算对话框→单击Start按钮开始运算→单击Stop按钮停止运算→单击Summary,Preview,Message,Log按钮可以观察模拟运算情况。

2.3 后处理模拟运算结束后,在主控界面上单击stick extrusion.DB 或tuble extrusion.DB文件→在Post Processor栏中单击DEFORM-3D Post按钮,进入后处理界面。

(1)观察变形过程:点击播放按钮查看成型过程;(2)观察温度变化:在状态变量的下拉菜单中选择Temperature,点击播放按钮查看成型过程中温度变化情况;(3)观察最大应力分布:在状态变量的下拉菜单中选择Max Stress,点击播放按钮查看成型过程中最大应力分布及其变化情况;(4)观察最大应变分布:在状态变量的下拉菜单中选择Max Strain,点击播放按钮查看成型过程中最大应变分布及其变化情况;(5)观察破坏系数分布:在状态变量的下拉菜单中选择Damage,点击播放按钮查看成型过程中可能产生破坏的情况;(6)成型过程载荷:点击Load Stroke按钮,生成变形工具加载曲线图,保存图形文件为load.png;(7)点跟踪分析:点击Point Tracking按钮,根据上图点的位置,在工件上依次点击生成跟踪点,点击Save按钮,生成跟踪信息,观察跟踪点的最大应力、最大应变、温度、破坏系数,保存相应的曲线图。

(8)流动网格分析:点击Flow Net按钮,在对话框中分别选择Starting step和Ending step的数值,点击Next,选择Surface net,点击Next,选中Parallel,点击Next,确定起点平面、终点平面,输入方向矢量和分割面的数量,点击Next,点击Finish,生成金属流动网格数据,点击播放按钮查看流动格变化情况,如图3所示。

3 实验结果与分析3.1 黄铜挤压变形过程图2 黄铜挤压的变形过程3.2 黄铜挤压过程中温度变化在整个挤压过程中,中部的温度分布比较均匀且较高,因为工件中心不与空气和挤压模具接触,散热和传热都很少;远离挤压垫一端的温度最高,而与挤压垫相接触的一端温度最低,主要是由于在挤压过程中与挤压垫接触的一端存在着热交换,散热较快,使温度降低,不接触的一端在整个过程中金属流动较激烈,且因传热不好和时间短,温度较接触端高且变化不大。

图3 黄铜挤压变形过程中温度变化3.3 黄铜挤压终止时最大应力分布图4 挤压终止时最大应力分布从图中可以清晰地看出,中间部位应力分布较均匀,且数值较大,为三向压应力状态,从中还可以看出挤压过程中应力最大的位置出现在工件刚刚进入挤压模的位置,因为在此处由于工件的直径急剧变化,金属流动的阻力最大,不均匀变形也最大,在此处将产生较大的附加应力。

在挤压筒与工件的接触部位残余应力和应力都影响最小。

3.4 黄铜挤压终止时最大应变分布黄铜挤压终了最大应变分布如图5所示。

从上图中可以清晰的看出,在整个挤压过程中应变最大的位置出现在工件刚刚进入挤压模的位置,此时工件部的主变形量最大,也即应变最大。

中间位置应变其次,中心内部位应变较小,两端应变最小。

3.5黄铜挤压终止时损伤系数分布如图6所示胚料破坏系数几乎分布均匀,且为0。

理论上随着坯料变成程度的增大,在变形区出破坏应该最大,这是坯料在变形区变形程度很大,晶体发生畸变,破坏其点阵结构从而产生破坏。

另外,由于物体变形协调性会使变形区对周围金属产生附加应力,从而在变形区出存在附加拉应力,使坯料破坏。

而本次模拟效果不是很明显,可能是由于挤压模设计不合理,摩擦力小和不当的操作有关,也可能与deform 软件有关。

3.6挤压过程中载荷曲线从图中可以看出,从0-4.05秒,上模的载荷曲线为0,在此时间段内,挤压垫与圆棒还未接触。

4.05秒至6.08秒整个挤压过程的成型载荷总体上是沿直线逐渐增加的趋势,这是因为主延伸变形随着压出制品长度的增加而增大,而挤压力与主延伸变形量大小大致成正比,然而变形过程中应变不均匀造成曲线有点小起伏;随着挤压过程的进行,工件和挤压模的接触面积越多,则受挤压模具的摩擦力就会逐渐增大,同时还会受到金属内部原子的相互作用力,金属流动越来越困难,要求的挤压力也越大。

在6.08秒后,出现了一段上下起伏的曲线,原因可能时在模拟时计算机计算不了原始网格划分而进行的网格重划分。

3.7点追踪分析3.7.1点追踪最大应力分布从图8可以看出,应力分布不均匀,且变化幅度较大,因为在挤压过程中工件的变形区部位有很大的不均匀变形,同时附带了大量的残余应力,残余应力在整个工件上的分布也是不均匀的,所以也就出现了如图所示的情况。

从上图中可以分析出坯料表面的一直处于三向压应力状态,变形比较均匀。

图5 挤压终止时最大应变分布图6 黄铜挤压终止时的损伤分布图7 黄铜挤压过程中载荷图8 点追踪最大应力分布图3.7.2 点追踪最大应变分布从图9点追踪最大应变分布图可以看出,应变整体上市呈上升趋势,由于挤压过程中变形不断增加,故各处的最大应变均呈现出上升趋势3.7.3 点追踪破坏系数分布从上图10可以看出,破坏系数的变化趋势整体是增大的,因为随着挤压过程的进行工件的应变越来越大,不均匀变形也越严重,同时残余应力也增加,金属内部晶格畸变也是越来越严重,则挤压变形的进行旧越容易破坏,所以工件的破坏系数是逐渐增加的。

3.8.4点追踪温度分析此次试验,挤压后,胚料的温度均匀几乎不变,因而温度分布系数为一条纵坐标为0的曲线。

与理论上有差别,可能是因为挤压产生的热量不足以产生显著地温度变化造成的。

3.9流动栅格4 实验小结通过本次模拟,是我学会了怎样去设计挤压模具,挤压工艺基本流程,挤压参数。

相关文档
最新文档