二、等效质量和等效转动惯量

二、等效质量和等效转动惯量
二、等效质量和等效转动惯量

第十一章机器的运转及其速度波动的调节

(一)教学要求

1、掌握等效力(力矩),等效质量(转动惯量)的计算,理解机器运动微分方程

2、理解速度波动调节的原理,掌握飞轮设计方法

(二)教学的重点与难点

1、等效力(力矩),等效质量(转动惯量)

2、速度波动的原因,盈亏功、飞轮设计

(三)教学内容

§11-1 研究机器运转及其速度波动调节的目的

一、研究机器运转的目的

确定原动件真实运动规律→确定其它运动构件的运动规律,参数。

二、调节机器速度波动的目的

1、周期性速度波动

危害:①引起动压力,η↓和可靠性。

②可能在机器中引起振动,影响寿命、强度。

③影响工艺,↓产品质量。

2、非周期性速度波动

危害:机器因速度过高而毁坏,或被迫停车。

§11-2 机器等效动力学模型

研究机器运动和外力的关系时,必须研究所有运动构件的动能变化和所有外力所作的功。这样不方便。

单自由度的机械系统:

某一构件的运动确定了→整个系统的运动确定了。

∴整个机器的运动问题化为某一构件的运动问题。

为此,引出等效力、等效力矩、等效质量、等效转动惯量概念

一、等效力和等效力矩

研究机器在已知力作用下的运动时,作用在机器某一构件上的假想F或M代替作用在机器上所有已知外力和力矩。

代替条件:机器的运动不变,即:假想力F或力矩M所作的功或所产生的功率等于所有被代替的力和力矩所作的功或所产生的功率之和。

假想力F——等效力

假想力矩M——等效力矩

等效力或等效力矩作用的构件——等效构件

等效力作用的点——等效点

通常,选择根据其位置便于进行机器运动分析的构件为等效构件。

等效力或等效力矩所产生的功率

B FV P =

或P =MW

设F i ,M i ——作用在机器第i 个构件上的已知力和力矩

V i ——力F i 作用点的速度

W i ——构件i 的角速度

i θ——F i 和V i 夹角

作用在机器所有构件上的已知力和力矩所产生的功率:

∑∑∑===±+=k i i i

k i i i i k i i W M V F P 111cos θ

i M 和i W 同向取“+”,否则“-”

∴∑∑==±+=k i i i

k i i i i B W M V F FV 11

cos θ 或∑∑==±+=

k

i i i k i i i i W M V F MW 11cos θ ∴∑∑==±+=k i B i i k i B i i i V W M V V F F 1

1cos θ (1) 或∑∑==±+=k i i i k

i i i i W W M W V F M 11cos θ (2) 公式讨论:

①等效力F 和等效力矩M 只与各速度比有关,∴F 和M 是机构位置的函数。

②各个速度比可用任意比例尺所画的速度多边形中的相应线段之比来表示。不必知道各个速度的真实数值,∴可在不知道机器真实运动的情况下,求出F 、M 。

等效驱动力d F 与B V 同向

等效阻力r F 与B V 反向

③选绕固定轴线转动的构件为等效构件。

W Fl FV MW P AB B ===

∴AB Fl M =

④i F ,i M 随时间或角速度变化,F 、M 也是时间和角速度函数

0==j j v j h F P μ∑∑

F 和M 可用速度多边形杠杆法求出

方法:作机构的转向速度多边形,并将等效力(或等效力矩)及被代替的力和力矩平移到其作用点的影像上,然后使两者对极点所取的力矩大小相等、方向相同,便可求出F 、M ,若取移动的构件为等效构件,F 用公式求,V B =构件移动速度。

注意:F 和M 是一个假想的力和力矩,它不是被代替的已知力和力矩的合力或合成矩。求机构各力的合力时不能用等效力和等效力矩的原理。

例:内燃机推动发动机的机组中,已知机构的尺寸和位置,重力G 2、G 3,齿轮5、6、7、8,齿数已知,气体加于活塞上的压力F 3,发动机的阻力矩M 8,设不计其余各构件的重力,求换算到构件1上的等效驱动量矩M d 和等效阻力矩M r 。

解:(1)求M d ,(G 2、G 2看作驱动力)

假定1的角速度W 1

CB B C V V V +=

方向 ∥AC ⊥AB ⊥BC

大小 ? AB l W 1 ?

223h G pc F pb F d -=

∴F d

M d =F d .l AB W 1转向相同

(2)求M r

8

6758867528588188)1(Z Z Z Z M Z Z Z Z M W W M W W M M r -=--=-=-= r M 与1W 相反

二、等效质量和等效转动惯量

使用等效力和等效力矩的同时,用集中在机器某一构件上选定点的一个假想质量代替整个机器所有运动构件的质量和转动惯量。

代替条件:机器的运动不变。即假想集中质量的功能等于机器所有运动构件的功能之和。

等效质量;等效点;等效构件。

为方便,等效力和等效质量的等效点和等效构件是同一点和同一构件

等效转动惯性。(当取绕固定回转的构件为等效构件时,可用一个与它共同转动的假想物体的转动惯量来代替机器所有运动构件的质量和转动惯量。条件:假想惯动惯量的功能等于机器所有运动构件的功能之和)。

221B mV E =或 22

1JW E = 设i W ——第i 个构件的角速度

Si V ——第i 个构件质心Si 的速度

i m ——第i 个构件质心质量

Si J ——对质心轴线的转动惯量

整个机器的功能:

∑∑∑===+=k i i Si k

i si

i k i i W J V m E 121212

121 ∴ ∑∑==+=k i k i i Si Si i B W J V m mV 112222

12121 或 ∑∑==+=k i k i i Si Si i W J V m JW 11222212121 ∴ ∑∑==???? ??+???? ??=k i B i Si B Si k i i V W J V V m M 12

21 (1) 或∑∑==??? ??+??? ??=k i i Si Si k i i W W J W V m J 12

21 (2) 公式讨论:

①m 和J 由速度比的平方而定,总为正值;m 和J 仅是机构位置的函数。 ②不必知道各速度的真实值。

③等效构件为绕固定轴线旋转

22222

12121W ml mV JW E AB B === ∴2AB ml J =

取移动构件为等效构件:由(1)求m ,V B =移动速度

注意:m,J 是假想的,不是机器所有运动构件的质量和转动惯量的合成总和 解:画转向速度多边形

2

32222222

88267621951)()()()()()()()(B

C B S B S B

B B A V V m V W J V V m V W J V W J J V W J J J m ++?++?++?++=

2AB ml J = §11-3 机器运动方程式的建立及解法

一、机器运动方程式的建立

1、动能形式的机器运动方程式

如不考虑摩擦力,将重力看作驱动力或阻力。

设Fd W ——某一位移过程中等效驱动力所作的功

Md W ——某一位移过程中等效驱动力矩所作的功

Fr W ——某一位移过程中等效阻力所作的功

Mr W ——某一位移过程中等效阻力矩所作的功

m ——某一位移结束时的等效质量

0m ——某一位移开始时的等效质量

J ——某一位移结束时的等效转动惯量

0J ——某一位移开始时的等效转动惯量

V (W )——某一位移结束时等效点的速度(角速度) )(00W V ——某一位移开始时等效点的速度(角速度) 机器的动能方程式可写成:

20022121V m mV W W Fr Fd -=

- 或20022

121W J JW W W Mr Md -=- 动能形式的机器运动方程式。 2、力或力矩形式的机器运动方程式 ????=-=-=-S S S S S S r d S r S d Fr Fd Fd d F F d F d F W W 0000

)( r d F F F -=,S 为等效点的位移 将上式微分:0)2

1()(20-=?mV d d Fd d d S S S S )(221//2122S

m V S m S V d d V dt d m d d V dt d dt d ZV m F ?+=?+??= ∴)(22S m t

d d V ma F +=,其中t a →等效点的切向加速度,若用d M ,r M 表示,?→等效构件的转角;α→等效构件角加速度 ∴)(22?

αd d W J M J += 二、机器运动方程式的解法

注意机器的机械特征——表示机器力参数与运动参数间的关系。 如:有的机器的驱动力是机构位置的函数

有的机器的驱动力是速度位置的函数

有的驱动力是常数。

阻力可能是机构位置的函数

(完整word版)转动惯量计算公式

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ? ? ???=n v J π g w 2s 2 ? ? ? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 1 22 22 1?? ??? ???????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax n = n t 时,计算M at n t —切削时的转速( r / min )

(推荐)电机转动惯量的计算

电机转动惯量的计算 对于细杆 当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。 对于圆柱体 当回转轴是圆柱体轴线时;J=m(r^2)/2 其中m是圆柱体的质量,r 是圆柱体的半径。 对于细圆环 当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径 对于薄圆盘 当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径 对于空心圆柱 当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2分别为其内外半径。

对于球壳 当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。 对于实心球体 当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径 对于立方体 当回转轴为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L 为立方体边长。

只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。 角加速度与合外力矩的关系: 角加速度与合外力矩

式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。角动量: 角动量 刚体的定轴转动动能: 转动动能 注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。 只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。 转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。其量值取决于物体的形状、质量分布及转轴的位置。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公

新版-转动惯量计算公式

转动惯量计算公式 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ???=n v J π g w 2s 2 ? ? ? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 122 221??? ??? ??????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax

最新转动惯量计算公式

1 2 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 3 4 5 8 2 MD J = 6 对于钢材:341032-??= g L rD J π 7 ) (1078.0264s cm kgf L D ???-8 9 M-圆柱体质量(kg); D-圆柱体直径(cm); 11 L-圆柱体长度或厚度(cm); 12 r-材料比重(gf /cm 3)。 13 14 2. 丝杠折算到马达轴上的转动惯量: 15 2i Js J = (kgf·c 16 17 J s –丝杠转动惯量18 (kgf·c m·s 2); 19 i-降速比,1 2 z z i = 21 22 g w 22 ? ?? ???=n v J π 23 g w 2s 2 ? ?? ??=π (kgf·c m·s 2) 24 25 v -工作台移动速度(cm/min); 26 n-丝杠转速(r/min); 27 w-工作台重量(kgf); 28

g-重力加速度,g = 980cm/s 2; 29 s-丝杠螺距(cm) 30 31 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: 32 ()) s cm (kgf 2g w 1 2222 1????????????? ??+++=πs J J i J J S t 33 34 35 36 37 38 39 40 J 1-齿轮z 1及其轴的转动惯量; 41 J 2-齿轮z 2的转动惯量42 (kgf ·cm · s 2); 43 J s -丝杠转动惯量(kgf ·cm ·s 2); 44 s-丝杠螺距,(cm); 45 w-工件及工作台重量(kfg). 46 47 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 48 2 g w R J = (kgf ·c 49 50 R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf) 53 54 55 56 57 58 6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 59 ??? ? ??++ =2221g w 1R J i J J t 60 61 62

二、等效质量和等效转动惯量

第十一章机器的运转及其速度波动的调节 (一)教学要求 1、 掌握等效力(力矩),等效质量(转动惯量)的计算,理解机器运动微分方程 2、 理解速度波动调节的原理,掌握飞轮设计方法 (二)教学的重点与难点 1、 等效力(力矩),等效质量(转动惯量) 2、 速度波动的原因,盈亏功、飞轮设计 (三)教学内容 § 11-1研究机器运转及其速度波动调节的目的 一、 研究机器运转的目的 确定原动件真实运动规律7确定其它运动构件的运动规律,参数。 二、 调节机器速度波动的目的 1、 周期性速度波动 危害:①引起动压力,nJ 和可靠性。 ② 可能在机器中引起振动,影响寿命、强度。 ③ 影响工艺,J 产品质量。 2、 非周期性速度波动 危害:机器因速度过高而毁坏,或被迫停车。 § 11-2机器等效动力学模型 研究机器运动和外力的关系时,必须研究所有运动构件的动能变化和所有外力所作的 功。这样不方便。 单自由度的机械系统: 某一构件的运动确定了7整个系统的运动确定了。 ? ??整个机器的运动问题化为某一构件的运动问题。 为此,引出等效力、等效力矩、等效质量、等效转动惯量概念 一、等效力和等效力矩 研究机器在已知力作用下的运动时,作用在机器某一构件上的假想 机器上所有已知外力和力矩。 代替条件:机器的运动不变,即:假想力 F 或力矩M 所作的功或所产生的功率等于所 有被代替的力和力矩所作的功或所产生的功率之和。 假想力F ――等效力 假想力矩M ——等效力矩 等效力或等效力矩作用的构件 等效力作用的点一一等效点 通常,选择根据其位置便于进行机器运动分析的构件为等效构件。 F 或M 代替作用在 等效构件

转动惯量计算方法

实验三刚体转动惯量的测定 转动惯量是刚体转动中惯性大小的量度。它与刚体的质量、形状大小和转轴的位置有关。形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。 实验目的: 1、理解并掌握根据转动定律测转动惯量的方法; 2、熟悉电子毫秒计的使用。 实验仪器: 刚体转动惯量实验仪、通用电脑式毫秒计。 仪器描述: 刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。塔轮上有五个不同半径(r)的绕线轮。砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。 实验原理: 空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1: J1 = J –J o (1) 由刚体的转动定律可知:

T r – M r = J α (2) 其中M r 为摩擦力矩。 而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力 1. 测量承物台的转动惯量J o 未加试件,未加外力(m=0 , T=0) 令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2 m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得 J o = 21 2212mr mgr ααααα--- (6) 测出α1 , α2,由(6)式即可得J o 。 2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8) ∴ J = 23 4434mr mgr ααααα--- (9) 注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。 3. 测量的原理 设转动体系的初角速度为ωo ,t = 0 时θ= 0 ∵ θ=ωo t + 2 2 1t α (10) 测得与θ1 , θ2相应的时间t 1 , t 2 由 θ1=ωo t 1 + 2121t α (11) θ2=ωo t 2 + 2 22 1t α (12) 得 2 2112 22112) (2t t t t t t --= θθα (13) ∵ t = 0时,计时次数k=1(θ=л时,k = 2) ∴ []2 2 11222112)1()1(2t t t t t k t k ----= πα (14) k 的取值不局限于固定的k 1 , k 2两个,一般取k =1 , 2 , 3 , …,30,…

机械原理知识点(等效质量)

56 研究机器运转及其速度波动调节的目的 1、研究机器运转的目的:确定构件的真实运动规律。 只有确定了机器中有关机构原动件的真实运动规律后,才能用机构的运动分析方法求出其他运动构件相应的运动参数。 2、研究机器速度波动的目的: ① 调节机器主轴的周期性波动; ★周期性波动的危害:▲在运动副中引起附加动压力 ▲引起弹性振动 ▲影响机器加工精度 ②防止非周期性速度波动所引起的机器毁坏或者停车;

57等效力、等效力矩的计算 一、概念引入: 由动能方程式研究机器运动和外力关系时,必须研究所有运动构件的动能变化和所有外力所做的功。过程很不方便。 对于单自由度的机械系统,可将整个机器的运动问题化为单一构件的运动问题故引入等效力、等效力矩、等效质量、等效转动惯量概念。 二、计算方法 研究机器在已知力作用下的运动时,作用在机器某一构件的假想F或M代替作用在机器上所有已知外力和力矩。 ▲代替条件:机器的运动不变 即:假想力F或力矩M所作的功或所产生的功率等于所有被代替的力和力矩所作的功或所产生的功率之和。 ▲假想力F—等效力 ▲假想力矩M--等效力矩 ▲等效力或等效力矩作用的构件—等效构件 ▲等效力作用的点一一等效点 通常要选择根据其位置便于进行机器运动分析的构件为等效构件。F为加在等效点B且垂直于AB的等效力,Vb为等效点B的速度;或设M为加在绕固定轴转动的等效构件AB上的等效力矩,ω为等效构

件的角速度;等效力或等效力矩所产生的功率 设F i,M i:作用在机器第i个构件上的已知力和力矩 V i:力F i作用点的速度 ωi:构件i的角速度θi:F i和V i夹角 作用在机器所有构件上的已知力和力矩所产生的功率: M i和ωi同向取+,否则— 假想力F或力矩M所作的功或所产生的功率等于所有被代替的力和力矩所作的功或所产生的功率之和。 求解等效力和力矩 ★公式讨论:

刚体转动惯量计算方法

刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2, 式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 ;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2 (v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw^2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。 3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况。 4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV 其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL^2/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于轴时:J=mL^2/3 其中m是杆的质量,L是杆的长度。 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr^2/2 其中m是圆柱体的质量,r是圆柱体的半径。 转动惯量定理:M=Jβ

作业(二)答案:单自由度机械系统动力学等效转动惯量等效力矩汇编

作业(二)单自由度机械系统动力学等效转动惯量等效力矩 1.如题图1所示的六杆机构中,已知滑块5的质量为m 5=20kg ,l AB =l ED =100mm ,l BC =l CD =l EF =200mm ,φ1=φ2=φ3=90o ,作用在滑块5上的力P=500N .当取曲柄AB 为等效构件时,求机构在图示位置的等效转动惯量和力P的等效力矩. 图1 答案:解此题的思路是:①运动分析求出机构处在该位置时,质心点的速度及各构件的角速度. ②根据等效转动惯量,等效力矩的公式求出. 做出机构的位置图,用图解法进行运动分析. V C =V B =ω1×l AB ω2=0 V D =V C =ω1×l AB 且ω3=V C /l CD =ω1 V F =V D =ω1×l AB (方向水平向右) ω4=0 由等效转动惯量的公式: e J =m 5(V F /ω1)2 =20kg ×(ω1×l AB /ω1)2 =0.2kgm 2 由等效力矩的定义: e M =500×ω1×l AB ×cos180o /ω1=-50Nm (因为VF 的方向 与P方向相反,所以α=180o ) ∑=+=n i i Si Si i e J v m J 1 2 1 21 ])( )( [ωωω∑=±=n i i i i i i e M v F M 1 1 1 )]( )( cos [ωωωα

2.题图2所示的轮系中,已知各轮齿数:z 1=z 2’=20,z 2=z 3=40,J 1=J 2’=0.01kg ·m 2,J 2=J 3=0.04kg ·m 2.作用在轴O3上的阻力矩M3=40N ·m .当取齿轮1为等效构件时,求机构的等效转动惯量和阻力矩M3的等效力矩. 图2 答案:该轮系为定轴轮系. i 12=ω1/ω2=(-1)1z 2/z 1 ∴ ω2=-ω1/2=-0.5×ω1 ω2’=ω2=-0.5×ω1 i 2’3=ω2’/ω3=(-1)1z 3/z 2’ ∴ ω3=0.25×ω1 根据等效转动惯量公式 e J = J 1×(ω1/ω1)2 +J 2×(ω2/ω1)2 +J 2’×(ω2’/ω1)2 +J 3×(ω3/ω1)2 =J 1+J 2/4+J 2’/4 +J 3/16 =0.01+0.04/4+0.01/4+0.04/16 =0.025 kg ·m 2 根据等效力矩的公式: e M =M 3×ω3/ω1=40×0.25ω1/ω1=10N ·m 3.在题图3所示减速器中,已知各轮的齿数:z 1=z 3=25,z 2=z 4=50,各轮的转动惯量J 1=J 3=0.04kg ·m 2,J 2=J 4=0.16kg ·m 2,(忽略各轴的转动惯量),作用在轴Ⅲ上的阻力矩M 3=100N ·m .试求选取轴 ∑=+=n i i Si Si i e J v m J 12 1 21 ])( ( [ωωω∑=±=n i i i i i i e M v F M 11 1 )]( )( cos [ωωωα

转动惯量公式

nema标准中的计算是如下(转化公式):J=A×0.055613×(Pn^0.95)÷(n/1000)^2.4-0.004474×(Pn^1.5)÷(n/1000)^1.8 A小于等于1800rpm时取24,A大于1800rpm时取27 Pn为功率(kw) n 为同步转速 高压电动机在设计时,要求计算出转子的转动惯量。下面对计算方法做一分析。 转动惯量是物体在转动时惯性的度量,它不仅与物体质量的大小有关,还与物体质量分体情况有关。机械工程师手册给出了一些简单形状物体的转动惯量。 1、圆柱体沿轴线转动惯量: Kg?m2 (1) 式中:M —圆柱体质量Kg R —圆柱体外径半径 m 2、空心圆柱体沿轴线转动惯量: Kg?m2 (2) 式中: M —空心圆柱体质量Kg R —空心圆柱体外半径 m r —空心圆柱体内半径m 3、薄板沿对称线转动惯量: Kg?m2 (3) 式中:M —薄板质量Kg a —薄板垂直于轴线方向的宽度m 物体的转动惯量除了用J表示外,在工程上有的用物体的重量G和物体的回转直径D的平方的乘积GD2来表示,也称为物体的飞轮力矩或惯量矩,单位N?m2或Kg f m2。 物体的飞轮力矩GD2和转动惯量J之间的关系,用下式表示: N?m2 (4) 式中:g —重力加速度 g=9.81 m/s2 将重力单位N化为习惯上的重力单位Kgf ,则(4)变为: Kg f m2 (5) 由以上公式,可以对鼠笼型高压电机的转动惯量进行计算。计算时,将高压电机转子分解为转子铁心(包括导条和端环)、幅铁、转轴三部分,分别算出各部分的Jn,各部分的转动惯量相加即得电机的转动惯量J。如需要,按(5)式换算成飞轮力矩GD2。一般产品样本中要求给定的是转动惯量J,兰州引进的电磁设计程序计算出的是飞轮力矩GD2。 计算程序如下:

作业(二)答案:单自由度机械系统动力学等效转动惯量等效力矩

作业(二)单自由度机械系统动力学等效转动惯量等效力矩 1.如题图1所示的六杆机构中,已知滑块5的质量为m 5=20kg ,l AB =l ED =100mm ,l BC =l CD =l EF =200mm ,φ1=φ2=φ3=90o ,作用在滑块5上的力P=500N .当取曲柄AB 为等效构件时,求机构在图示位置的等效转动惯量和力P的等效力矩. 图1 答案:解此题的思路是:①运动分析求出机构处在该位置时,质心点的速度及各构件的角速度. ②根据等效转动惯量,等效力矩的公式求出. 做出机构的位置图,用图解法进行运动分析. V C =V B =ω1×l AB ω2=0 V D =V C =ω1×l AB 且ω3=V C /l CD =ω1 V F =V D =ω1×l AB (方向水平向右) ω4=0 由等效转动惯量的公式: e J =m 5(V F /ω1)2=20kg ×(ω1×l AB /ω1)2=0.2kgm 2 由等效力矩的定义: e M =500×ω1×l AB ×cos180o /ω1=-50Nm (因为VF 的方向与P方向相反,所以α=180o ) 2.题图2所示的轮系中,已知各轮齿数:z 1=z 2’=20,z 2=z 3=40,J 1=J 2’=0.01kg ·m 2,J 2=J 3=0.04kg ·m 2.作用在轴O3上的阻力矩M3=40N ·m .当取齿轮1为等效构件时,求机构的等效转动惯量和阻力矩M3的等效力矩. 图2 答案:该轮系为定轴轮系. i 12=ω1/ω2=(-1)1z 2/z 1 ∴ ω2=-ω1/2=-0.5×ω1 ω2’=ω2=-0.5×ω1 i 2’3=ω2’/ω3=(-1)1z 3/z 2’ ∴ ω3=0.25×ω1 根据等效转动惯量公式 e J = J 1×(ω1/ω1)2+J 2×(ω2/ω1)2+J 2’×(ω2’/ω1)2+J 3×(ω3/ω1)2 ∑=+=n i i Si Si i e J v m J 12121]( )([ωωω∑=±=n i i i i i i e M v F M 11 1)]()( cos [ωωωα∑=+=n i i Si Si i e J v m J 121 21]()([ωωω

刚体转动惯量计算方法

刚体对轴转动惯量的计算 一、转动惯量及回转半径 在第一节中已经知道,刚体对某轴z 的转动惯量就就是刚体内各质点与该点到 z 轴距离 2 平方的乘积的总与,即 J z 口小。如果刚体质量连续分布,则转动惯量可写成 J z r 2 dm M (18-11) 由上面的公式可见,刚体对轴的转动惯量决定于刚体质量的大小以及质量分布情况 ,而与 刚体的运动状态无关,它永远就是一个正的标量。如果不增加物体的质量但使质量分布离轴 远一些, 就可以使转动惯量增大。例如设计飞轮时把轮缘设计的厚一些 ,使得大部分质量集中 在轮缘上,与转轴距离较远,从而增大转动惯量。相反,某些仪器仪表中的转动零件,为了提高灵 敏 度,要求零件的转动惯量尽量小一些 ,设计时除了采用轻金属、 塑料以减轻质量外,还要尽量 将材料多靠近转轴。 工程中常把转动惯量写成刚体总质量 M 与某一当量长度 的平方的乘积 (18-12) 相距为z 的点上,则此集中质量对z 轴的转动惯量与原刚体的转动惯量相同。 具有规则几何形状的均质刚体,其转动惯量可以通过计算得到,形状不规则物体的转动惯 量往往不就是由计算得出,而就是根据某些力学规律用实验方法测得。 二、简单形状物体转动惯量的计算 1.均质细直杆 dm 如图18-7所示,设杆长为I ,质量为M 。取杆上微段dx ,其质量为 图 18-7 杆对z c 轴的转动惯量为 对应的回转半径 2.均质细圆环 如图18-8所示均质细圆环半径为 R ,质量为M 。任取圆环上一微段,其质量为dm ,则对z z 称为刚体对于 z 轴的回转半径(或惯性半径),它的意义就是 ,设想刚体的质量集中在与 Mdx I ,则此 J z c I 2 2 x 2 dm 2/ —Ml 12 J z c I M 2、3 0.289I

二、等效质量和等效转动惯量

第十一章机器的运转及其速度波动的调节 (一)教学要求 1、掌握等效力(力矩),等效质量(转动惯量)的计算,理解机器运动微分方程 2、理解速度波动调节的原理,掌握飞轮设计方法 (二)教学的重点与难点 1、等效力(力矩),等效质量(转动惯量) 2、速度波动的原因,盈亏功、飞轮设计 (三)教学内容 §11-1 研究机器运转及其速度波动调节的目的 一、研究机器运转的目的 确定原动件真实运动规律→确定其它运动构件的运动规律,参数。 二、调节机器速度波动的目的 1、周期性速度波动 危害:①引起动压力,η↓和可靠性。 ②可能在机器中引起振动,影响寿命、强度。 ③影响工艺,↓产品质量。 2、非周期性速度波动 危害:机器因速度过高而毁坏,或被迫停车。 §11-2 机器等效动力学模型 研究机器运动和外力的关系时,必须研究所有运动构件的动能变化和所有外力所作的功。这样不方便。 单自由度的机械系统: 某一构件的运动确定了→整个系统的运动确定了。 ∴整个机器的运动问题化为某一构件的运动问题。 为此,引出等效力、等效力矩、等效质量、等效转动惯量概念 一、等效力和等效力矩 研究机器在已知力作用下的运动时,作用在机器某一构件上的假想F或M代替作用在机器上所有已知外力和力矩。 代替条件:机器的运动不变,即:假想力F或力矩M所作的功或所产生的功率等于所有被代替的力和力矩所作的功或所产生的功率之和。 假想力F——等效力 假想力矩M——等效力矩 等效力或等效力矩作用的构件——等效构件 等效力作用的点——等效点 通常,选择根据其位置便于进行机器运动分析的构件为等效构件。

等效力或等效力矩所产生的功率 B FV P = 或P =MW 设F i ,M i ——作用在机器第i 个构件上的已知力和力矩 V i ——力F i 作用点的速度 W i ——构件i 的角速度 i θ——F i 和V i 夹角 作用在机器所有构件上的已知力和力矩所产生的功率: ∑∑∑===±+=k i i i k i i i i k i i W M V F P 111cos θ i M 和i W 同向取“+”,否则“-” ∴∑∑==±+=k i i i k i i i i B W M V F FV 11 cos θ 或∑∑==±+= k i i i k i i i i W M V F MW 11cos θ ∴∑∑==±+=k i B i i k i B i i i V W M V V F F 1 1cos θ (1) 或∑∑==±+=k i i i k i i i i W W M W V F M 11cos θ (2) 公式讨论: ①等效力F 和等效力矩M 只与各速度比有关,∴F 和M 是机构位置的函数。 ②各个速度比可用任意比例尺所画的速度多边形中的相应线段之比来表示。不必知道各个速度的真实数值,∴可在不知道机器真实运动的情况下,求出F 、M 。 等效驱动力d F 与B V 同向 等效阻力r F 与B V 反向 ③选绕固定轴线转动的构件为等效构件。 W Fl FV MW P AB B === ∴AB Fl M = ④i F ,i M 随时间或角速度变化,F 、M 也是时间和角速度函数 0==j j v j h F P μ∑∑

转动惯量(指导书)

转动惯量指导书 力学实验室 2016年3月

转动惯量的测量 【预习思考】 1.转动惯量的定义式是什么? 2.转动惯量的单位是什么? 3.转动惯量与质量分布的关系? 4.了解单摆中摆长与周期的关系? 5.摆角对周期的影响。 【仪器照片】 【原理简述】 1、转动惯量的定义 构件中各质点或质量单元的质量与其到给定轴线的距离平方乘积的总和,即

∑ =2 J mr(1)转动惯量是刚体转动时惯性的量度,其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。 图1 电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检 流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形 设计上,精确地测定转动惯量,都是十分必要的。 2、转动惯量的公式推导 测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。本实验采用的是三线摆,是通过扭转运动测定物体的转动惯量,其特点是无力图像清楚、操作简便易行、适合各种形状的物体,如机械零件、电机转子、枪炮弹丸、电风扇的风叶等的转动惯量都可用三线摆测定。这种实验方法在理论和技术上有一定的实际意义本实验的目的就是要求学生掌握用三线摆测定物体转动惯量的方法,并验证转动惯量的平行轴定理。 两半径分别为r'和R'(R'>r')的刚性均匀圆盘,用均匀分布的三条等长l的无弹性、无质量的细线相连,半径为r'的圆盘在上,作为启动盘,其悬点到盘心的距离为r;半径为R'的圆盘在下,作为悬盘,其悬点到盘心的距离为R。将启动盘固定,则构成一振动系统, 称为三线摆(图2)。当施加力矩使悬盘转过角 θ后,悬盘将绕中心轴O O''做角简谐振动。 A A' O O' O'' r R B θ h2 h1 H . . . C'

最新作业二答案单自由度机械系统动力学等效转动惯量等效力矩

精品文档 作业(二)单自由度机械系统动力学等效转动惯量等效力矩 1.如题图1所示的六杆机构中,已知滑块5的质量为m=20kg,5o,作用在滑块φ=90φ=φ==100mm,l=l=l=200mm,l=l3EF1EDBC2ABCDP=500N.当取曲柄AB为等效构件时,5上的力求机构在图示位置的等效转动惯量和力P的等效力 矩. 图1 答案:解此题的思路是:①运动分析求出机构处在该位置时,质心点的速度及各构件的角速度. ②根据等效转动惯量,等效力矩的公式求出. 做出机构的位置图,用图解法进行运动分析. V=V=ω×lω=0 2 AB C B 1 V=V=ω×l且ω=V/l =ω1 CCDAB 1D3C V=V=ω×l(方向水平向右)ω=041 AB F D n v由等效转动惯量

的公式:?22iSi)J[m(()]?J?Siei??1i?11222 =20kg×(ω×2kgm)=0.l/ω)(V =m/ωJ111AB5F e?n v?由等效力矩的定义:?ii)]()cos(?M?MF[ieii??1?i11o的方向(因为V=-cos180×/ω50Nm l××=500ωM FAB11e o)180=与P方向相反,所以α 精品文档. 精品文档 2.题图2所示的轮系中,已知各轮齿数:z=z=20,z=z=40,2'32122.作用在轴O上的阻力矩04kg·m,J=J=0.J=J=0.01kg·m2'3213M= 40N·m.当取齿轮1为等效构件时,求机构的等效转动惯量和3阻 力矩M的等效力矩.3 图2 答案:该轮系为定轴轮系. 1z/z ∴ωi=ω/ω=(-1)=-ω/2=-0.5×ω112221211

惯量等效计算方法

飞轮惯量匹配方法的研究 4.1.1 方法一 1. 混合动力车辆道路行驶模型: 车辆行驶阻力公式为: t f w i j F F F F F =+++ (4-1) 其中j dv F m dt δ=是车辆行驶惯性力,v (/)m s 是车辆行驶速度。 台架测试时主要利用电力测功机模拟电动车辆行驶受到的空气阻力、滚动阻力和爬坡阻力,而惯性力和转动惯量主要由机械飞轮实现加载。首先建立两种模型,一种是道路上行驶的车辆驱动系统牵引模型,一种是台架测试的牵引系统转动模型,通过两种模型分析,研究车辆动力驱动系统在台架测试时的惯量匹配方法。 车辆道路行驶模型可以简化为图4-1的形式,发动机/电机通过变速传动(变速器和主减速器以及差速机构)牵引车轮克服道路阻力行驶。 图4-1车辆道路行驶模型 图4-1中,mt ω为输出转速(rad/s ),1J 为发动机/电机转动惯量,a J 为折算到发动机/电机轴上的车辆惯量;v 为车辆行驶速度(m/s ),i '为车辆传动比。车辆在道路上行驶时,动能可以表示为: 2221111222 r mt i i E mv J J ωω=++∑ (4-2) 其中i J 和i ω是车辆上其它旋转部件的转动惯量和旋转角速度。为了便于分析和计算,将车辆旋转质量的惯性力偶矩转化为平移质量的惯性

力,引入质量换算系数δ,由此,上式可以简化为: 212r E mv δ= (4-3) 2.δ的选择 计算车辆惯量的简单方法是利用车辆质量换算系数δ 将旋转惯量转变为平移惯量。多种因素与δ的大小有关,如车轮旋转惯量、齿轮旋转惯量等,一般情况可以使用公式(4-4)计算δ。 221022 11()g J J i i m r r ωηδ=++∑ (4-4) 12w w w J J J =+∑是车辆上所有主动旋转部件和被动旋转部件的惯量之和。不同的车辆具有不同的传动比,因此具有不同的δ,表4-1是不同内燃机车辆不同挡位对应的δ值。 表4-1 质量换算系数δ的数值 可以看出,挡位越高,对应δ值越小,一般在直接挡时δ=,具体数δ值可以根据公式(4-4)计算得到。 3. 车辆动力驱动系统的台架测试模型 图4-2为车辆发动机/电机台架测试时的配置,其中1l J 、2l J 、3l J 和4l J 是四个联轴器的惯量;st J 为转速转矩传感器的惯量;k J 为齿轮箱旋转部件的惯量;z J 和b J 分别是增/减速箱中主动齿轮和被动齿轮的惯量;d J 为测功机转子的惯量;i 定义为增/减速箱的减速比;in J 是机械飞轮的惯量,与图4-1的车辆道路行驶模型对比,台架测试要保证发动机/电机轴的转速以及加载到发动机/电机轴上的转矩和惯量应该与车辆在实际道路上行驶

-转动惯量及其计算方法

-转动惯量及其计算方法

渤海大学本科毕业论文(设计) 转动惯量及其求法 The Computing Method of Moment of Inertia 学院(系):数理学院 专业:物理师范 学号:12022004 学生姓名:郝政超 入学年度:2012 指导教师:王春艳 完成日期:2016年3月21日 渤海大学 Bohai University

摘要 随着科学与技术的飞速发展,刚体的转动惯量作为一个十分重要的参数,使他在很多领域里受到了重视,尤其是工业领域。近几年来,伴随着高科技的飞速发展,关于刚体转动惯量的研讨,尤其是对于那些质地不均匀和形状不规则刚体的转动惯量的深入探究,已经全然对将来的军事、航空、以及精密仪器的制作等行业产生了极为深远的影响。本篇文章将在这些知识基础上,遵循着循序渐进的原则,对常见刚体的转动惯量以及不同常见规则的刚体的转动惯量的计算进行深入的研究。 本文主要分为四个部分。首先本文系统介绍了刚体以及刚体的动量矩,转动动能和转动惯量的基础知识。其次介绍了刚体的平行轴定理和垂直轴定理,并且给出了转动惯量常见的的计算方法。接着,本文介绍了几类常见的刚体的转动惯量,其中包括圆环、圆柱体、圆盘、杆、空心圆柱体以及六面体的转动惯量。最后,通过具体实例给出了不规则刚体的转动惯量的测量方法。 【关键词】力矩;角加速度;摩擦力

The compute of moment of inertia Abstract Delve into the irregular inhomogeneous along with the science and technology rapid development, the rigid body rotational inertia is a very important parameter, make him in many fields by the attention, especially industrial fields. In recent years, along with the high-tech rapid development of rigid body rotation inertia of research, especially for those texture and shape of rigid body inertia has been completely to the future military, aviation, and precision instrument manufacturing industry produced extremely far-reaching impact. This article will be in the knowledge base, follow the gradual principle of common rigid body inertia and common rules of rigid body rotation The calculation of inertia is deeply studied. This paper is divided into four parts. First of all, this paper systematically introduced the rigid body and the angular momentum of a rigid body, rotational kinetic energy and rotational inertia based knowledge. Followed by the introduction of the parallel axis theorem of rigid body and vertical axis theorem, and gives the rotation inertia common calculation method. Then, this paper introduces the several common types of rigid body's moment of inertia, which include ring, cylinder, disc, rod, hollow cylinder and hexahedron of the moment of inertia. Finally, through specific examples are given irregular rigid body rotational inertia measurement method. Key Words:Moment;Angular Acceleration;Friction

相关文档
最新文档