信号与系统第四版陈生潭第四章课后答案ppt课件

合集下载

《信号与系统分析》课件第4章

《信号与系统分析》课件第4章
(4-23)
【例4-13】 设
,求其逆变换。
解 对F(s)进行部分分式展开,写出
用式(4-23)求出A1, A2, A3
于是 故
F(s)= 1 2 1 s 1 s 1 s 2
f(t)=e-tU(t)-2etU(t)+e-2tU(t)
【例4-14】求 换f(t)
的拉氏逆变
解 F(s)不是真分式,首先用长除法将F(s)表示为真分 式与s的多项式之和
【例4-1】 确定指数信号 f(t)=e-atU(t) (a>0, 实数)
的拉氏变换及其收敛域,并画出零极点图。 解 将f(t)代入式(4-1), 得
为求e-(s+a)t的极限,利用s=σ+jω, 得到
现在若σ>-a, 则当t→∞时, e-(σ+a)t→0, 此时
若σ≤-a, 则F(s)不存在, 因为积分不收敛。因此, 该信号拉氏变换的ROC是σ>-a, 或者等效为Re[s]>-a。 图4-2的阴影部分代表ROC, 极点位于s=-a处。
若f1(t)和f2(t)为因果信号,即对t<0, f1(t)=f2(t)=0, 则 (4-14)
4.2.6 微分定理
1. 时域微分
特别地,对因果信号,有
(4-15) (4-16)
【例4-6】 信号f(t)如图4-4所示,分别通过直接计算和 微分特性求 df (t) 的拉氏变换。
dt
图 4-4 【例4-6】图
解 因为
f(t)=U(t)-U(t-τ)
所以
本例中

的ROC均为Re[s]>0,
极点均在s=0处。但
有一个s=0的零
点, 抵消了该处的极点,相应地ROC扩大为整个s平面。

信号与线性系统 管致中 第四版 第4章 ppt课件

信号与线性系统 管致中 第四版 第4章 ppt课件
j+2
HjE Rjj j1+2
2020/12/2
16
2) 从微分方程直接求解(方程两边取傅氏变换) 例:已知微分方程
y ''( t) 3 y '( t) 2 y ( t) x ( t)
求:系统函数 H( j) 。 解:对方程两边求傅氏变换,可得
[j()2 3 (j) 2 ]Y (j)X (j)
1 2j1 1 vo(t)1 2e t (t) 28
例:某系统的微分方程为
y " (t) 5 y '( t) 6 y ( t) x (t) 已知输入 x(t激 )e励 t(t),
初始状 y(0态 )2,y'(0)1, 试求全响应。
解(1: )求零状态yz响 s(t),用 应傅氏变换分析
X(j)F[x(t)] 1 j1
H(j)141 j11
27
例:已知 vS(t)2e2t(t)求:1.H( j) 2. h (t ) 3. vo (t)
H(j)141 j11
反变换,得 h(t)1(t)et(t) 4
V o (j ) V S(j )H (j )j 2 2 1 4 jj 1 2
2020/12/2
| H(j)| 2 42
0,| H ( j ) | 1
2020/12/2
2,| H(j)| 2
2
,|H (j)| 0 23
设含噪声 u1(t)信 5s号 itn) (: 3sin 2(t0)
u1(t)
h(t)
u2(t)
2020/12/2
24
三、系统响应: y(t)yx(t)yf(t)
yx(t): 系统零输入响应,取决于系统自然频率和初始值;

信号与系统PPT电子书陈生谭版课后习题答案

信号与系统PPT电子书陈生谭版课后习题答案
x2(0-)=1 时,y2(t)=4e-t-2e-3t,t≥0 则 x1(0-)=5,x2(0-)=3 时,系统的零输入响应: yx(t)=y(t)=5y1(t)+3y2(t)=22e-t 十 9e-3t,t≥0
1.22 在题 1.21 的基础上,若还已知 f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,有 y(t)=2+e-t+2e-3t,t≥0 试求当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统响应 y(t)。 解: 记,f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,系统响应 yf(t)=y(t)=2+e-t+2e-3t,t≥0 则当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统全响应 y(t)为: y(t)=3yf(t)+2y1(t)+5y2(t)
解:
(1)
is
(t)
=
i(t
)
+
ic
(t )
+
iR
(t )
=
i (t )
+
Cuc′
(t )
+
1 2
u (t )
----⑴
而 uC (t) = u(t)
对回路①,有:
⎧− ⎩⎨iL
3i(t) (t) =
+ is
LiL′ (t) + u(t) (t) − i(t)
=
0

u(t)
=
3i(t
)

Lis′
(t)
− p 1+ p
−1
3p 0
−p
− p 0 1+ p +1/ p
− p f (t) i2 (t) = 3 p − p

《信号与系统》第四章

《信号与系统》第四章

图 两个矢量正交
矢量的分解
c2V2
V
V2
2
o
1
V1
c1V1
图 平面矢量的分解
c3V3
V3
V
o V1
V2
c2V2
c1V1
V c1V1 c2V2 c3V3
图 三维空间矢量的分解
推广到n维空间
1 正交函数的定义
在区间 (t1,t内2 ),函数集 {0 (t),1(t中),的,各N个(t)函} 数间,若满足下列 正交条件:
➢在波形任一周期内,其第二个半波波形与第一个半波波形相同;
x(t) x(t T0 / 2)
➢这时x(t)是一个周期减半为
的周期非正弦波,其基波频率

,即其只含有偶次谐T0波2;
20
4.4波形对称性与傅里叶系数
4 奇半波对称
➢在波形任一周期内,其第二个半周波形恰为第一个半周波形的
负值; x(t) x(t T0 / 2)
交函数集 {0 (t),1(t), ,N (t)} 是完备的,即再也找不到一个函数 (t)
能满足
t2
(t)
* m
(t
)dt
0
t1
m 0,1, , N
则在区间 (t1,t2 ) 内,任意函数x(t)可以精确地用N+1个正交函数地加权和
表示:
N
x(t) c00 (t) c11(t) cN N (t) cnn (t)
T0
3 傅里叶级数系数的确定
➢正弦—余弦形式傅里叶级数的系数
2Bk
2 T0
x(t) cos k0tdt
T0
2Dk
2 T0
x(t) sin k0tdt

信号与系统第四章1

信号与系统第四章1

0<t<1 1< t < 2
1
2
4.5
思考题4.4 思考题4.4
20
4.5 周期信号的频谱与功率谱
一.频谱 频谱
辐频 Ak ~ kω 0 关系
相频 θ k ~ k ω 0 关系
x ( t ) = c 0 + 2 ∑ Ak cos( k ω 0 t + θ k )
k =1

---三角函数形式 三角函数形式
2 2 Ak = Bk + Dk
tgθ k = Dk / Bk
− Dk = − I m {ck }, k > 0
11
复指数——> 正余弦的转换: 正余弦的转换: 复指数
B k = Re {ck }
4.4 波形对称性与傅里叶系数
1.偶对称:x(t)=x(-t) 偶对称: 偶对称
− 2 Dk = 0
4 2 Bk = T0
8
将这两者相加, 式中基波角频率 ω 0 = 2π / T0 。将这两者相加,即 为所求x(t)的傅里叶级数。所以 的傅里叶级数。 为所求 的傅里叶级数
x( t ) = Ev{ x( t )} + Od { x( t )}
4 8 = sinω0 t − 2 cosω0 t + sin3ω0 t − 2 cos3ω0 t π π 3π 9π
第 四 章
连续时间傅立叶变换 连续时间信号的谱分析和 --频分析 时--频分析
1
4.1引言 引言 4.2复指数函数的正交性 复指数函数的正交性 4.3周期信号的表示:连续时间傅里叶级数 周期信号的表示: 周期信号的表示 4.4波形对称性与傅立叶系数 波形对称性与傅立叶系数 4.5周期信号的频谱与功率谱 周期信号的频谱与功率谱 4.6傅里叶级数的收敛性 吉伯斯现象 傅里叶级数的收敛性 4.7非周期信号的表示:连续时间傅里叶变换 非周期信号的表示: 非周期信号的表示 4.8傅里叶级数与傅里叶变换的关系 傅里叶级数与傅里叶变换的关系 4.9连续时间傅里叶变换的性质与应用 连续时间傅里叶变换的性质与应用 4.10卷积定理及其应用 卷积定理及其应用 4.11相关 相关 4.12能量谱密度与功率谱密度 能量谱密度与功率谱密度 4.13信号的时 频分析和小波分析简介 信号的时---频分析和小波分析简介 信号的时

《信号与系统》课程讲义4-6PPT课件

《信号与系统》课程讲义4-6PPT课件
若 1 2 1 2
若 1 2 无公共收敛区
2
对应 u(t )

j
对应u ( t )
FB ( s) 的收敛域一般形式为: 1 2
1
2


§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
② 右边信号的双边拉氏变换 f (t ) f1 (t )u(t )
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换

f (t ) eat u(t ) ebt u(t )
1 1 a FB ( s ) s a b s b

a b ( a b) 不存在 ( a b)

f (t ) e
f (t ) e
a) 2, - 2-左边;0-左边; 1-左边
1 1 1 2 FB ( s) 2 0 s 1 s 2 s
j
1 t 1 2t f (t ) ( e e )u (t ) 2 2
2 0 1
a)

§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
1 1 FB ( s ) s s 1
f (t ) (1 e )u(t )
t
0

1

a)
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
b) 0 1 ,对应双边: 0-右边;1-左边
1 1 1 1 FB ( s ) s s 1 s 1 s
j
f (t ) u(t ) et u(t )

§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
③ 左边信号的双边拉氏变换 f (t ) f 2 (t )u( t )

《信号与系统》第4章 连续系统的复频域分析 PPT课件

《信号与系统》第4章  连续系统的复频域分析 PPT课件

eat (t)estdt

例 4.1-3 求反因果信号f3(t)=-e-βtε(-t)(β>0)的双边拉氏变换及其收敛域。
j
j
j
- o

- o

o

(a)
(b)
(c)
图 4.1-1 双边拉氏变换的收敛域 (a) F2(s)的收敛域; (b) F3(s)的收敛域; (c) F4(s)的收敛域
4.1.3 单边拉普拉斯变换
信号f(t)的单边拉普拉斯变换和单边拉普拉斯逆变换(或反变换)分别为
与双边拉普拉斯变换存在的条件类似,若f(t)满足
f (t) etdt 0
则f(t)的单边拉普拉斯变换F(s)存在。使F(s)存在的S复平面上s的取值区域称为F(s)的 收敛域。因为f(t)的单边拉普拉斯变换等于f(t)ε(t)的双边拉普拉斯变换,所以,单边拉 普拉斯变换的收敛域与因果信号双边拉普拉斯变换的收敛域相同,即单边拉普拉斯 变换的收敛域为平行于jω轴的一条直线的右边区域,可表示为
f (t) F (s), f1(t) f (at b) (at b),
a 0, b 0, 求f1(t)的象函数。
解 因为
5. 时域卷积
证 根据信号卷积的定义,并且f1(t)和f2(t)是因果信号,则
例 4.2-6 已知图 4.2-1(a)所示信号f(t)与图(b)所示信号fτ(t)的关系为f(t)=fτ(t)*fτ(t), 求f(t)的单边拉氏变换。
0
1
t
(b)
f ′(t)
(2 )
1
0
t
(- 1)
(c)
图 4.2-3 例 4.2-9 图
方法二 f(0-)=-1,f(t)的一阶导数为

信号与系统ppt课件

信号与系统ppt课件

结果解释
对实验结果进行解释,说明实验结果所反映 出的系统特性。
总结归纳
对实验过程和结果进行总结归纳,概括出实 验的重点内容和结论。
06
总结与展望
信号与系统的总结
信号与系统是通信、电子、生物医学工程等领域的重 要基础课程,其理论和方法在信号处理、图像处理、
数据压缩等领域有着广泛的应用。
信号与系统的主要内容包括信号的时域和频域表示、 线性时不变系统、调制与解调、滤波器设计等。
信号与系统ppt课件
目录
• 信号与系统概述 • 信号的基本特性 • 系统的基本特性 • 信号与系统的应用 • 信号与系统的实验与实践 • 总结与展望
01
信号与系统概述
信号的定义与分类
信号的定义
信号是传递信息的一种方式,可以表示声音、图像、文字等。在通信系统中, 信号是传递信息的载体。
信号的分类
系统的分类
根据系统的复杂程度,可以分为线性系统和非线性系统;根据系统的稳定性,可以分为稳定系统和不稳定系统; 根据系统的时域特性,可以分为时域系统和频域系统。
信号与系统的重要性
01
信号是信息传递的载体,系统 是实现特定功能的整体,因此 信号与系统在信息处理中具有 非常重要的地位。
02
在通信系统中,信号的传输和 处理是实现信息传递的关键环 节,而系统的设计和优化直接 影响到通信系统的性能和可靠 性。
03
信号可以用数学函数来表示,其中离散信号常用序列
表示,连续信号常用函数表示。
信号的时域特性
01
02
03
信号的幅度
信号的幅度是表示信号强 弱的量,通常用振幅来表 示。
信号的相位
信号的相位是表示信号时 间先后顺序的量,通常用 角度来表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、单边拉氏变换
def
F(s)
f (t) est d t
0
f
(t
)
def
1
2
j
j
F
j
(
s)
e
st
d
s
(t
)
简记为F(s)=£[f(t)] f(t)=£ -1[F(s)]

f(t)←→ F(s)
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1.(t ) 1,
2.(t )或1
1
s
,
0
3. (t ) s,
4.指数信号e s0t
1
s s0
4.1 拉普拉斯变换
令s0
e t
1
s
,
e t
1
s
,
令s0 j
e j t
, 1
s j
0
e j t
, 1
s j
0
令s0 0
(t )
1
s
,
0
4.1 拉普拉斯变换
五、单边拉氏变换与傅里叶变换的关系
F (s) f (t) est d t 0
例3 双边信号求其拉普拉斯变换。
f3 (t)
f1 (t)
f2 (t)
e t , e t ,
求其拉普拉斯变换。
t0 t 0
解 其双边拉普拉斯变换 Fb(s)=Fb1(s)+Fb2(s)

仅当>时,其收敛域为
<Re[s]<的一个带状区域,
如图所示。
α
0
βσ
4.1 拉普拉斯变换
例4 求下列信号的双边拉氏变换。
相应t]的= 傅里叶逆变换 为
f(t) e-t=
1
2
Fb (
j) e j
td
f (t) 1
2
Fb (
j) e( j)t d
令s = + j,
d =ds/j,有
4.1 拉普拉斯变换
Fb (s)
f (t)est d t
f (t)
1
2
j
j
F j b
(
s)
e
st
d
s
双边拉普拉斯变 换对
Re[s]>0
F (j) f (t) e j t d t
要讨论其关系,f(t)必须为因果信号。
根据收敛坐标0的值可分为以下三种情况:
(1)0<0,即F(s)的收敛域包含j轴,则f(t)的傅里叶
变换存在,并且
F(j)=F(s) s=j
如f(t)=e-2t(t) ←→F(s)=1/(s+2) , >-2;
有些函数不满足绝对可积条件,求解傅里叶变换困难。
为此,可用一衰减因子e-t(为实常数)乘信号f(t) ,适当
选取的值,使乘积信号f(t) e-t当t∞时信号幅度趋近于
0 ,从而使f(t) e-t的傅里叶变换存在。
Fb(+j)= ℱ[ f(t) e-
f (t) e t e j t d t f (t) e( j)t d t
Fb(s)称为f(t)的双边拉氏变换(或象函数), f(t)称为Fb(s) 的双边拉氏逆变换(或原函数)。
拉氏逆变换的物理意义
f
(t)
1 2
j
j F (s)est ds
j
F ( )etdf 2 F (s) et cos[t (s)]df 0
利用拉氏变换,可将f(t)分解成众多复指数信号Aest或形如Aet cos[t (s)]
信号与系统 电子教案
信号与系统第四版陈生潭第四章课后答案
第5-1页

©西安电子科技大学电路与系统教研中心
4.5 系统微分方程的S域解 4.6 电路的s域求解 4.7 连续系统的表示与模拟 4.8 系统函数与系统特性
频域分析以虚指数信号ejωt为基本信号,任意信号可 分解为众多不同频率的虚指数分量之和。使响应的求解 得到简化。物理意义清楚。但也有不足: (1)有些重要信号不存在傅里叶变换,如e2tε(t); (2)对于给定初始状态的系统难于利用频域分析。
s
1
3
s
1
2
Re[s]= < – 3 –3<<–2
可见,象函数相同,但收敛域不同。双边拉氏变换必 须标出收敛域。
4.1 拉普拉斯变换
通常遇到的信号都有初始时刻,不妨设其初始时刻为坐标 原点。这样,t<0时,f(t)=0。从而拉氏变换式写为
F (s) f (t) est d t 0
称为单边拉氏变换。简称拉氏变换。其收敛域一定是 Re[s]> ,可以省略。本课程主要讨论单边拉氏变换。

F2b (s)
0 e t e st d t e (s )t
(s )
0
1
[1 lim e e ( )t j
(s ) t
t]
无界 , Re[s] .
不定


1
(s
)

可见,对于反因果信号,仅当
Re[s]=<时,其拉氏变换存在。
0
βσ
收敛域如图所示。
4.1 拉普拉斯变换
则 F(j)=1/( j+2)
4.1 拉普拉斯变换
(2)0 =0,即F(s)的收敛边界为j轴,
F(j) lim F(s) 0
如f(t)= (t)←→F(s)=1/s
F (j)
lim
0
1
j
lim
0
2 2
lim
0
2
j
2
= () + 1/j
(3)0 >0,F(j)不存在。 例f(t)=e2t(t) ←→F(s)=1/(s –2) , >2;其傅里叶变 换不存在。
0
(s )
0
1 [1 lime( )te j
(s ) t
t]
不s1定,, 无界,
Re[s] =
可见,对于因果信号,仅当
jω 0α
Re[s]=>时,其拉氏变换存
在。 收敛域如图所示。
收敛边

σ 收敛域
4.1 拉普拉斯变换
例2 反因果信号f2(t)= et(-t) ,求其拉普拉斯变换。
在这一章将通过把ቤተ መጻሕፍቲ ባይዱ域中的傅里叶变换推广到复频 域来解决这些问题。
本章引入复频率 s = σ+jω,以复指数函数est为基本信 号,任意信号可分解为不同复频率的复指数分量之和。 这里用于系统分析的独立变量是复频率 s ,故称为s域分 析。所采用的数学工具为拉普拉斯变换。
4.1 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换
f1(t)= e-3t (t) + e-2t (t) f2(t)= – e -3t (–t) – e-2t (–t) f3(t)= e -3t (t) – e-2t (– t)

f1 (t)
F1 (s)
s
1 3
s
1
2
Re[s]= > – 2
f2 (t)
F2 (s)
s
1
3
s
1
2
f3 (t)
F3 (s)
信号的线形组合。
二、收敛域
只有选择适当的值才能使积分收敛,信号f(t)的
4.1 拉普拉斯变换
双边拉普拉斯变换存在。
使 f(t)拉氏变换存在的取值范围称为Fb(s)的收敛域。
下面举例说明Fb(s)收敛域的问题。
例1 因果信号f1(t)= et (t) ,求其拉普拉斯变换。
解 F1b (s)
et est d t e(s )t
相关文档
最新文档