信号与系统第四版陈生潭第四章课后答案ppt课件
合集下载
《信号与系统分析》课件第4章

(4-23)
【例4-13】 设
,求其逆变换。
解 对F(s)进行部分分式展开,写出
用式(4-23)求出A1, A2, A3
于是 故
F(s)= 1 2 1 s 1 s 1 s 2
f(t)=e-tU(t)-2etU(t)+e-2tU(t)
【例4-14】求 换f(t)
的拉氏逆变
解 F(s)不是真分式,首先用长除法将F(s)表示为真分 式与s的多项式之和
【例4-1】 确定指数信号 f(t)=e-atU(t) (a>0, 实数)
的拉氏变换及其收敛域,并画出零极点图。 解 将f(t)代入式(4-1), 得
为求e-(s+a)t的极限,利用s=σ+jω, 得到
现在若σ>-a, 则当t→∞时, e-(σ+a)t→0, 此时
若σ≤-a, 则F(s)不存在, 因为积分不收敛。因此, 该信号拉氏变换的ROC是σ>-a, 或者等效为Re[s]>-a。 图4-2的阴影部分代表ROC, 极点位于s=-a处。
若f1(t)和f2(t)为因果信号,即对t<0, f1(t)=f2(t)=0, 则 (4-14)
4.2.6 微分定理
1. 时域微分
特别地,对因果信号,有
(4-15) (4-16)
【例4-6】 信号f(t)如图4-4所示,分别通过直接计算和 微分特性求 df (t) 的拉氏变换。
dt
图 4-4 【例4-6】图
解 因为
f(t)=U(t)-U(t-τ)
所以
本例中
和
的ROC均为Re[s]>0,
极点均在s=0处。但
有一个s=0的零
点, 抵消了该处的极点,相应地ROC扩大为整个s平面。
【例4-13】 设
,求其逆变换。
解 对F(s)进行部分分式展开,写出
用式(4-23)求出A1, A2, A3
于是 故
F(s)= 1 2 1 s 1 s 1 s 2
f(t)=e-tU(t)-2etU(t)+e-2tU(t)
【例4-14】求 换f(t)
的拉氏逆变
解 F(s)不是真分式,首先用长除法将F(s)表示为真分 式与s的多项式之和
【例4-1】 确定指数信号 f(t)=e-atU(t) (a>0, 实数)
的拉氏变换及其收敛域,并画出零极点图。 解 将f(t)代入式(4-1), 得
为求e-(s+a)t的极限,利用s=σ+jω, 得到
现在若σ>-a, 则当t→∞时, e-(σ+a)t→0, 此时
若σ≤-a, 则F(s)不存在, 因为积分不收敛。因此, 该信号拉氏变换的ROC是σ>-a, 或者等效为Re[s]>-a。 图4-2的阴影部分代表ROC, 极点位于s=-a处。
若f1(t)和f2(t)为因果信号,即对t<0, f1(t)=f2(t)=0, 则 (4-14)
4.2.6 微分定理
1. 时域微分
特别地,对因果信号,有
(4-15) (4-16)
【例4-6】 信号f(t)如图4-4所示,分别通过直接计算和 微分特性求 df (t) 的拉氏变换。
dt
图 4-4 【例4-6】图
解 因为
f(t)=U(t)-U(t-τ)
所以
本例中
和
的ROC均为Re[s]>0,
极点均在s=0处。但
有一个s=0的零
点, 抵消了该处的极点,相应地ROC扩大为整个s平面。
信号与线性系统 管致中 第四版 第4章 ppt课件

j+2
HjE Rjj j1+2
2020/12/2
16
2) 从微分方程直接求解(方程两边取傅氏变换) 例:已知微分方程
y ''( t) 3 y '( t) 2 y ( t) x ( t)
求:系统函数 H( j) 。 解:对方程两边求傅氏变换,可得
[j()2 3 (j) 2 ]Y (j)X (j)
1 2j1 1 vo(t)1 2e t (t) 28
例:某系统的微分方程为
y " (t) 5 y '( t) 6 y ( t) x (t) 已知输入 x(t激 )e励 t(t),
初始状 y(0态 )2,y'(0)1, 试求全响应。
解(1: )求零状态yz响 s(t),用 应傅氏变换分析
X(j)F[x(t)] 1 j1
H(j)141 j11
27
例:已知 vS(t)2e2t(t)求:1.H( j) 2. h (t ) 3. vo (t)
H(j)141 j11
反变换,得 h(t)1(t)et(t) 4
V o (j ) V S(j )H (j )j 2 2 1 4 jj 1 2
2020/12/2
| H(j)| 2 42
0,| H ( j ) | 1
2020/12/2
2,| H(j)| 2
2
,|H (j)| 0 23
设含噪声 u1(t)信 5s号 itn) (: 3sin 2(t0)
u1(t)
h(t)
u2(t)
2020/12/2
24
三、系统响应: y(t)yx(t)yf(t)
yx(t): 系统零输入响应,取决于系统自然频率和初始值;
HjE Rjj j1+2
2020/12/2
16
2) 从微分方程直接求解(方程两边取傅氏变换) 例:已知微分方程
y ''( t) 3 y '( t) 2 y ( t) x ( t)
求:系统函数 H( j) 。 解:对方程两边求傅氏变换,可得
[j()2 3 (j) 2 ]Y (j)X (j)
1 2j1 1 vo(t)1 2e t (t) 28
例:某系统的微分方程为
y " (t) 5 y '( t) 6 y ( t) x (t) 已知输入 x(t激 )e励 t(t),
初始状 y(0态 )2,y'(0)1, 试求全响应。
解(1: )求零状态yz响 s(t),用 应傅氏变换分析
X(j)F[x(t)] 1 j1
H(j)141 j11
27
例:已知 vS(t)2e2t(t)求:1.H( j) 2. h (t ) 3. vo (t)
H(j)141 j11
反变换,得 h(t)1(t)et(t) 4
V o (j ) V S(j )H (j )j 2 2 1 4 jj 1 2
2020/12/2
| H(j)| 2 42
0,| H ( j ) | 1
2020/12/2
2,| H(j)| 2
2
,|H (j)| 0 23
设含噪声 u1(t)信 5s号 itn) (: 3sin 2(t0)
u1(t)
h(t)
u2(t)
2020/12/2
24
三、系统响应: y(t)yx(t)yf(t)
yx(t): 系统零输入响应,取决于系统自然频率和初始值;
信号与系统PPT电子书陈生谭版课后习题答案

x2(0-)=1 时,y2(t)=4e-t-2e-3t,t≥0 则 x1(0-)=5,x2(0-)=3 时,系统的零输入响应: yx(t)=y(t)=5y1(t)+3y2(t)=22e-t 十 9e-3t,t≥0
1.22 在题 1.21 的基础上,若还已知 f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,有 y(t)=2+e-t+2e-3t,t≥0 试求当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统响应 y(t)。 解: 记,f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,系统响应 yf(t)=y(t)=2+e-t+2e-3t,t≥0 则当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统全响应 y(t)为: y(t)=3yf(t)+2y1(t)+5y2(t)
解:
(1)
is
(t)
=
i(t
)
+
ic
(t )
+
iR
(t )
=
i (t )
+
Cuc′
(t )
+
1 2
u (t )
----⑴
而 uC (t) = u(t)
对回路①,有:
⎧− ⎩⎨iL
3i(t) (t) =
+ is
LiL′ (t) + u(t) (t) − i(t)
=
0
⇒
u(t)
=
3i(t
)
−
Lis′
(t)
− p 1+ p
−1
3p 0
−p
− p 0 1+ p +1/ p
− p f (t) i2 (t) = 3 p − p
1.22 在题 1.21 的基础上,若还已知 f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,有 y(t)=2+e-t+2e-3t,t≥0 试求当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统响应 y(t)。 解: 记,f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,系统响应 yf(t)=y(t)=2+e-t+2e-3t,t≥0 则当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统全响应 y(t)为: y(t)=3yf(t)+2y1(t)+5y2(t)
解:
(1)
is
(t)
=
i(t
)
+
ic
(t )
+
iR
(t )
=
i (t )
+
Cuc′
(t )
+
1 2
u (t )
----⑴
而 uC (t) = u(t)
对回路①,有:
⎧− ⎩⎨iL
3i(t) (t) =
+ is
LiL′ (t) + u(t) (t) − i(t)
=
0
⇒
u(t)
=
3i(t
)
−
Lis′
(t)
− p 1+ p
−1
3p 0
−p
− p 0 1+ p +1/ p
− p f (t) i2 (t) = 3 p − p
《信号与系统》第四章

图 两个矢量正交
矢量的分解
c2V2
V
V2
2
o
1
V1
c1V1
图 平面矢量的分解
c3V3
V3
V
o V1
V2
c2V2
c1V1
V c1V1 c2V2 c3V3
图 三维空间矢量的分解
推广到n维空间
1 正交函数的定义
在区间 (t1,t内2 ),函数集 {0 (t),1(t中),的,各N个(t)函} 数间,若满足下列 正交条件:
➢在波形任一周期内,其第二个半波波形与第一个半波波形相同;
x(t) x(t T0 / 2)
➢这时x(t)是一个周期减半为
的周期非正弦波,其基波频率
为
,即其只含有偶次谐T0波2;
20
4.4波形对称性与傅里叶系数
4 奇半波对称
➢在波形任一周期内,其第二个半周波形恰为第一个半周波形的
负值; x(t) x(t T0 / 2)
交函数集 {0 (t),1(t), ,N (t)} 是完备的,即再也找不到一个函数 (t)
能满足
t2
(t)
* m
(t
)dt
0
t1
m 0,1, , N
则在区间 (t1,t2 ) 内,任意函数x(t)可以精确地用N+1个正交函数地加权和
表示:
N
x(t) c00 (t) c11(t) cN N (t) cnn (t)
T0
3 傅里叶级数系数的确定
➢正弦—余弦形式傅里叶级数的系数
2Bk
2 T0
x(t) cos k0tdt
T0
2Dk
2 T0
x(t) sin k0tdt
信号与系统第四章1

0<t<1 1< t < 2
1
2
4.5
思考题4.4 思考题4.4
20
4.5 周期信号的频谱与功率谱
一.频谱 频谱
辐频 Ak ~ kω 0 关系
相频 θ k ~ k ω 0 关系
x ( t ) = c 0 + 2 ∑ Ak cos( k ω 0 t + θ k )
k =1
∞
---三角函数形式 三角函数形式
2 2 Ak = Bk + Dk
tgθ k = Dk / Bk
− Dk = − I m {ck }, k > 0
11
复指数——> 正余弦的转换: 正余弦的转换: 复指数
B k = Re {ck }
4.4 波形对称性与傅里叶系数
1.偶对称:x(t)=x(-t) 偶对称: 偶对称
− 2 Dk = 0
4 2 Bk = T0
8
将这两者相加, 式中基波角频率 ω 0 = 2π / T0 。将这两者相加,即 为所求x(t)的傅里叶级数。所以 的傅里叶级数。 为所求 的傅里叶级数
x( t ) = Ev{ x( t )} + Od { x( t )}
4 8 = sinω0 t − 2 cosω0 t + sin3ω0 t − 2 cos3ω0 t π π 3π 9π
第 四 章
连续时间傅立叶变换 连续时间信号的谱分析和 --频分析 时--频分析
1
4.1引言 引言 4.2复指数函数的正交性 复指数函数的正交性 4.3周期信号的表示:连续时间傅里叶级数 周期信号的表示: 周期信号的表示 4.4波形对称性与傅立叶系数 波形对称性与傅立叶系数 4.5周期信号的频谱与功率谱 周期信号的频谱与功率谱 4.6傅里叶级数的收敛性 吉伯斯现象 傅里叶级数的收敛性 4.7非周期信号的表示:连续时间傅里叶变换 非周期信号的表示: 非周期信号的表示 4.8傅里叶级数与傅里叶变换的关系 傅里叶级数与傅里叶变换的关系 4.9连续时间傅里叶变换的性质与应用 连续时间傅里叶变换的性质与应用 4.10卷积定理及其应用 卷积定理及其应用 4.11相关 相关 4.12能量谱密度与功率谱密度 能量谱密度与功率谱密度 4.13信号的时 频分析和小波分析简介 信号的时---频分析和小波分析简介 信号的时
《信号与系统》课程讲义4-6PPT课件

若 1 2 1 2
若 1 2 无公共收敛区
2
对应 u(t )
j
对应u ( t )
FB ( s) 的收敛域一般形式为: 1 2
1
2
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
② 右边信号的双边拉氏变换 f (t ) f1 (t )u(t )
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
③
f (t ) eat u(t ) ebt u(t )
1 1 a FB ( s ) s a b s b
a b ( a b) 不存在 ( a b)
④
f (t ) e
f (t ) e
a) 2, - 2-左边;0-左边; 1-左边
1 1 1 2 FB ( s) 2 0 s 1 s 2 s
j
1 t 1 2t f (t ) ( e e )u (t ) 2 2
2 0 1
a)
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
1 1 FB ( s ) s s 1
f (t ) (1 e )u(t )
t
0
1
a)
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
b) 0 1 ,对应双边: 0-右边;1-左边
1 1 1 1 FB ( s ) s s 1 s 1 s
j
f (t ) u(t ) et u(t )
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
③ 左边信号的双边拉氏变换 f (t ) f 2 (t )u( t )
若 1 2 无公共收敛区
2
对应 u(t )
j
对应u ( t )
FB ( s) 的收敛域一般形式为: 1 2
1
2
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
② 右边信号的双边拉氏变换 f (t ) f1 (t )u(t )
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
③
f (t ) eat u(t ) ebt u(t )
1 1 a FB ( s ) s a b s b
a b ( a b) 不存在 ( a b)
④
f (t ) e
f (t ) e
a) 2, - 2-左边;0-左边; 1-左边
1 1 1 2 FB ( s) 2 0 s 1 s 2 s
j
1 t 1 2t f (t ) ( e e )u (t ) 2 2
2 0 1
a)
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
1 1 FB ( s ) s s 1
f (t ) (1 e )u(t )
t
0
1
a)
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
b) 0 1 ,对应双边: 0-右边;1-左边
1 1 1 1 FB ( s ) s s 1 s 1 s
j
f (t ) u(t ) et u(t )
§4.6 双边拉氏变换;拉氏变换 ∽傅里叶变换
③ 左边信号的双边拉氏变换 f (t ) f 2 (t )u( t )
《信号与系统》第4章 连续系统的复频域分析 PPT课件

eat (t)estdt
例 4.1-3 求反因果信号f3(t)=-e-βtε(-t)(β>0)的双边拉氏变换及其收敛域。
j
j
j
- o
- o
o
(a)
(b)
(c)
图 4.1-1 双边拉氏变换的收敛域 (a) F2(s)的收敛域; (b) F3(s)的收敛域; (c) F4(s)的收敛域
4.1.3 单边拉普拉斯变换
信号f(t)的单边拉普拉斯变换和单边拉普拉斯逆变换(或反变换)分别为
与双边拉普拉斯变换存在的条件类似,若f(t)满足
f (t) etdt 0
则f(t)的单边拉普拉斯变换F(s)存在。使F(s)存在的S复平面上s的取值区域称为F(s)的 收敛域。因为f(t)的单边拉普拉斯变换等于f(t)ε(t)的双边拉普拉斯变换,所以,单边拉 普拉斯变换的收敛域与因果信号双边拉普拉斯变换的收敛域相同,即单边拉普拉斯 变换的收敛域为平行于jω轴的一条直线的右边区域,可表示为
f (t) F (s), f1(t) f (at b) (at b),
a 0, b 0, 求f1(t)的象函数。
解 因为
5. 时域卷积
证 根据信号卷积的定义,并且f1(t)和f2(t)是因果信号,则
例 4.2-6 已知图 4.2-1(a)所示信号f(t)与图(b)所示信号fτ(t)的关系为f(t)=fτ(t)*fτ(t), 求f(t)的单边拉氏变换。
0
1
t
(b)
f ′(t)
(2 )
1
0
t
(- 1)
(c)
图 4.2-3 例 4.2-9 图
方法二 f(0-)=-1,f(t)的一阶导数为
信号与系统ppt课件

结果解释
对实验结果进行解释,说明实验结果所反映 出的系统特性。
总结归纳
对实验过程和结果进行总结归纳,概括出实 验的重点内容和结论。
06
总结与展望
信号与系统的总结
信号与系统是通信、电子、生物医学工程等领域的重 要基础课程,其理论和方法在信号处理、图像处理、
数据压缩等领域有着广泛的应用。
信号与系统的主要内容包括信号的时域和频域表示、 线性时不变系统、调制与解调、滤波器设计等。
信号与系统ppt课件
目录
• 信号与系统概述 • 信号的基本特性 • 系统的基本特性 • 信号与系统的应用 • 信号与系统的实验与实践 • 总结与展望
01
信号与系统概述
信号的定义与分类
信号的定义
信号是传递信息的一种方式,可以表示声音、图像、文字等。在通信系统中, 信号是传递信息的载体。
信号的分类
系统的分类
根据系统的复杂程度,可以分为线性系统和非线性系统;根据系统的稳定性,可以分为稳定系统和不稳定系统; 根据系统的时域特性,可以分为时域系统和频域系统。
信号与系统的重要性
01
信号是信息传递的载体,系统 是实现特定功能的整体,因此 信号与系统在信息处理中具有 非常重要的地位。
02
在通信系统中,信号的传输和 处理是实现信息传递的关键环 节,而系统的设计和优化直接 影响到通信系统的性能和可靠 性。
03
信号可以用数学函数来表示,其中离散信号常用序列
表示,连续信号常用函数表示。
信号的时域特性
01
02
03
信号的幅度
信号的幅度是表示信号强 弱的量,通常用振幅来表 示。
信号的相位
信号的相位是表示信号时 间先后顺序的量,通常用 角度来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、单边拉氏变换
def
F(s)
f (t) est d t
0
f
(t
)
def
1
2
j
j
F
j
(
s)
e
st
d
s
(t
)
简记为F(s)=£[f(t)] f(t)=£ -1[F(s)]
或
f(t)←→ F(s)
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1.(t ) 1,
2.(t )或1
1
s
,
0
3. (t ) s,
4.指数信号e s0t
1
s s0
4.1 拉普拉斯变换
令s0
e t
1
s
,
e t
1
s
,
令s0 j
e j t
, 1
s j
0
e j t
, 1
s j
0
令s0 0
(t )
1
s
,
0
4.1 拉普拉斯变换
五、单边拉氏变换与傅里叶变换的关系
F (s) f (t) est d t 0
例3 双边信号求其拉普拉斯变换。
f3 (t)
f1 (t)
f2 (t)
e t , e t ,
求其拉普拉斯变换。
t0 t 0
解 其双边拉普拉斯变换 Fb(s)=Fb1(s)+Fb2(s)
jω
仅当>时,其收敛域为
<Re[s]<的一个带状区域,
如图所示。
α
0
βσ
4.1 拉普拉斯变换
例4 求下列信号的双边拉氏变换。
相应t]的= 傅里叶逆变换 为
f(t) e-t=
1
2
Fb (
j) e j
td
f (t) 1
2
Fb (
j) e( j)t d
令s = + j,
d =ds/j,有
4.1 拉普拉斯变换
Fb (s)
f (t)est d t
f (t)
1
2
j
j
F j b
(
s)
e
st
d
s
双边拉普拉斯变 换对
Re[s]>0
F (j) f (t) e j t d t
要讨论其关系,f(t)必须为因果信号。
根据收敛坐标0的值可分为以下三种情况:
(1)0<0,即F(s)的收敛域包含j轴,则f(t)的傅里叶
变换存在,并且
F(j)=F(s) s=j
如f(t)=e-2t(t) ←→F(s)=1/(s+2) , >-2;
有些函数不满足绝对可积条件,求解傅里叶变换困难。
为此,可用一衰减因子e-t(为实常数)乘信号f(t) ,适当
选取的值,使乘积信号f(t) e-t当t∞时信号幅度趋近于
0 ,从而使f(t) e-t的傅里叶变换存在。
Fb(+j)= ℱ[ f(t) e-
f (t) e t e j t d t f (t) e( j)t d t
Fb(s)称为f(t)的双边拉氏变换(或象函数), f(t)称为Fb(s) 的双边拉氏逆变换(或原函数)。
拉氏逆变换的物理意义
f
(t)
1 2
j
j F (s)est ds
j
F ( )etdf 2 F (s) et cos[t (s)]df 0
利用拉氏变换,可将f(t)分解成众多复指数信号Aest或形如Aet cos[t (s)]
信号与系统 电子教案
信号与系统第四版陈生潭第四章课后答案
第5-1页
■
©西安电子科技大学电路与系统教研中心
4.5 系统微分方程的S域解 4.6 电路的s域求解 4.7 连续系统的表示与模拟 4.8 系统函数与系统特性
频域分析以虚指数信号ejωt为基本信号,任意信号可 分解为众多不同频率的虚指数分量之和。使响应的求解 得到简化。物理意义清楚。但也有不足: (1)有些重要信号不存在傅里叶变换,如e2tε(t); (2)对于给定初始状态的系统难于利用频域分析。
s
1
3
s
1
2
Re[s]= < – 3 –3<<–2
可见,象函数相同,但收敛域不同。双边拉氏变换必 须标出收敛域。
4.1 拉普拉斯变换
通常遇到的信号都有初始时刻,不妨设其初始时刻为坐标 原点。这样,t<0时,f(t)=0。从而拉氏变换式写为
F (s) f (t) est d t 0
称为单边拉氏变换。简称拉氏变换。其收敛域一定是 Re[s]> ,可以省略。本课程主要讨论单边拉氏变换。
解
F2b (s)
0 e t e st d t e (s )t
(s )
0
1
[1 lim e e ( )t j
(s ) t
t]
无界 , Re[s] .
不定
,
jω
1
(s
)
,
可见,对于反因果信号,仅当
Re[s]=<时,其拉氏变换存在。
0
βσ
收敛域如图所示。
4.1 拉普拉斯变换
则 F(j)=1/( j+2)
4.1 拉普拉斯变换
(2)0 =0,即F(s)的收敛边界为j轴,
F(j) lim F(s) 0
如f(t)= (t)←→F(s)=1/s
F (j)
lim
0
1
j
lim
0
2 2
lim
0
2
j
2
= () + 1/j
(3)0 >0,F(j)不存在。 例f(t)=e2t(t) ←→F(s)=1/(s –2) , >2;其傅里叶变 换不存在。
0
(s )
0
1 [1 lime( )te j
(s ) t
t]
不s1定,, 无界,
Re[s] =
可见,对于因果信号,仅当
jω 0α
Re[s]=>时,其拉氏变换存
在。 收敛域如图所示。
收敛边
界
σ 收敛域
4.1 拉普拉斯变换
例2 反因果信号f2(t)= et(-t) ,求其拉普拉斯变换。
在这一章将通过把ቤተ መጻሕፍቲ ባይዱ域中的傅里叶变换推广到复频 域来解决这些问题。
本章引入复频率 s = σ+jω,以复指数函数est为基本信 号,任意信号可分解为不同复频率的复指数分量之和。 这里用于系统分析的独立变量是复频率 s ,故称为s域分 析。所采用的数学工具为拉普拉斯变换。
4.1 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换
f1(t)= e-3t (t) + e-2t (t) f2(t)= – e -3t (–t) – e-2t (–t) f3(t)= e -3t (t) – e-2t (– t)
解
f1 (t)
F1 (s)
s
1 3
s
1
2
Re[s]= > – 2
f2 (t)
F2 (s)
s
1
3
s
1
2
f3 (t)
F3 (s)
信号的线形组合。
二、收敛域
只有选择适当的值才能使积分收敛,信号f(t)的
4.1 拉普拉斯变换
双边拉普拉斯变换存在。
使 f(t)拉氏变换存在的取值范围称为Fb(s)的收敛域。
下面举例说明Fb(s)收敛域的问题。
例1 因果信号f1(t)= et (t) ,求其拉普拉斯变换。
解 F1b (s)
et est d t e(s )t